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ABSTRACT
We prove the following inequality: for every positive integer
n and every collection X1, . . . , Xn of nonnegative indepen-
dent random variables that each has expectation 1, the prob-
ability that their sum remains below n+1 is at least α > 0.
Our proof produces a value of α = 1/13 � 0.077, but we con-
jecture that the inequality also holds with α = 1/e � 0.368.
As an example for the use of the new inequality, we con-

sider the problem of estimating the average degree of a graph
by querying the degrees of some of its vertices. We show the
following threshold behavior: approximation factors above 2
require far less queries than approximation factors below 2.
The new inequality is used in order to get tight (up to mul-
tiplicative constant factors) relations between the number of
queries and the quality of the approximation. We show how
the degree approximation algorithm can be used in order to
quickly find those edges in a network that belong to many
shortest paths.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics; F.2.2 [Theory of Computing]: Analysis of Algo-
rithms and Problem Complexity—Nonnumerical Algorithms
and Problems

General Terms
Theory, Algorithms
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1. A NEW INEQUALITY
For a random variable X, its typical value may be very

different from its mean. In particular, the probability that
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X exceeds its mean may be arbitrarily close to 1. In some
special cases (e.g., when X is symmetric around its mean),
the probability that X exceeds its mean is at most 1/2. The
purpose of this manuscript is to investigate the probability
thatX exceeds its mean whenX is the sum of n independent
random variables. We show that for nonnegative random
variables, this probability is bounded away from 1, provided
that we give ourselves a little slackness in exceeding the
mean.

Theorem 1. Let X1, . . . , Xn be arbitrary nonnegative in-
dependent random variables, with expectations µ1, . . . , µn re-
spectively, where µi ≤ 1 for every i. Let X =

∑n
i=1 Xi, and

let µ denote the expectation of X (hence, µ =
∑n

i=1 µi).
Then for every δ > 0,

Pr[X < µ+ δ] ≥ min[δ/(1 + δ), 1/13] (1)

The term δ/(1 + δ) in Theorem 1 is best possible, as one
can take X1 = 1+ δ with probability 1/(1 + δ) and 0 other-
wise, and all of the other Xi as the constant 1. This gives
µi = 1 for every i. For this case Pr[X < µ+ δ] = Pr[X1 =
0] = δ/(1 + δ). For large δ (e.g., δ = 1), it is not true
that Pr[X ≤ µ + δ] ≥ δ/(1 + δ). One can take for every
i, Xi = n + δ with probability 1/(n + δ) and 0 otherwise.
This gives µi = 1 for every i, implying µ = n. For this case
Pr[X < n+ δ] = (1− 1/(n+ δ))n, which is roughly 1/e for
large n.
It is our conjecture that for every value of δ and n, one

of the two examples above is the worst case for Pr[X <
µ+δ]. The conjecture, if true, would allow us to replace the
constant 1/13 by 1/e in Theorem 1.
In may be instructive to consider how some standard prob-

abilistic tools relate to Theorem 1. Consider the case that
the Xi are identically distributed. Then the central limit
theorem implies that when n is large enough, X approaches
the normal distribution and hence Pr[X < µ] approaches
1/2. However, in our Theorem 1 the variables Xi may de-
pend on n, and hence n cannot be thought of as being “large
enough” with respect to the Xi (even if they are i.i.d.). This
relates to the fact that we place no bounds on the variance
of the Xi, and hence standard bounds on deviations of ran-
dom variables from their expectation (such as Chebyschev’s
bound, or Chernoff’s bound) are not applicable. The only
restriction on the random variables (other than being inde-
pendent) is their nonnegativity. In particular, this means
that X is nonnegative, and that Markov’s inequality can
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be used to show that Pr[X ≤ µ + δ] ≥ δ/(µ + δ). For
the sum of independent identically distributed random vari-
ables, this bound tends to 0 as n grows (unlike the bound
in Theorem 1).
The author is aware of some work of nature similar to

Theorem 1. There are results surveyed and developed by
Siegel [5] that show that under certain conditions the median
of the sum of random variables does not exceed the mean.
This holds for example for the sum of Bernoulli random vari-
ables (if the mean is an integer). The book “How to gamble
if you must” by Dubins and Savage [3] analyses strategies
for gambling when the goal is to maximize the probability
of ending up with a profit of δ. There the strategies are
adaptive (next gamble may depend on outcomes of previous
gambles) and the gambler may quit once a net profit of δ is
achieved. One of the main findings of [3] is a set of sufficient
conditions under which the strategy of “playing boldly” is
optimal. Informally, this strategy tries to reach a net profit
of δ (taking into account also previous losses) in one gamble.
A typical example is the repeated doubling approach to gain
one dollar when there are 50/50 odds, in which the gambler
first gambles one dollar, and then doubles the gamble until
the first win (or until he/she runs out of money). The sce-
nario in Theorem 1 can be viewed as a version of “how to
gamble in parallel”, in which n gambles with independent
outcomes are placed in parallel in an attempt to reach a net
profit of δ. Also in this case it seems that the best strate-
gies (the author can think of) are based on hoping for one
succesful gamble. Despite similarities in the nature of the
results, the proof techniques from [3] and [5] do not appear
to be applicable to the setting of Theorem 1.
Theorem 1 can in principle be used whenever one is inter-

ested in bounding the probability that the sum of indepen-
dent random variables significantly exceeds its expectation.
However, in many contexts the random variables are known
to have some additional properties (e.g., bounded variance),
and useful results can also be derived by other means. The
application that motivated the development of the inequal-
ity (1) is described in Section 2.

2. ESTIMATING THE AVERAGE DEGREE
Let G(V,E) be a graph with n vertices. A degree query

specifies a vertex v ∈ V , and gets in reply dv, the degree of
v in G. We are interesting in estimating m = |E| by mak-
ing only degree queries. Equivalently, we wish to estimate
the average degree d = 2m/n. We say that an algorithm
provides a ρ estimation if its output d∗ satisfies

d∗ ≤ d ≤ ρd∗.

