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Abstract

The metric 2-clustering problem is defined as fol-
lows: given a metric (X,d), partition X into two
sets Sy and S5 in order to minimize the value of

Z Z d(u,v)

i {uv}CS;

In this paper we show an approxrimation scheme
for this problem.

1 Introduction

In this paper we consider the following k-
clustering problem: given a weighted graph G =
(X,d) on N vertices, where d(-, ) is a weight func-
tion, partition X into k sets Sy ...Sk such that the

value of
Z Z d(u,v)

i {u,w}CS;

1s minimized. This problem was first formally posed
by Sahni and Gonzalez [7]. They observed that the
problem is NP-complete (for k£ > 2) and by reduc-
tion from k-coloring showed that it cannot be ap-
proximated up to any constant (for & > 3). Instead,
they proposed a 1/k-approximation algorithm for
the dual version of this problem where the goal is
to mazrimize the weight of edges which do not be-
long to any cluster (i.e. k-max cut). Unfortunately,
the latter result does not (and cannot) imply any
bounded approximation ratio for the k-clustering
problem. The hardness of k-clustering (for £ > 3)
was later strengthened by Kann et al [3]. The case
k = 2 1s also known as the minimum edge deletion
bipartition problem. Garg et al [5] gave a O(log N)-
approximation algorithm for this case.
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A standard way to reduce the complexity of clus-
tering problems is to assume that the weight func-
tion d is a metric. For this case Guttman-Beck and
Hassin [4] showed a 2-approximation algorithm run-
ning in time NO®*) (they also gave slightly improved
bounds for the case k = 2 assuming |S1| = |S2]).
Recently, de la Vega and Kenyon [2] gave a poly-
nomial time approximation scheme for the dual of
metric 2-clustering (i.e. metric max cut). Unfortu-
nately (as they mention) their result does not imply
a PTAS for the 2-clustering problem.

In this paper we show a polynomial (in fact,
sublinear) time approximation scheme for the 2-
clustering problem. We obtain this result by focus-
ing on the case when the de la Vega-Kenyon PTAS
does not work, 1.e. when the value of max cut is
much higher than the value of the 2-clustering. We
observe that in this case the clusters must be “well-
separated”, i.e. the average intracluster distance
(for at least one cluster) has to be much smaller
than the average intercluster distance. Therefore,
we can assign a vertex to one of the two clusters by
examining its average distance to a small sample of
points from each cluster (we find this sample by ex-
haustive search). If done correctly, this procedure
yields a (1 + ¢)-approximate solution.

2 Preliminaries

Let (X,d) be a metric space. For any two sets
A, B C X we define

d(A,B)= > dla,b).
a€AbeEB
We use d(A) to denote d(A, A)/2 (notice that this
is equal to the sum of pairwise distances of points
in A). Also, we will write d(u, B) or d(B, u) instead
of d({u}, B) or d(B, {u}). Moreover, we define
~ d(A, B)

d(A,B) = 7|A| 18]



Observe, that d is a metric.
For sets A, B of equal cardinality, we define

dy (A, B)= min Y d(a,m(a))
7r:Al—>ZIBaeA

and dy(A, B) = d(A,B)/|A|. Again, notice that
both dys and dyy satisfy metric properties.

For any e € [0,1], u € X and A C X, we define
do(u, A) to be the sum of the «|A| smallest values
of {d(u,a)|a € A}. Notice, that dy(u, A) = d(u, A).
We also define d,(u, A) = do(u, A)/(a|Al).

The algorithms which we give in this paper are
randomized and producing an (1 + ¢)-approximate
solutions with high probability, i.e. with probability
1 —1/N?, where the exponent a can be made arbi-
trarily large by increasing the running time of the
algorithm. For simplicity in the rest of the paper we
will skip the exact dependence of the probability of
success on the running time of the algorithms.

3 The algorithms

Our result is obtained by running three algo-
rithms in parallel: MAXCUT, BC and UC. In
the course of describing the algorithms we will use
(S1,S3) to denote a (possibly one of many) clus-
tering with minimal value. We will assume that
|S1] = m and |S2| = n are given to us, as otherwise
we use all N possible combinations and increase the
running time by a factor of N (it is possible to re-
duce this factor to O(log; . N) but we skip the de-
scription here).

The algorithms are as follows:

MAXCUT: this is the algorithm of [2] for (1 + ¢)-
approximate MAX-CUT. This algorithm will be
useful for us in case when the value of the maximum
cut is at most ¢ = O(1) larger than the value of min-
imum 2-clustering. This is due to the fact that in
this case any (1 + €)-approximate solution obtained
by MAXCUT is also a (1 4+ O(e))-approximate so-
lution for the 2-clustering problem. Thus we only
need to give an algorithm for the case when the
cut/clustering ratio exceeds c.

