
Fast approximate PCPs
�

Funda Ergün
�

Ravi Kumar
�

Ronitt Rubinfeld
�

Abstract

We investigate the question of when a prover can aid a verifierto reliably compute a functionfaster
than if the verifier were to compute the function on its own. Our focus is on the case when it is enough
for the verifier to know that the answer isclose to correct. The model of proof systems we use is
based on variants of existing models of proof systems, such as IP and PCP. We develop protocols for
several optimization problems, in which the running time ofthe verifier is significantly less than the
size of the input. For example, we give polylogarithmic timeprotocols for showing the existence of
a large cut, a large matching, and a small bin packing. In contrast, the protocols used to show that
IP � PSPACE� MIP � NEXP, and NP� PCP� � � 	 �
 � [Sha90, BFL91, ALM+98, BFLS90] require
a verifier that runs in� � 	 � time. In the process, we develop a set of tools for use in constructing these
proof systems.

1 Introduction

Consider the following scenario: A client sends a computational request to a “consulting” company on the
internet, by specifying an input and a computational problem to be solved. The company then computes the
answer and sends it back to the client. This scenario is of interest whenever a prover can help a client reliably
find the answer to a function faster than the client could compute the function on its own, or whenever the
client does not possess the code required to solve the computational problem. An obvious issue that arises,
especially in the case that the company does not have a well established reputation, is: why should the client
believe the answer to be correct? Surprising results on proof systems show that there is a format in which
the company (prover) can write a proof of correctness of the result such that the proof can be verified by a
client (verifier) which looks at only a constant number of bits of the proof and runs in time nearly linear in
the size of the theorem and logarithmic in the size of a proof written in standard form (cf. [ALM+98, PS]).

In this paper we study the setting in which the computations are performed on large data sets. In this
setting, it is desired to find proof systems for extremelyfastclients—ones that run in time sublinear in the
size of the theorem. While this may at first seem to be an impossible task, we show that when it is enough
for the client to know that the answer iscloseto correct, then in many cases it is possible to write the proof
in a format where the verifier requires sublinear, in some cases even constant or polylogarithmic, time to
verify the proof. To illustrate our notion of close, consider a proof that a graph has a cut of size at least
—the client may be willing to accept the proof if it is convinced that the size of the cut is at least� � � � �

.

RELATED WORK. It is known that IP� PSPACE, MIP � NEXP, NP � PCP� � � � � � � [LFKN90,
Sha90, BFL91, ALM+98]. From the work of [BFLS90] and [Spi96], it is possible to construct proof systems
for any proof in a reasonable formal system with an� � � � � � � � -time verifier, where� is the length of the

�
This work was partially supported by ONR N00014-97-1-0505,MURI, NSF Career grant CCR-9624552, and an Alfred P.

Sloan Research Award. A preliminary abstract describing results in this work has appeared in the proceedings of STOC 1999.�
Case Western Reserve University, Cleveland, OH 44106. email: afe@ces.cwru.edu�
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120. email:ravi@almaden.ibm.com�
NECI, 4 Independence Way, Princeton, NJ 08540. email:ronitt@research.nj.neci.com

theorem and� is the length of the proof1. Thus we have a good understanding of the set of problems for
which it is feasible to find proof systems in which the verifieris efficient and the communication between
the prover and verifier is limited. Note that the protocols inthe aforementioned results all require that the
verifier look at the whole input in order to choose the locations in the proof to query, and thusdo not give
sublinear time protocols.

The model we consider, described in Section 2, is based on themodels of IP [GMR89], PCP [FRS94],
and CS proofs [Mic94], with modifications borrowed from the models of program checking [BK95], ap-
proximate program checking [GLR+91], property testing [RS96, GGR98], and spot-checking [EKK+98].

OUR RESULTS. We begin by considering problems that return approximations of optimal solutions for
combinatorial optimization problems. We give efficient proof systems for proving good lower bounds on the
solution quality to constraint satisfaction problems, including Max Cut and Max SAT, to a polylogarithmic
time verifier. We next show how to prove the existence of a nearoptimal solution of a sparse fractional
packing problem to a polylogarithmic time verifier. The techniques behind our fractional packing protocol
can be used for several other problems. For example, it is possible to prove the existence of a large flow, a
large matching, or a small bin packing in such a way that the verifier need only spend time nearly linear in
the number of vertices (which is sublinear for graphs that are not sparse) in the first case and polylogarithmic
time in the latter cases. The size of the proof is nearly linear in the size of the solution to the corresponding
search problem and can be computed efficiently by the prover.In all of the above protocols it is also
possible to prove the existence of suboptimal solutions, i.e., if the prover knows of a solution of value� ,
it can prove the existence of a solution of value at least� � � � � � . We then investigate methods of proving
additive approximations of bounds on the sizes of unions andintersections of several sets such that the
verifier requires only logarithmic time. One application ofsuch protocols is to estimating the size of unions
or intersections of several database queries. Finally, we consider spot-checking and property testing and
note that one can obtain more efficient results for testing closeness to having the properties of bipartiteness
and element distinctness by allowing the aid of a prover.