Naturally, we limit our interest to ρ ≥ 1. As our sampling
based algorithms are randomized, there is some probability
that their output fails to be a ρ estimation. We require this
failure probability to be at most 1/3. We note that the fail-
ure probability can be reduced to an arbitrarily small value
δ, by repeating the estimation algorithm O(log 1/δ) times
independently, and outputting the median of all estimates.
Our goal is for given ρ, to design ρ estimation algorithms
with as few queries as possible, and with failure probability
at most 1/3.
Let us note here an observation that helps us to drastically

reduce the number of queries in our algorithms. Consider
first the case where rather than having an actual graph as
input, the input is simply a sequence of integers d1, . . . , dn,

with the only restriction that for every i, 0 ≤ di ≤ n. (For
simplicity of the presentation we allow here values to range
up to n, even though degrees can range only up to n − 1.)
Let d = 1

n

∑n
i=1 di. We wish to estimate d. It is not hard to

see that for any value d0 (which one may think of as a large
constant independent of n), Ω(n/d0) queries are required in
order to distinguish between the cases d = 0 and d ≥ d0.
The reason is that it may happen that there are d0 numbers
with value n, and all other numbers have value 0. If we
perform less than n/2d0 queries, most likely we always get
the 0 answer, which is exactly the answers that we would
get if d = 0.
To get estimation algorithms with fewer queries, we shall

use the fact that not every sequence d1, . . . , dn is a degree
sequence of graphs. For example, if d1 = n − 1, then
necessarily di ≥ 1 for all i. Still, the bad example given
above can be modified to show that O(n/d0) queries are re-
quired in order to distinguish between the cases d ≤ d0 and
d ≥ 2d0 −O((d0)

2/n). In the first of these two cases we can
have all di = d0. In the second of these two cases we can
have di = d0 for all vertices except for d0 vertices of degree
n− 1. Hence if we wish to have estimation algorithms with
a sublinear (in n) number of queries, we need to restrict
ourselves to ρ ≥ 2.
There is one more restriction that we introduce. Observe

that if G contains only one edge, one needs Ω(n) queries
to distinguish this case from d = 0. To avoid the problem
of handling such very sparse graphs (which are often not
interesting anyway), we shall assume that d ≥ d0, for some
d0 that will be a parameter of our estimation algorithms.
The reader may think of d0 as typically having value at
least 1. Hence the estimation algorithm is allowed to output
d∗ = 0 as an estimation of d for very sparse graphs, even
though the ratio between d and d∗ is in this case infinite.
As noted above, for ρ < 2 and d0 = 1, the number of

queries needed by an estimation algorithm might be Ω(n).
Our main observation is that for ρ > 2 and for d0 = 1,
the number of queries in the estimation algorithm drops
dramatically, from Ω(n) to O(

√
n). This result is stated

in more technical terms in the following theorem.

Theorem 2. For ε > 0, ρ = 2 + ε, there is a ρ estima-
tion algorithm for the average degree of a graph that uses
O( 1

ε

√
n/d0) queries, and is applicable to all graphs of aver-

age degree at least d0.

In terms of the application of estimating the average de-
gree in the graph, the more interesting part of our upper
bound on the number of queries is the term

√
n/d0. The

dependency on ε may be less interesting, especially if one
is satisfied with large values of ε, such as ε = 1. However,
achieving a linear dependency in 1/ε (rather than some poly-
nomial dependency) is the part that uses Theorem 1.
In Section 4 we prove Theorem 2. In Section 5 we show

how Theorem 2 can be used in order to obtain Theorem 3,
addressing a problem that is studied in [2].

Theorem 3. There is a randomized algorithm that runs
in time O(mn log n

ε
√

c
) on graphs with n vertices and m edges,

and outputs a list of edges that with high probability satisfies:

1. Every edge that is on at least c shortest paths is on the
list.

2. No edge that is on less than (1/2 − ε)c shortest paths
is on the list.
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3. PROOF OF THEOREM 1
In this section we prove Theorem 1.

Proof. Fix n, δ, and arbitrary nonnegative random vari-
ables X1, . . . , Xn with means at most 1. We prove that
Equation (1) holds. We assume without loss of generality
that the support of every random variable is composed of a
finite set of values. (This is a standard argument, but we
sketch it for completeness. Any value larger than µ+δ in the
support of a random variable can be lowered to µ+ δ, with-
out increasing the probability that X < µ + δ. Thereafter,
any continuous random variable can be approximated by a
discrete random variable with the same mean and whose
support includes only multiples of ε, where ε is chosen to
be much smaller than δ/n. For these new random variables,
X ′

1, . . . , X
′
n, the event X ′ < µ+ δ′ where δ′ = δ− εn implies

that for the original variables, X < µ + δ. By making ε
arbitrarily small, we can make δ′ arbitrarily close to δ.)
Our proof of Equation (1) consists of a sequence of trans-

formations on the variables Xi. For simplicity of notation,
we keep calling the random variables by Xi, their sum by
X and the expectation of X by µ, even though the random
variables themselves and µ do change by the transforma-
tions. The invariant kept by the transformations is that
Pr[X < µ+ δ] does not increase (though the interpretation
of X and µ, but not δ, does change). Other properties of
the random variables may change by the transformations.
In particular, the reduce support transformation (to be de-
fined shortly) when applied to two random variables that
were originally identically distributed might transform them
to new random variables that are not identically distributed.
Moreover, the merge transformation might generate random
variables whose mean is larger than 1, even though all orig-
inal random variables have mean at most 1.
Our first transformation, remove constant, is applied when-

ever there is a random variable Xi that is constant, that is,
Pr[Xi = µi] = 1. Such a random variable is removed, and
µ is updated to µ − µi. Clearly, Pr[X < µ + δ] does not
change by remove constant.
The transformation reduce support is applied to every ran-

dom variable whose support has at least three values, and
replaces it with a new random variable with the same mean,
and whose support includes at most two values from the
original support.

Lemma 1. Let Xi be a random variable whose support
includes at least three values. Then Xi can be replaced by a
new variable (which we shall also call Xi) without changing
µi, and whose support includes only two values from the
original support of Xi. This can be done without increasing
Pr[X < µ+ δ].

Proof. Let {v1, . . . , vk} be the support of the original
Xi, and for 1 ≤ j ≤ k, let qj denote the conditional prob-
ability of the event [X < µ + δ], conditioned on the event
[Xi = vj ]. For the new Xi and for 1 ≤ j ≤ k, we wish to se-
lect pj = Pr[Xi = vj ], under the restrictions that the mean
of Xi is preserved, and that Pr[X < µ+δ] does not increase.
This can be expressed by the following linear program over
the variables pj :

Minimize
∑k

j=1 qjpj

subject to:

• ∑k
j=1 pj = 1

• µi =
∑k

j=1 pjvj

• pj ≥ 0, for every j.

The above linear program is feasible (as the probabilities
associated with the original Xi satisfy the constraints). By
the theory of linear programming, there is a basic optimal
solution in which at most two pj are nonzero.

The transformation align with 0 is applied to every ran-
dom variable whose support has two values and these values
are greater than 0 (say Xi has value v1 with probability p
and v2 with probability (1 − p), with 0 < v1 < v2), and
replaces it by a random variable that has value v1 − v1 = 0
with probability p, and has value v2 − v1 with probability
(1 − p). This decreases µi by v1, and to compensate for it
we update µ to µ − v1. Clearly, Pr[X < µ + δ] does not
change by align with 0.
The transformation merge takes the two random variables

with smallest mean (say Xi and Xj), and replaces them by
a new variable in three steps. First, replace Xi and Xj by
a new random variable that is distributed like their sum
Xi + Xj . Then apply reduce support to this new random
variable. Finally, apply align with 0 or remove constant to
the new random variable (if applicable).
It is easy to see that the transformation merge does not

increase Pr[X < µ+ δ].
The sequence of transformations that we perform is par-

titioned into two stages. We now describe the first stage.
Stage 1:

1. Whenever possible, apply remove constant.

2. Apply reduce support until all random variables have
support of size at most two. (Different variables may
have different support.)