BC (for Balanced Clustering): we will use this al-
gorithm when the balance ratio of the optimal 2-
clustering defined as

511 |52
b(S1,52) = T
(515 = maig ) s,
is smaller than p = O(1) and the maximum

cut/minimum 2-clustering ratio is greater than c. In

this case the algorithm proceeds as follows. Firstly,
it chooses set T' of t = O(plogn) points uniformly
at random (with replacement) from X. Then, it
guesses 71 C Sy NT and 75 C S2 NT, such that
|Ti| = |Tz2] = A = O(logn); this can be imple-
mented deterministically by exploring all 2t = n©(1)
possibilities. Then, it checks for each point u €
X -1 —Tyif

|S1|di—a(u, Th) < |Sa|di—o(u, T5)

for a chosen later. If the above inequality holds,
then u is added to set Rp; otherwise we add it to
Ry. The pair (R; U Ty, Ry UTs) is returned as a
solution.

The intuition behind this algorithm is that if the
maximum cut is much larger than the 2-clustering
cost, the clusters should be “well-separated”. Thus
a “typical” point u should be either much closer to
S than to Sy or much closer to Sy than S;. There-
fore the above “randomized comparison” scheme
should determine S; and S; without much error,
if Ty and T5 “reflect accurately” S; and Ss.

UC (for Unbalanced Clustering): we will use this al-
gorithm when be(S1, S2) > p. Assume |Si| > p|Sa].
In this case, we can easily obtain in polynomial time
a set T of A random points from S;. Then we sort
all points u € X —T by dy_4(u,T) (in ascending or-
der); the value of « is again determined later. The
first |S1|— A points from the list are added (together
with T') to Ry, the remaining points are added to
Rs. The algorithm outputs (R, Ra2) as a solution.

4 The analysis of BC

We will start from relating the outcome of the
(randomized) comparison of d(u,77) and d(u,T%)
to a certain (deterministic) property of u. More
specifically, we will show the following Lemma.

Lemma 1 Consider any u € Sy. If for every set
Sy C Sy such that |S4| > (1 — 2a)|Sa| we have
d(u,Sh) > d(u,S1), then with high probability we
have

nedi—o(u,Ty) >m-di_o(u,T1)

Before we prove this lemma, we mention that in
the following we use its contraposition, i.e. if n -
di—a(u,T2) < m-di_q(u,T1), then we will assume
that there exists a set S§ of cardinality at least (1—
2a)|Ss| (for simplicity we will assume |S¥| = (1 —
2a)|Ss2|) such that d(u, SY¥) < d(u,S1). Using this

assumption we will prove the correctness of BC.



Proof: The proof uses a well-known idea that
by removing some fraction of largest elements from
the sample significantly increases the probability of
correct estimation. Therefore, only a sketch of the
proof is given.

Without loss of generality we can consider S}
which contains smallest (1 —2a)n elements from Ss.
Moreover, we can assume that d(u, S}) = d(u,S1)
and both are equal to 1. Finally, we will assume that
the largest 2an elements of Sy are all equal; notice
that they are upper bounded by O(1/(am)). Tt is
easy to verify that for A large enough we have a sig-
nificant gap in the expected values of di_q(u, T1)
and dy_o(u,Ty). More specifically, one can easily
verify that:

° %E[dl—a(uaTl)] <1
L] %E[dl_a(u,Tg)] Z 1—‘r 01/2

In the following we want to convert the expec-
tation bounds into bounds holding with high prob-
ability. This is easy for T3, as (from our assump-
tions) all elements of Sy are small, i.e. O(1/(an)),
therefore we can apply standard tail inequalities.
To apply a similar method for S, assume that T}
is chosen in the following manner: firstly, we choose
an element ¢ which has rank (1 — a)m in T} (ac-
cording to a proper distribution), and then we will
choose upper- and lower-ranked elements of 77 1n-
dependently. Observe, that ¢ is very likely to be
close to the (1 — a)th quantile of S; with high
probability when A = Q(logn/a). Assuming this
holds, we know that the value of ¢ is O(1/(am))
(i.e. small), so we can apply tail inequalities to T}
as well. By fairly standard calculations we obtain
that n-dy_q(u, T2) > m-di_o(u, T1) with high prob-
ability if A = Q(logn/a?). O

Now we can proceed with the actual proof. We
will upper bound the additional cost incurred by
assigning u € S7 to Rs; the opposite case can be
handled in the same way. From the above Lemma,
we can assume that for every u € S; which has
been included in Ry (i.e. such that n-dy_q(u,Th) <
m-dy_od(u,T1)) there exists a set S¥ of cardinality
(1 — 2a)|S2| such that

d(u, Sy)