We develop a new set of tools for use in constructing these proof systems. For example, we give a con-
stant time protocol for estimating lower bounds on sums of� inputs. We develop a constraint enforcement
protocol which allows the verifier to ensure that linear upper bound constraints are satisfied without looking
at all of the variables involved.

SOME POSSIBLE APPLICATIONS. Let us mention two examples of properties of massive data sets to
which our proof systems apply.

1. (Quality of service in networks) A company wants to convince a client that the company’s network is
capable of handling a large sample load provided by the client. The above techniques could be used
to convince the client that at least� � � fraction of the load can be routed, such that the running time
of the client is� � � � � � � � � � where

�
is the diameter of the network (typically much smaller than the

number of nodes in the network).

2. (Website hits) In order to prove the popularity of their website to advertisers, a company may present
a list of machines that have accessed their website. The listmay be made longer by either adding fake
entries (machines that did not access the website or do not exist) or by duplicating the existing legal
entries. Assuming that the advertisers have a way of detecting fake entries, standard sampling methods
can be used to ensure that at most� � � fraction of the entries are fake in� � � � � � time. Methods given
in Section 3.2 allow the advertisers to ensure that at most� � � fraction of the entries are duplicates in
� � � � � � time.

1If the input is in a specially coded form, then the dependenceon � can be dropped. However, encoding the input requires� � � �
time.

2

2 The model

Interactive proof systems (IPS) [GMR89] and probabilistically checkable proof systems (PCPS) [FRS94]
(equivalent in power to multiple prover proof systems [BGKW88], see also [FGL+96, AS98, BFLS90] and
to function restrictedIP [FRS94]) can be used to convince a polynomial time verifierof the correctness of
a decision problem computation. Definitions of IP which parametrize the runtime of the verifier appear in
[Con91, FL93]. CS proofs [Mic94] extend the model to apply tofunction computations as well as problems
above NEXP, and to allow restrictions on the runtime of the prover.

Program result checking [BK95] and self-testing/correcting techniques [BLR93, Lip91] were introduced
so that a client could ensure the correctness of a solution toa computation. Program result checkers can be
viewed as a special type of proof system for function computations, in which the prover is restricted to
answering other instances of the same computational problem. It is easy to see that all result checkers as
well as result checkers in the library setting [BLR93] satisfy the requirements of the model used here.

Proving that results are approximately correct is also related to approximate checking [GLR+91], prop-
erty testing [RS96, GGR98], and spot-checking [EKK+98], where the goal is to determine whether an
answer is close to correct for various interesting notions of closeness. All approximate checkers satisfy
the requirement of the model here. Conversely, all of our results can be restated as property testers or
spot-checkers which use the additional aid of a prover.

The model we use is based on the above models and in particular: applies to function computations and
decision, optimization, approximation, and search problems; allows the prover to prove only the weaker
assertion that a solution is approximately correct; parametrizes the runtime of the verifier; and analyzes
the runtime of the verifier implemented as a RAM machine in order to understand the exact asymptotic
complexity of the verifier. We will not assume any bounds on the computation time of the prover.

Both the prover and verifier are interactive RAM machines that have read access to an input and an
output tape, read/write access to communication tapes, read access to a public or private source of random
bits, and read/write access to private computation tapes. We assume that the verifier can access any word in
any tape in constant time.

We give definitions for both the approximate IP and PCP modelsat the same time. In the description of
our protocols, we use the alternate characterization of PCPas function-restricted IP [FRS94], in which the
prover is restricted to a function determined before the start of the interaction [FRS94].

Definition 1 (Approximate IP/PCP) Let � � � � � � be a distance function. A function� is said to have an� � � � � � -approximate interactive proof (probabilistically checkable proof) systemwith distance function� if
there is a randomized verifier� such that for all inputs� and � of size� , the following holds. Let� be the
contents of the output tape, then:

1. If � � � � � � � � � � � , there is a(function-restricted) prover� , such that� outputs pass with probability
at least 3/4(over the internal coin tosses of�);

2. If � � � � � � � � � 	 � , for all (function-restricted) provers�
 , � outputs fail with probability at least 3/4
(over the internal coin tosses of�); and

3. � runs in� � � � � � � � � time.

REMARKS. (i) The interactive (probabilistically checkable) proofprotocol can be repeated� � � � � � � �
times to get confidence� � � � . We omit all dependence on� from our protocols throughout this paper.

(ii) The choice of the distance function� is problem-specific, and determines the ability to construct a
proof system, as well as determining how interesting the proof system is. The usual definitions of interactive
proof systems for decision problems require that when� � � � � � , an honest prover can convince the verifier

3

of that fact, and when� �� � � � � , no prover can convince the verifier of that. In our model, this is achieved
by choosing� � � � � � such that� � � � �
 � 	 � whenever� �� �
 and � � � � � � � � . Note that the output of�
is not specified when� � � � � � � � � � � � � . In Definitions 2 and 3, we define approximate lower and upper
bound protocols in the multiplicative and additive case andgive the corresponding� functions.