3. Apply align with 0 to all variables.

4. Apply merge until either the number of random vari-
ables is reduced to one, or all random variables have
mean at least 1/2 (whichever happens first).

Stage 1 must end because with each application of merge,
the number of random variables decreases. Let X1, . . . , Xn′
be the random variables that we remain with when stage 1
ends. We assume that they are sorted in order of decreasing
µi. Their number n

′ may be smaller than n, because some of
the transformations remove random variables. These are not
arbitrary random variables, as each of them has a support of
two values, one of which is 0, and the stopping condition for
the merge transformations has been reached. For a random
variable Xi as above, let µi denote its mean, (0, vi) its sup-

port, and let si = vi−µi denote its surplus. Let s =
∑n′

i=1 si

denote the total surplus.

Proposition 1. If the total surplus satisfies s < δ, then
Pr[X ≥ µ+ δ] = 0.

Proof. X is maximized when all Xi come up equal to
their respective vi. In this case

X =
n′∑

i=1

(µi + si) = µ+ s < µ+ δ.
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Hence we may assume without loss of generality that s ≥
δ.

Lemma 2. If stage 1 ended with a random variable with
mean below 1/2, then Pr[X < µ] ≥ δ/(1/2 + δ).

Proof. In this case, exactly one random variable remains.
Let X1 be the random variable left, with mean µ1 < 1/2 and
support {0, v1 = µ1 + s}. Note that the event X1 = 0 im-
plies X < µ. Now Pr[X1 = 0] = s/(µ1 + s) ≥ δ/(1/2 + δ),
because s ≥ δ and µ1 < 1/2.

Hence we may also assume that stage 1 ended with all
random variables having mean at least 1/2. The following
property will be used in this case.

Proposition 2. If stage 1 ended with all random vari-
ables having mean at least 1/2, then µ1/2 ≤ µn′ ≤ µ1 < 3/2.

Proof. Recall that the random variables are assumed to
be sorted with µ1 being the largest mean and µn′ being the
smallest mean.
If no random variable has mean greater than 1, then we

are done. Hence consider the first time that a random vari-
able with mean greater than 1 is created. This happens by
merging two random variables, say Xi and Xj . Let µi ≥ µj

be their means before the merge. By the definition of merge,
no other variable had mean smaller than µi. By the stop-
ping rule for stage 1, µj < 1/2. To get a variable with mean
greater than 1, we must have µi > 1/2. Note that stage 1
ends after the merge, because no variable with mean be-
low 1/2 is left. Hence the new variable created becomes X1

with 1 < µ1 < 1+1/2 = 3/2. But as µ1 ≤ 2µi and µn′ ≥ µi,
it follows that µn′ ≥ µ1/2.

Let us pause at this point and explain what remains to
be proved. All random variables can be assumed to be 2-
valued, with one of the values being 0, and with all means
µi satisfying µ1/2 ≤ µi ≤ µ1. Moreover, the total surplus
s satisfies s ≥ δ. For random variables as above we in fact
will bound Pr[X < µ] rather than Pr[X < µ+δ]. Lemma 3
(its first part) and Lemma 4 will show that Pr[X < µ] ≥
min[δ/(µ1+δ), 1/13]. This almost proves Theorem 1, except
that it might happen that at the end of stage 1, µ1 > 1. This
possibility is handled in the second part of Lemma 3, by
showing that one merge operation before the end of stage 1
we had Pr[X < µ+ δ] ≥ δ/(1 + δ).
The following proposition is used several times in the

proofs Lemmas 3 and 4. It is most effective when s < µn,
and µn is not much smaller than µ1.

Proposition 3. Let X1, . . . , Xn be independent random
variables with means µ1 ≥ . . . ≥ µn and supports {0, µ1 +
s1}, . . . , {0, µn + sn}, and let X =

∑n
i=1 Xi, µ =

∑n
i=1 µi

and s =
∑n

i=1 si. Then

Pr[X < µ − µn + s] ≥ s

µ1 + s

Proof. It suffices that one random variable comes up
zero to imply X < µ + s − µn. (The inequality is strict
because only a variable with si > 0 may come up 0.) Hence:

Pr[X ≥ µ+ s − µn] =
n∏

i=1

µi

µi + si
≤

n∏
i=1

µ1

µ1 + si
.

Given that
∑n

i=1 si = s and that si ≥ 0, the above product
is maximized when s1 = s and si = 0 for all i > 1, giving
µ1/(µ1 + s). Hence Pr[X < µ − µn + s] ≥ s/(µ1 + s).

The following lemma illustrates the desired outcome of
stage 1.

Lemma 3. If stage 1 ended with all random variables hav-
ing mean at least 1/2, and if s < µn′ , then Pr[X < µ] ≥
δ/(3/2 + δ). If in addition Pr[X < µ] < δ/(1 + δ) and
δ ≤ 1/12 then one merge operation before the end of stage 1
it must have been the case that Pr[X < µ+ δ] ≥ δ/(1 + δ).

Remark: The choice of δ ≤ 1/12 in the second part of
Lemma 3 is made because δ/(1 + δ) = 1/13 for δ = 1/12.
The limiting factor for improving beyond 1/13 is Lemma 4
rather than Lemma 3. For δ > 1/12 the second part of
Lemma 3 simply implies that Pr[X < µ + δ] ≥ Pr[X <
µ+ 1/12] ≥ 1/13.

Proof. The surplus s is smaller than the mean of any
of the random variables. Using Proposition 3 we then have
Pr[X < µ] = s

µ1+s
. Using the assumption that s ≥ δ

and the fact that µ1 ≤ 3/2 (Proposition 2), we have that
Pr[X < µ] ≥ δ/(3/2 + δ).
To prove the second part of the lemma, note that if it

happens that µ1 ≤ 1 then we have Pr[X < µ] ≥ δ/(1 + δ).
Hence we may assume that µ1 > 1, implying in particular
that X1 is the result of the last merge operation (see proof of
Proposition 2). Let s′ = s−s1 be the surplus of all variables
except for X1. Then analysis as above implies that

Pr[X ≥ µ] ≤ µ2

µ2 + s′
≤ 1

1 + s′
.