Thus we need only to bound d(u, Sy —
be only interested in u’s such that

d(u,S1)(1+¢) < d(u,SH) (2)

as otherwise the difference in costs can be easily
bounded. From (1) and (2) we obtain that

d(u, Sy — Sy) > ed(u,S1) > ed(u, S3)

< d(u,S1) (1)
S%). We will

which can be rewritten as

(1 —2a)

J(U,SQ - Yo

Sy > d(u, S¥)

By triangle inequality we have
d(S%, 8y — SY) d(u, Sy — S¥) — d(u, S¥)

2a - u
m)d(uasz —53)

v

> (1-

The above gives a bound for d(u, Sy — 5%). In
the following we show that the number of such us
is also not very large if (as we assume) d(S7,.52) >

e(d(S1) + d(S2)). Firstly, observe that

d(S1,55)
< d(S1,u) 4 d(u, S)
= d(S1,u) + (1 = 2a)d(u, S3) + 2ad(u, So — SY¥)
< d(S1,u) + (1_2a)ci( , So) + 2a(d(u, S¥) +
d(Sy, Sy — SY))
= d(S1,u) +d(u,SY) + 2ad(SY, Sy — SY)

We can rewrite 1t as:

d(S1, S2)
= |52|d(51,u)+1|fgad(u,sg)+
2aﬁd(53, S, — SY)
< |Sz|d(51,u)+1|;gl;ad(u,55) 1_p2 d(Ss)
Therefore

(d(S1) + d(S2)
< 1S01d(S1,w) + 2 dqu, 53y 4 2

1- 2a T—2a%(%2)
or alternatively
(e = ~L5-)(d(S1) + d(2))
< [Sald(Stu) + o d(u, s5)
= ’ 1—2a 2
S
< (180 + o yag, 5,)

where the last step follows from the fact that
d(Sy,u) > d(u, S%).

The upper bound for the number of u satisfying
the above inequality can be now obtained as follows.
Assume that this number is equal to v|S;|. Notice



that >, g, d(u, 51) < d(S1). By plugging in the
lower bound for d(u, S;) we get

p 1
1>~(e—
> 1—2a)p—|— 1_12a
Therefore )
v < Pt ia,
C— 154

Denote the set of u’s as above by U. We can
bound the total cost difference by

Z d(uaSQ - Sg)

uelU
< Z 2an(](u, Sa — 5%)
uelU
1 -~
< 2an————d(SY, 5, — SY)
T e(I-20)
s
- 755 2an(l — 2a)n
p
< 7 m ——d(S2) = Ad(S,)
| — iy (1 - 20)

Observe, that the factor A becomes smaller than
€ when we set ¢ = Q(£) and a = O(e), for sufficient

e
constants.

5 The analysis of UC

As in the previous section, we start from stating
Lemma which characterizes the properties we need
from the random sampling process. As the proof is
similar to the previous one, we skip it here.

Lemma 2 Consider a pair u € S1 and v € Ss.
If for every set S' C Sy such that |S'| > (1 —
2a)|S1] we have d(v,S") > (1 + a)d(u,S’), then
with high probability di_o(v,T1) > d1_o(u,T1), for
A= O(logn/at).

From the Lemma we can assume (with high prob-
ability) that if di_(v,51) < di—o(u,S1), then
there exists a set S’ of size at least (1 — 2a)|S)|
such that d(v, S") < (1 + a)d(u, 5).

From the way the algorithm works, it follows
that for every u € S; included by mistake to Rs
there i1s v € Sy included to R;y. Let U denote
the set of mistaken u’s and let V' denotes the set
of mistaken v’s. Moreover, let f be any bijec-
tion from U to V. For each pair u,v such that
v = f(u) we denote the set S’ as above by S*
(we will also use the notation SV). Also, we will
overload slightly the definitions of d and d by using

d(U, S*) to denote 3, cr; D esu d(u, p) and defin-
ing d(U,S*) = d(U,S*)/ ¥ uer |Sul. Similarly, we
define d(U, S; — S¥) L.

In order to prove the correctness of the algorithm
we will bound the differences d(V, S1)—d(U, S1) and
d(U,S3) — d(V,S3). We start from the first one.
Observe, that it is sufficient to bound d(V, S;—S")—
d(U, Sy — S*) (since d(V,SY) < (1+a)d(U, S*) and
we will make sure that o < ¢). We can focus only
on the case d(V,S; — S) > ed(U, S*), which can be
written as

e(1

ﬂw&—yqz—iﬂaamy

To bound the RHS, we observe that (since any
two sets S* and S* have > (1 —4a)m size overlap)

- 1 - -
WU, V) < T (d(U,5*) + AV, 8))
— 4o
24 a -~ u
< Zlqw.s)
Therefore
~ e(l—a)l —4a -
d -y < — d
(V851 =57 < " Tt a (U, V)

We also use the fact
dyr (U, V) +d(U, Sy — 8%) > d(V,S; — S¥)

and therefore

d(U, Sy — S%)
> d(V,81 —SY) —dy(U,V)

- 2+« 1
> -S1l—-a——
2 dV.5 =590 a1—4ae(1—a))
= d(V,S —S“)F

Thus
d(V, 8, — §%) —d(U, S, — SY)
< (1/F =1)d(U,S; — S*)
< (/F=1)d(Sy)

In this way we bounded the first component. No-
tice that by setting a = O(¢?®) we make the value of
1/F — 1 smaller than .