Hence if s′ ≥ δ, Pr[X < µ] ≥ δ/(1 + δ). So we can assume
that s′ < δ.
Let us backtrack the last merge operation. Hence instead

of X1 we have two variables Xi and Xj that were merged
to give X1. Let their means be µi ≥ µj , and their surpluses
be si and sj . Observe that necessarily µj < 1/2 (otherwise
the merge operation would not have been performed), and
then the assumption that µ1 > 1 implies that µi > 1/2. As
the total surplus of all random variables except for Xi and
Xj is s′ < δ, we must have Xi + Xj come up larger than
µi + µj for X ≥ µ+ δ. We consider now two cases.

Case 1: si > 2δ. Then Pr[Xi = 0] =
si

µi+si
≥ 2δ

µi+2δ
. If

Xi = 0, then in order to have Xi +Xj > µi + µj we must
have Xj > µi + µj . But this happens with probability at

most
µj

µi+µj
≤ 1/2

µi+1/2
. Hence

Pr[X < µ+ δ] ≥ 2δ

µi + 2δ
· µi

µi + 1/2
≥ δ

1 + δ

where the last inequality holds for δ ≤ 1/2 because 1/2 ≤
µi ≤ 1.

Case 2: si ≤ 2δ. Define s′′ = s′ + si as the surplus of all
random variables except for sj , and observe that s′′ < 3δ ≤
1/4, the last inequality holding for δ ≤ 1/12.

• If s′′ < δ and sj < 1/2 then it suffices for one random
variable to come up 0 to ensure X < µ+ δ. As neces-
sarily s′′ + sj ≥ δ and µk ≤ 1 for all k, this happens
with probability at least δ/(1 + δ).
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• If s′′ < δ and sj ≥ 1/2 then it suffices for Xj to come
up 0 to ensure X < µ + δ. This happens with proba-
bility at least 1/2.

• If δ ≤ s′′ < δ + µj and sj ≥ δ then it suffices for Xj

to come up 0 to ensure X < µ+ δ. This happens with
probability at least δ/(1/2 + δ).

• If δ ≤ s′′ < δ + µj and sj < δ then it suffices for some
random variable other than Xj to come up 0 to ensure
X < µ+ δ. (Recall also that s′′ ≤ 1/4.) This happens
with probability at least δ/(1 + δ).

• If s′′ ≥ δ + µj then there is probability of at least
δ+µj

1+δ+µj
for a random variable other than Xj to come

up 0. Thereafter Xj must come up at least µj + δ +
1/2−s′′ ≥ µj+δ+1/4 for X ≥ µ+δ. The probability
of this is at most µj/(µj + 1/4 + δ). Hence

Pr[X < µ+ δ] ≥ δ + µj

1 + δ + µj
· 1/4 + δ

µj + 1/4 + δ
≥ δ

1 + δ

where the last inequality holds when 4δ2 + 4µjδ ≤ 1,
which is true for our parameters of µj ≤ 1/2 and δ ≤
1/12.

Summarizing, the situation so far is that we may assume
that µ1/2 ≤ µn′ ≤ µ1 and s ≥ µn′ . We shall prove that
in this case Pr[X < µ] ≥ 1/13. To prove this, we perform
stage 2 of our sequence of transformations. It is composed
of a modified form of the merge operations, that we call
modified merge. The modification will allow us to deal with
the event X < µ rather than X < µ + δ. Recall that the
reduce support operation was based on a linear program that
minimized Pr[X < µ+δ] (via the definition of the qj). Mod-
ify the reduce support operation by modifying the objective
function of the linear program to be Pr[X < µ] (by making
the respective change in the definition of qj). Use this mod-
ified reduce support rather than the original reduce support
as the second step of modified merge. Now modified merge
does not increase Pr[X < µ].
Note that an application of modified merge may result in

a random variable whose mean is smaller than µ1/2. (For
simplicity of notation, we assume that after every step the
variables are renamed so as to keep µ1 the largest mean.)
However, even with repeated applications of modified merge,
there will be at most one such random variable. Let us define
s′ =

∑
si, where the sum is taken over all random variables

whose mean is at least µ1/2. In particular, at the time when
stage 1 ends, s = s′.

Stage 2. Apply modified merge (on the two random vari-
ables with currently lowest mean) until either the number
of nonconstant random variables is reduced to one, or the
condition s′ ≤ αµ1 has been reached, for some constant
0 < α < 1/2 that will be determined later. Stage 2 must
eventually end, because with each application of merge the
number of random variables decreases.

Lemma 4. When α = 1/3, then either at the time stage 2
ends or one modified merge operation before stage 2 ends

Pr[X < µ] ≥ 1/13

The proof of Lemma 4 involves a detailed case analysis
and appears in Section A in the appendix.
This completes the proof of Theorem 1.

It is straightforward to modify inequality (1) so that there
is no formal requirement that the random variables are non-
negative, or that their mean is bounded by 1. Let w be
the maximum over all random variables X1, . . . , Xn of the
respective µi − li, where li is the lowest value in the support
of Xi. Then

Pr[X ≤ µ+ δw] ≥ min[δ/(1 + δ), 1/13] (2)

The constant 1/13 in Theorem 1 is not best possible, and
can be improved with more detailed case analysis. We sus-
pect that the true constant should be 1/e. Presumably, the
way to prove a tight result is to find a sequence of trans-
formations on the random variables that does not increase
Pr[X < µ+ δ], and that gradually brings them to the con-
jectured worst case for [X < µ+ δ]. The sequence of trans-
formations performed in our proof of Theorem 1 manages
to achieve this only when δ ≤ 1/12 (or some other con-
stant not far from 1/12). However, it fails to characterize
the worst case for the perhaps more interesting δ = 1. The
idea in the proof is to transform the random variables into
a situation where a case analysis becomes manageable, at
the possible cost of giving up the tightness of the bound.
The main principles used are reducing the support of every
random variable to two values, getting all random variables
(perhaps except one) to have roughly the same mean, re-
ducing the surplus to be of order of magnitude comparable
to this mean, and extracting from arbitrarily many random
variables a single event of interest, as done in Proposition 3.
It should be clear to the reader that more detailed case anal-
ysis would provide tighter results. But let us point out
some limitations that relate to Lemma 4. As long as one
chooses α not larger than µ1/2 (and in fact, not larger than
3µ1/2), and analyses only the situation at the end of stage 2
or one step earlier, one cannot obtain a bound better than
Pr[X < µ] ≥ 2/9. For example, assume that during stage 2
we are left with three variables, each with support (0, µ) and
mean µ/3. At this point, Pr[X < µ] = (2/3)3 = 8/27 < 1/e.
After a merge operation, this probability decreases further
to (1/3) · (2/3) = 2/9. One merge operation later, stage 2
ends. Hence to get (nearly) tight results using the current
approach, one may need to modify the definition of stage 2,
and perform much more extensive (possibly computer as-
sisted) case analysis.

4. PROOF OF THEOREM 2
The reader is assumed to be familiar with elementary

methods in probability (such as the use of Markov’s inequal-
ity, Chebschev’s inequality, Chernoff bounds). If needed, see
details in [1], for example.
We query at random t vertices, and obtain their degrees.

Let di be the degree returned by the ith query. Basically,
our estimator for d will be d∗ = 1

t

∑t
i=1 di. In section 4.3

we shall modify this estimator so as to improve its quality.
For simplicity of the analysis, we assume that sampling is
done with replacement (the same vertex might be queried
more than once). This is insignificant when t is small (e.g.,
t ≤ √

n), though note that for large values of t (and in
particular, when t = n) sampling without replacement gives
better estimates than sampling with replacement.
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Note that the expectation of our estimate satisfies

E[d∗] = d (3)

Hence the estimator is unbiased. In deviations from the
expectation, we will analyse separately the events d∗ > d
and d∗ < d, or rather, d∗ < d/2.

4.1 The estimate is not too high
Here we shall use Theorem 1. As an immediate conse-

quence of this theorem (taking δ = 1, and using the fact
that the degree of a sampled vertex is a nonnegative random
variable with expectation d) we have the following corollary.

Corollary 1. There is some universal constant α > 0
such that for every graph with average degree d, by querying
t random vertices (with replacement) for their degree, the
average d∗ satisfies Pr[d∗ ≤ (1 + 1/t)d] ≥ α.

We can take α = 1/13 in Corollary 1, and we conjecture
that the Corollary is also true with α = 1/e.

4.2 The estimate is not too low
We assume that the average degree in the graph is at least

d0. Our sampling algorithm queries t = k
√

n/d0 vertices at
random and reports the sum of the degrees. Here k is a
parameter that will later be chosen to be of order 1/ε.
Let Xi be the random variable that denotes the degree of

the ith query, and let X =
∑t

i=1 Xi. Then E[X] = t ·d. We
would like to show that the typical value of X is not much
smaller than E[X]/2. This would follow from Chebyschev’s
inequality had the variance of X been small compared to
(E[X])2. Unfortunately, this is not the case. Vertices of very
high degree may cause the variance to exceed (E[X])2. To
overcome this problem we observe that in every graph, the
vertices of very high degree contain at most slightly more
than half the endpoints of the edges. (There can be only
few vertices of very high degree, as otherwise the average
degree also becomes high. Not having parallel edges, this
implies that there are only few edges with both endpoints
in vertices of very high degree. All other edges must have at
least one endpoint in a vertex whose degree is not very high.)
The contribution to X of vertices whose degree is not very
high is concentrated around its mean, because for them the
variance is small. This explains why the value of X is likely
to be above E[X](1 − ε)/2. We note however that to get
tighter bounds on the number of queries t as a function of ε,
we take into account also the contribution of vertices of very
high degree to X. Based on these principles, in Section B
in the Appendix we prove the following Corollary.

Corollary 2. For arbitrary λ > 0 (that will later be
fixed to 50

√
2/α, where α is as in Corollary 1), with proba-

bility at least 1− 4√2/λ − 2−Ω(λ),

X ≥ E[X]

2
(1− λ

k
)

4.3 Combining the upper and lower bound
Let us set k = λ/ε, and hence from Corollary 2 we have

that with probability at least 1− 4√2/λ − 2−Ω(λ),

X ≥ E[X]

2
(1− ε)

By Corollary 1, we have that with probability at least α,
X ≤ E[X](1 + 1/t). We assume here for simplicity that ε is

small enough so that 1/(1 − ε) � 1 + ε. Likewise, t is large
enough compared to 1/ε so that (1 + 1/t)/(1− ε) � 1 + ε.
An unbiased estimate consists of taking t samples and re-

turning their sum X. Perform l = 2/α independent un-
biased estimates for X. Our estimation procedure returns
Xmin, the minimum of these estimates. (Equivalently, we
set d∗ = Xmin/t.)

Pr[Xmin ≤ E[X](1 +
1

t
)] ≥ 1− (1− α)2/α ≥ 1− 1

e2
≥ 5

6

Pr[Xmin ≥ E[X]

2
(1− ε)] ≥ 1− 2

α
(
4
√
2

λ
+ 2−Ω(λ)) ≥ 5/6

where the last inequality uses λ = 50
√
2/α. This gives

k = λ/ε < 72/αε. The total number of queries used in
our estimation procedure is l · t. This gives:

Corollary 3. For some universal constant β, using

β

√
n/d0

ε

queries, one can estimate the average degree d of an n node
graph within a ratio of (2 + ε), provided that d > d0.

Proof. Setting β = ( 2
α
)( 72

α
) = 144/α2, we perform 2/α

unbiased estimates, each with t = 72
√

n/d0α
−1ε−1 queries,

and take the minimum of the estimations that they give.

Let us note here the role of Corollary 1. It allows us to
substitute a universal constant for α (which is shown to be
at least 1/13 in Theorem 1, though we conjecture that 1/e
also works). Had we used Markov’s inequality instead, we
could have taken α � ε, loosing a factor of ε−2 in the number
of queries used by the estimation procedure.
The sample size in Corollary 3 is essentially best possible.

See Section C in the appendix for details.

5. QUICKLY ESTIMATING THE LOAD ON
A NETWORK

We have seen how to estimate the average degree in a
graph using a relatively small number of degree-queries.
Graph problems are often abstractions of other more con-
crete problems. As an example (which motivated this study),
consider the following problem motivated and studied in [2].
The input is a connected network G with n vertices andm

edges (namely, a graph). Between every two vertices there
is a shortest path (a path that crosses the smallest number
of edges). We assume here that shortest paths are unique, a
point that we shall return to later. For an integer parameter
c (that may depend on n), we wish to find all edges that are
members of at least c shortest paths. In the terminology
of [2], these edges are called “weakest links”, apparently be-
cause these are the edges where failure may cause the largest
amount of damage to the performance of the network. Find-
ing all weakest links can be done in time O(nm) using an
algorithm for all pairs shortest paths. The goal in [2] is to
do better. They propose a randomized algorithm that with
high probability, has the following guarantee:

• Finds weakest links. It outputs all edges that be-
long to at least c shortest paths.
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• Avoids false alarms. It does not output any edge
that is a member of less than (1− ε)c shortest paths.

The running time of the algorithm in [2] is O(mn2 log n
cε2

),
which is better than that of all pairs shortest paths when
c � n log n. The basic idea in this algorithm is to choose

k � n2 log n
cε2

pairs of vertices at random, and for each pair to
perform a shortest path computation (taking O(m) opera-
tions per-pair). Using the collection of k shortest paths that
are found, one estimates in how many shortest paths each
edge participates.
Here we present a faster algorithm for finding the weak-

est links. It is based on two observations. One is that the
cost of performing single source shortest path computations
(namely, that of finding the shortest paths from one vertex
to all other vertices) is O(m), similar to that of finding the
shortest path between one pair of vertices. The other ob-
servation is that the estimation problem that this gives rise
to can be cast as that of estimating the average degree in
a graph. The improved running time comes at a cost of a
somewhat weaker guarantee in terms of false alarms.