To bound d(U,S3) — d(V,S2), we write it as
|V|n(d(U, Ss) — d(V,Ss)), and use the inequality

dyr (U, V) +d(V,S5) > d(U, 1)

1We feel that the abuse of notation is partially justified by
the fact for all uj,us the sets S*1 and S"2 have significant
overlap (i.e. at least (1 — 4a)) and therefore we can almost
treat them as equal sets.



obtaining

|V |n(d(U, S2) — d(V, S3))

< |Vindy (U, V)
< 22 Vindw, )
(2+a)n .
S Tae)i—amd@s)
(24 a)

< 1/Pmd(5ﬁ = Bd(51)

Observe that by setting p = Q(1/¢) we make B
smaller than e.

By combining the above algorithms and using the
fact that the algorithm in [2] runs in O(n?exp(1/¢))
time (which makes it negligible compared to the
running times of BC and UC), we show the following
Theorem.

Theorem 1 There is a randomized (1 + ¢)-

approzimation algorithm for 2-clustering running in
time @0/,

6 Sublinear time algorithm

In this section we sketch the description of how to
improve the running time of the above algorithm to
O(logl/eom n'*7), for any v > 0. Since the size of
the input (the description of the metric) is ©(n?),
the algorithm runs in time sublinear in the input
size.

Firstly, we observe that the running time of UC
1s essentially bounded by the time needed to collect
a sample of ¢ points from the larger cluster. By
using random sampling we can perform this task in
time roughly O((1+41/p)*). By making p sufficiently
large we can make the running time n'*7, for any
v > 0.

The main time bottleneck is the time needed for
exhaustive partitioning of the set 7" in the BC pro-
cedure. Below we show that that subroutine can be
actually replaced by recursive 2-clustering of T' (say
into C; and C3) and choosing 71 C Cy and Ty C Cs.
Although we are no longer guaranteed that 7; C S;,
we show that the new 7;’s are good enough for the
purpose of our algorithm.

Specifically, we use the following lemma from [6]
(presented here in a slightly different form):

Lemma 3 Let (S1,S52) and (S7,S5%) be two parti-
tions of the metric space over S. There exists a
constant B such that for any A and any 8 < 1/B if
d(S1)+d(S2) < BA/Bd(S1,S2) and d(S1)+d(S) <
A/B(d(S1) + d(S2)), then (S1,S3) and (S, 5%) dif-

fer on at most Bn points.

In other words, the lemma says that we the two
clusters S7 and Sy are very separated, then any clus-
tering with cost close to the optimal differs very lit-
tle from (S, S2). We use this fact as follows. Select
a sample R of r points. It can be easily shown that
(with constant probability) R can be split into R

and Ra such that the ratio d(deiﬁ%2) is compara-
ST >

ble (up to a constant) to the ratio d(d51)+d(52)
Assuming that p and R are large enough, we know
(from the above Lemma) that we can find 7] C R
and Ty C R such that |T{| = |T4] = ¢ and
|T{ — S1|+ |T5 — Sa| < Bt (or we can swap Ry with
Rs3). Tt turns out that 77 and T4 are almost as good
as Ty and T obtained by exhaustive search. More
specifically, it is easy to see that for any two equal
size sets A’ A, if max(|A—A'|,|A'—A]) < B|A| then

for any a and u
di—o-p(u, A) < di_o(u, A') < di_arp(u, A)
Therefore, we can prove a version of Lemma 1 where
n-di—o(u, To) <m-di_qd(u, T1)
is replaced by
n-di_gaya(u, Ty) <m-di_gped(u,TY)

by taking # < a/2. This means that if we replace
Ty and T in the BC algorithm by 7] and Ty, the
algorithm is still correct.

Finally, we can improve the running time of the
MAXCUT procedure of [2] by using the techniques
of [1]. Specifically, the first step of the algorithm
of [2] can be described as choosing a (small) ran-
dom subset of the metric space s.t. each point u
is chosen with probability proportional to y (u) =
>, d(u,v); computing the latter quantities is the
time bottleneck of the algorithm. By using the
randomized comparator of [1], the values of )" (u)
can be approximately computed for al u in time
npoly(logn) (instead of Q(n?)).
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