• Avoids false alarms. The algorithm does not out-
put any edge that is a member of less than (1/2− ε)c
shortest paths.

As in [2] we assume that shortest paths are unique. This re-
quires a convention for breaking ties between paths of equal
length. We shall use the same convention that is proposed
in [2], namely, to take the lexicographically first such path.
See Section D for more details.

Proposition 4. Under the tie breaking convention spec-
ified above, there is an O(m)-time algorithm that does the
following. Given a connected graph G with n vertices and m
edges and an arbitrary vertex v, it simultaneously counts for
every edge e, for how many vertices u does edge e participate
in the shortest path connecting u and v.

The proof of Proposition 4 is sketched in Section D in the
appendix.
Consider now a particular edge e. It induces the follow-

ing graph Ge. The vertices of Ge are the vertices of G.
Two vertices are connected by an edge in Ge iff e is on
their unique shortest path in G. Edge e is on c shortest
paths in G iff the average degree in Ge is at least 2c/n. By

Theorem 2, O(
√

n/d0/ε) degree queries suffice in order to
estimate the average degree in a graph with average degree
at least d0. To make the probability of error in this estima-
tion below 1/n2, one can repeat the estimation procedure
O(log n) times, and take the median of the estimations. We
shall set d0 = (1 − ε)c/n. Now observe that Proposition 4
implies that we can simultaneously obtain the degree of v
in the graphs Ge for all e, and all this in time O(m). Hence

using k = O(
log n

√
n/(c/n)

ε
) = O(n log n

ε
√

c
) single source short-

est path computations one can with high probability find
all weakest links (edges that are on more than c shortest
paths), and avoid any false alarms (by edges that are on less
than (1/2− ε)c shortest paths). This proves Theorem 3.
Theorem 3 offers a saving of roughly n/

√
c in the run-

ning time compared to the running time of O(mn2 log n
cε2

)
in [2]. (Note however that ε has different meanings in the
two bounds. Hence the saving comes at the cost of allowing
more false alarms.)
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APPENDIX

A. ANALYSIS OF STAGE 2
Here we prove Lemma 4.

Lemma 5. If stage 2 ends without the condition s′ ≤ αµ1

being reached, then Pr[X < µ] > α/(1 + α).

Proof. In this case we have only one nonconstant ran-
dom variable, X1, with support {0, µ1 + s′}.

Pr[X < µ] = Pr[X1 = 0] =
s′

µ1 + s′
>

α

1 + α
.

Lemma 6. If stage 2 ends with βµ1 ≤ s′ ≤ αµ1, where
0 ≤ β ≤ α is some constant that will be optimized later, then

Pr[X < µ] ≥ min
[(α − 2α2

1 + α

)
,
(β − 2β2

1 + β

)]
.

Proof. Consider first only the random variables with
mean at least µ1/2, let X ′ be their sum and let µ′ be the
expectation of X ′. Over these random variables, the surplus
is s′ = γµ1, with β ≤ γ ≤ α < 1/2. By Proposition 3,

Pr[X ′ < µ′ − (1/2− γ)µ1] ≥ s

µ1 + s
=

γ

1 + γ
.

The event X ′ < µ′ − (1/2 − γ)µ1 does not yet imply
that X < µ. There still might be one variable Xn′ with
µn′ < µ1/2. If Xn′ turns out µn′+sn′ and sn′ ≥ (1/2−γ)µ1

then it still may hold that X ≥ µ.
Let us first assume that µn′ ≤ s′ = γµ1. Then by Markov’s

inequality,

Pr[Xn′ ≥ µn′+sn′ ] ≤ µn′

µn′ + sn′
≤ γµ1

γµ1 + (1/2− γ)µ1
≤ 2γ.

Hence

Pr[X < µ] ≥ γ

1 + γ
· (1− 2γ) = γ − 2γ2

1 + γ
.
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For 0 < β ≤ γ ≤ α < 1/2, the expression above is minimized
when γ ∈ {α, β}.
We are left with the case that µn′ > s′. But then we have

Pr[X < µ] ≥ Pr[Xn′ = 0] ≥ sn′

µn′ + sn′
≥ 1/2− γ

1− γ

where we have used the facts that µn′ < µ1/2 and sn′ ≥
(1/2 − γ)µ1. As γ ≤ α, we have that Pr[X < µ] > (1/2 −
α)/(1−α). But this probability is larger than (α−2α2)/(1+
α) of the previous case, and hence can be ignored.

Lemma 7. If stage 2 ends with s′ < βµ1, and 0 < β <
α/2, then one merge prior to the end of stage 2 it must have
been the case that Pr[X < µ] was at least the minimum of
the following expressions:

1. α−β
1/2+α−β

· 1/2−β
1−β

2. α−3β/2
1+α−3β/2

· 1−3β/2
3/2−3β/2

3. α−2β
1+α−2β

4.
(

1/2−β
1−β

)2

5. 1/2−3β/2
3/2−β

· 1−3β/2
3/2−β

Proof. Consider the last two random variables to have
been merged, say Xi and Xj , with means µi ≥ µj , and let
µ′

1 be the largest mean at the time. After the modified merge
of Xi and Xj , the largest mean µ1 may still have been µ′

1,
but it could also be as high as µi+µj , if this happens to be
higher than µ′

1. In fact, µ1 may also be lower than µ′
1, if only

one variable is left at the end of stage 2, and this variable
underwent an align with 0 operation. However, in this case
the bounds that we get for X < µ are much stronger than
what we get otherwise (details omitted), so we shall ignore
this case.
We analyse the situation one merge operation before the

end of stage 2. Note that we know that at that time, s′ ≥
αµ1, because otherwise stage 2 would have ended earlier.
Likewise, the sum

∑
si taken over all variables except Xi

and Xj is at most max[βµ′
1, β(µi + µj)], because otherwise

we could not have had s′ < βµ1 at the end of stage 2. We
consider now two cases.

Case 1: µj < µ′
1/2. Hence µj did not contribute to s′.

Note that µj ≥ mu′
1/2 and follows that si ≥ αµ′

1 − βµ1.
Hence at that point,

Pr[Xi = 0] ≥ αµ′
1 − βµ1

µi + αµ′
1 − βµ1

If Xi = 0 then in order to have X ≥ µ, Xj must contribute
at least µi − βµ1 beyond µj to X. This may happen with
probability at most µj/(µj + µi − βµ1). We then have

Pr[X < µ] ≥ αµ′
1 − βµ1

µi + αµ′
1 − βµ1

· µi − βµ1

µj + µi − βµ1

The above expression is minimized when µj is maximized
(note that increasing µj may allow us to increase µ1, though
we are not forced to do so), namely, when µj = µ′

1/2. As
µj ≥ µ′

1/2, it follows that µi + µj ≥ µ′
1. The expression

above is minimized when µ1 is maximized, namely, µ1 =
µj + µi]. Normalising µ′

1 to 1, and keeping the notation µi

to denote µi/µ
′
1, we have after some rearrangements

Pr[X < µ] ≥ α − β/2− βµi

(1− β)µi + α − β/2
· (1− β)µi − β/2

(1− β)µi + 1/2− β/2

The expression above is defined for all µi ≥ 0. It equals 0
for µi = {(α−β/2)/β, β/2(1−β)} and positive in between.
Moreover, there are only two points where the derivative
with respect to µi of this expression vanishes (as it is a
ratio of two quadratics), and for β < 2α/3 the expression is
positive in the allowed range of 1/2 ≤ µ ≤ 1. It follows that
the expression is minimized when µi ∈ {0, 1, }, giving

Pr[X < µ] ≥

min
[ α − β

1/2 + α − β
· 1/2− β

1− β
,

α − 3β/2

1 + α − 3β/2
· 1− 3β/2

3/2− 3β/2

]
This gives items 1 and 2 of the lemma.

Case 2: µj ≥ µ′
1/2. Hence both si and sj did contribute

to s′ (before the last merge), and moreover, µi + µj ≥ µ′
1.

As in case 1, the worst possibility here is that µ1 = µi+µj .
To simplify notation and without loss of generality we may
assume that µ′

1 = 1, and then 1/2 ≤ µj ≤ µi ≤ 1. We have
that si + sj > α− β(µi + µj) ≥ α− 2β. We are guaranteed
than X < µ if Xi +Xj < µi + µj − β(µi + µj). Hence let B
denote the event [Xi +Xj < (1− β)(µi + µj)]. We perform
now a subcase analysis for Pr[B].

1. It suffices that eitherXi = 0 orXj = 0 for B to hold. In
this case, using µi ≤ µ1, si+sj ≥ α−2β, Proposition 3
implies that

Pr[B] ≥ α − 2β
1 + α − 2β

This gives item 3 in the statement of the lemma.

2. B holds iff Xi = µi + si. In this subcase necessarily
µi + si ≥ (1− β)(µi + µj)]. Using the fact that µi ≤ 1
and µj ≥ 1/2 we have

Pr[B] ≥ 1/2− 3β/2

3/2(1− β)

This subcase is dominated by the subcase above and
hence can be ignored.

3. B holds iff Xj = µj + sj . This subcase is dominated
by the subcase above and can be ignored.

4. B holds unless both Xi = 0 and Xj = 0. Then nec-
essarily µi + si ≥ (1 − β)(µi + µj) and µj + sj ≥
(1− β)(µi + µj). We have

Pr[B] ≥
( (1− β)(µi + µj)− µi

(1− β)(µi + µj)

)
·
( (1− β)(µi + µj)− µj

(1− β)(µi + µj)

)
For fixed µi + µj this expression is minimized when
µi −µj is maximized. Hence either µi = 1 or µj = 1/2.
Thereafter, it can be verified that the expression is
minimized when the other mean is either maximized
or minimized, giving us three possible local minimum
points, µi, µj ∈ {1/2, 1}, µj ≤ µi. Two of these give
identical values (the cases that µi = µj), hence we ob-
tain

Pr[B] ≥ min
[(1/2− β

1− β

)2

,
(1/2− 3β/2

3/2− β
· 1− 3β/2

3/2− β

)]
This gives items 4 and 5 in the statement of the lemma.
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Summing up, we see that after stage 2, Pr[X < µ] is at
least the smallest of the following quantities (where 0 < β <
α/2 < 1/4):

• α−2α2

1+α

• β−2β2

1+β

• α−β
1/2+α−β

· 1/2−β
1−β

• α−3β/2
1+α−3β/2

· 1−3β/2
3/2−3β/2

• α−2β
1+α−2β

•
(

1/2−β
1−β

)2

• 1/2−3β/2
3/2−β

· 1−3β/2
3/2−β

Choosing (suboptimally) α = 1/3 and β = 1/8 gives
Pr[X < µ] ≥ 1/13 in all cases.
This completes the proof of Lemma 4.

B. BOUNDING THE ESTIMATE ON THE
DEGREE FROM BELOW

Partition the set of vertices of G into two sets, H (for
high) and L (for low). For a constant c (independent of
n, d, k) that will be determined later, the set H contains the

c
√

nd/k vertices of highest degree (breaking ties arbitrarily).
The set L contains the other vertices. Every edge has two
endpoints. Let us partition the endpoints of edges into the
following four sets:

• EH,L (the endpoints in H of edges between H and L)

• EL,H (the endpoints in L of edges between H and L)

• EH,H (the endpoints in H of edges between H and H)

• EL,L (the endpoints in L of edges between L and L)

Observe that |EH,H | ≤ |H|2 = c2nd/k2. It will be the
case that c is a universal constant whereas k ≥ Ω(1/ε), and
hence |EH,H | = O(ε2nd). Moreover, we allow an error of
ε · nd in our estimation of nd. Hence, EH,H has only a low
order effect on the accuracy of the estimation. So as to sim-
plify notation and the presentation, we shall simply assume
that |EH,H | = 0. We shall not give a rigorous proof that
this assumption has only a low order effect on our analysis,
but merely note here that formalists may redo the analysis
without assuming that |EH,H | = 0, and at worst this will
effect some constants the are eventually hidden by the O
notation.
Let m1 = |EH,L|, m2 = |EL,H | and m3 = |EL,L|. Hence

m1+m2+m3 = dn. Note that m2 = m1, because |EL,H | =
|EH,L|. Let us break the random variable X into the sum of
three random variables X = Y1 + Y2 + Y3, according to the
contribution to X from m1, m2 and m3 respectively. Let h
denote the minimum degree of a vertex in H.

Proposition 5. With probability 1− 2−Ω(c),

Y1 ≥ ch/2

Proof. The expected number of vertices queried from
H is t|H|/n = k

√
n/d0 · c√d0n/kn = c. With probability

1 − 2−Ω(c), the actual number of vertices queried from H
is at least c/2. Each such vertex contributes at least h to
Y1.

Proposition 6. A vertex in L can cover at most |H| =
c
√

nd0/k endpoints in EL,H .

Proof. For every endpoint in EL,H covered by a vertex
in L, the other endpoint of the respective edge is in H. As
the original graph is a simple graph with no parallel edges,
the proof follows.

Proposition 7. For λ > 0, with probability at least 1 −
1/λ2,

Y2 ≥ E[Y2]− λ
√

cdn/2

Proof. The variance of Y2 is maximized if the endpoints
of EL,H are concentrated on m2/|H| vertices (each covering
|H| endpoints). Hence:

var[Y2] ≤ |H|2 m2

n|H| t = cm2 ≤ cdn/2

The proof now follows from Chebyschev’s inequality.

Proposition 8. For λ > 0, with probability at least 1 −
1/λ2,

Y3 ≥ E[Y3]− λ

√
hkm3√

d0n

Proof. The maximum degree of any vertex in L is h.
Hence the graph induced by the edges EL,L also has maxi-
mum degree at most h. Thus

var[Y3] ≤ h2 m3

h

t

n
= hm3k/

√
d0n

The proof now follows from Chebyschev’s inequality.

Proposition 9. With probability at least 1−2/λ2−2−Ω(c),

X ≥ E[X]

2
+

ch

2
− λ

√
cdn

2
− λ

√
hkm3√

d0n
+

km3

2
√

d0n

Proof. X = Y1 + Y2 + Y3. By propositions 5,7 and 8 we
have that with probability at least 1− 2/λ2 − 2−Ω(c),

X ≥ E[Y2] + E[Y3] +
ch

2
− λ

√
cdn

2
− λ

√
hkm3√

d0n

As E[Y1] = E[Y2], we have that E[X]/2 = E[Y2] +E[Y3]/2.
Using E[Y3] = m3t/n = km3/

√
d0n the proof follows.

Fix c = 4λ2. Then

ch

2
· km3

2
√

d0n
≥
(

λ

√
hkm3√

d0n

)2

implying

ch

2
− λ

√
hkm3√

d0n
+

km3

2
√

d0n
≥ 0.

The term λ
√

cdn
2
= λ2

√
2dn is at most E[X]

2
2λ2

√
2/k, be-

cause E[X] = dt = k
√

nd
√

d/d0. Renaming 2
√
2λ2 by λ,

we obtain Corollary 2.
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C. OPTIMALITY OF SAMPLE SIZE

Proposition 10. For every (reasonable) n, d, ε, one can
construct a graph G1 with (1 + ε)nd edges and a graph G2

with dn/2 edges, such that Ω(
√

n/dε−1) vertices need to be
queried in order to have probability above 2/3 of distinguish-
ing between them.

Proof. Graph G1 has a set A of ε
√

nd vertices of degree
(1+ ε)

√
nd/ε, and a set B of (1+ ε)

√
nd/ε vertices of degree

ε
√

nd (e.g., arranged as a complete bipartite subgraph be-
tween A and B). The other vertices have degree 0. Graph

G2 has a set C of
√

nd/ε vertices of degree ε
√

nd.
We sketch the proof of why Ω(

√
n
d
ε−1) queries are neces-

sary. Assume that the number of queries is
√

n
d
ε−1. Then

there is constant probability that no vertex fromA is queried,
and the expected number of vertices queried from B is ε−2+
ε−1. The expected vertices queried from C is ε−2. As the
standard deviation is of order

√
ε−2 = ε−1, there is constant

probability that G1 and G2 will be confused.

The optimality of the sample size was proved under the
assumption that the only information used by the estimation
algorithm is the degree of the queried vertices. More gen-
erally, one may think of randomized estimation algorithms
that make use of additional information. For example, when
querying a vertex of positive degree, the next vertex to query
may be chosen at random from the list of neighbors of the
current vertex. The use of a more general class of random
estimation algorithms may allow either quicker or more ac-
curate estimation of the average degree in a graph. See [4],
for example. However, let us explain here some the the ad-
vantages of “degree only” sampling, advantages that might
be lost by other estimation algorithms.

1. All queries can be made in parallel, which in some con-
texts results in saving time.

2. Sampling can be done anonymously. The estimation
algorithm need not know the identity of queried ver-
tices, nor the identity of their neighbors. Privacy is-
sues may sometimes require that this be the case. (For
example, vertices of a graph may represent persons in
some community, and an edge may represent some sort
of interaction that took place between the respective
persons. Persons may be willing to fill an anonymous
questionnaire stating with how many different persons
they had interaction (namely, their degree), but may
not be willing to disclose with whom they had interac-
tion.)

3. In Section 5 there are several different graphs Ge de-
fined on the same set of vertices, and in a single degree
query one gets the degrees of the respective vertex in
all graphs simultaneously. In order to efficiently esti-
mate the average degree in all graphs, it is useful to
have an estimation algorithm for which the choice of
which vertex to query does not depend on the graph in
question.

D. FINDING SHORTEST PATHS
We first explain the tie breaking convention in more de-

tails. We assume that vertices are numbered from 1 to n.
A path can be viewed as a sequence of vertices in a natural
way. Hence a path is a sequence of numbers. In fact, two
sequences correspond to the same path, depending on which
of its two endpoints is considered to be the head of the path,
and which is considered to be the tail. The name of the path
is taken to be the lexicographically smaller of the two. Given
two different paths that connect the same pair of vertices, if
they are of equal length we use the convention that the one
with the lexicographically smaller name is considered to be
shorter.
Now we sketch the proof of Proposition 4.
We assume a model of computation in which algorithms

such as single source shortest path take O(m) time. In par-
ticular, some basic operations (such as comparison between
two O(log n)-bit words) take unit time.
Given a starting vertex v, the distances to all other ver-

tices in G can be computed in O(m) time using breadth first
search (BFS). The BFS tree rooted at v gives also shortest
paths from v to all vertices. It is quite straightforward to
also count for each edge in the BFS tree (starting from edges
furthest from the root and moving towards the root) in how
many shortest paths (starting from v) it participates. The
counting requires only O(n) operations, as there are only
n − 1 edges in the BFS tree.
In general, several different BFS trees can be constructed

starting at the same vertex v, depending on the order in
which vertices are considered. We shall need to construct
two such trees. The forward tree rooted at v (gives the
lexicographically first shortest paths when v is the first ver-
tex of the path) is constructed using the following rules:
the neighbors of every vertex are always scanned in lexico-
graphic order, and when trying to identify and connect to
the vertices in the next level of the BFS tree, the vertices at
the current level are scanned in the order under which they
were first discovered. The backward tree rooted at v (gives
the lexicographically first shortest paths when v is the last
vertex of the path) is constructed using the following rule:
for every vertex discovered at level i keep a pointer to the
lexicographically first vertex of level i − 1 that connects to
it. Both the forward tree and the backward tree can be
constructed in O(m) time.
Given both the forward tree and the backward tree for a

vertex v, and using the convention that for vertices lexico-
graphically smaller than v one uses the backward tree and
for vertices lexicographically higher than v one uses the for-
ward tree, one can simultaneously count in O(n) time how
many shortest paths with an endpoint at v pass through
every edge. (Note that this count is 0 for all but at most
2n − 2 edges of the two BFS trees.)
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