(iii) Note also that� can be set to� for many of the inputs and� need not be computable by the
verifier, so that this definition allows interactive proofs for promise problems. Independently of this work,
Szegedy [Sze99] has given a related formulation in terms of three-valued logic which also applies to promise
problems.

We now give specific definitions for approximate upper and lower protocols. Most of the results in this
paper gives such protocols. All of these definitions are special cases of Definition 1.

Definition 2 (Approximate lower/upper bound IP/PCP) A function� is said to have an
� � � � � � -approximate

lower (resp.upper) bound IP (PCP)if there is a randomized verifier� such that for all inputs� and � of
size� , the following holds. Let� be the contents of the output tape, then:

1. If � � � � � � , there is a(function-restricted) prover � , such that� outputs pass with probability at
least 3/4(over the internal coin tosses of�);

2. If � � � � � � � � � � � (resp. � 	 � � � � � � � � �), for all (function-restricted) provers�
 , � outputs fail
with probability at least 3/4(over the internal coin tosses of�); and

3. � runs in� � � � � � � � � time.

REMARK. (iv) The approximate lower and upper bound definitions correspond to setting� � � � �
 � �� � � � � � � � � � �
 � and� � � � �
 � � � � � � � � � � �
 � � � respectively in Definition 1.

Definition 3 (Approximate additive lower/upper bound IP/PCP) A function� is said to have an
� � � � � � -

approximate additive lower (resp. upper) bound IP� PCPif there is a randomized verifier� such that for
all inputs � and � of size� , the following holds. Let� be the contents of the output tape, then:

1. If � � � � � � , there is a(function-restricted) prover � , such that� outputs pass with probability at
least 3/4(over the internal coin tosses of�);

2. If � � � � � � � � (resp. � 	 � � � � � �), for all (function-restricted) provers�
 , � outputs fail with
probability at least 3/4(over the internal coin tosses of�); and

3. � runs in� � � � � � � � � time.

REMARK. (v) The additive approximate lower and upper bound definitionscorrespond to setting� � � � �
 � �� � � � � � �
 � � � and� � � � �
 � � � � � � � � � � �
 � respectively in Definition 1.

INTERACTIVE SPOT-CHECKING MODEL. We give a more general definition of IPS� PCPS which applies
to distance functions that correspond to property testing and spot-checking. We define aninteractive-spot-
checker, which is essentially a spot-checker [EKK+98] that is allowed the assistance of a prover.

Definition 4 Let � � � � � � be a distance function. We say that� is an
� � � � � � -interactive-spot-checker (ISC)

for � with distance function� if, given any input� , claim � for the value of� � � � , and � ,
1. If � � � � � � 	 � � � � � � � � 	 � � � , then there is a function-restricted prover� , such that� outputs pass with

probability at least 3/4(over the internal coin tosses of�);

2. If for all inputs �
 , � � � � � � 	 � � �
 � � � �
 � 	 � 	 � , then for all function-restricted provers�
 , � outputs
fail with probability at least 3/4(over the internal coin tosses of�); and

4

3. � runs in� � � � � � � � � time.

The condition on the runtime of the spot-checker enforces the “little-oh” property of [BK95], i.e., as long as
� depends on all bits of the input, the condition on the runtimeof the spot-checker forces the spot-checker
to run faster than any correct algorithm for� , which in turn forces the spot-checker to be different than any
algorithm for� .

USING PCPSOVER A COMMUNICATION CHANNEL. When interacting over a communication channel
(like the internet), the verifier may want some assurance that � is function-restricted, without resorting to
having the prover transmit the whole proof in advance of the verification process. One possibility is to use
a trusted third party:� transmits the proof to the third party, and the verifier interacts with the third party
assuming that it has no reason to change pieces of the proof. Alternatively, if one assumes a bound on the
running time of� , then it is possible to force the prover to commit to the proofin such a way that only
provers that are computationally more powerful than the allowed bound are able to change the proof in a
convincing way. One can use commitment methods [Mer90] in this setting [Kil92, Mic94, Kil94].

RELATED MODELS. Several other works have looked at IPS� PCPS with resource limited verifiers, es-
pecially verifiers using logarithmic space. In [Con91, FL93, DS92, FS88], the question of classifying the
languages that have interactive proofs with various modelsof space-bounded verifiers is studied. The work
of [DS92, Kil] consider the issue of when zero-knowledge interactive proof systems exist for systems with
space bounded verifiers. The work of [CLSY90] considers the problem of designing untamperable bench-
marks for other computers to follow. Their model considers the scenario of a resource-limited computer,
which would like to ensure that a (very fast) computer has correctly computed benchmarks without taking
any shortcuts. The main difference from this work is that in our model the verifier does not care how the
prover computed the answer, only that the answer is correct.

NOTATION. We use� � � � to denote that� is chosen uniformly at random from� . We use� to denote
the number of bits in a word and we assume all integer variables fit in a word.

For notational convenience, we often mix notions of interactive and probabilistically checkable proofs
by using both within the same protocol, referring to a proversending information as well as permanently
writing down information before the start of the protocol (which corresponds to committing to a set of
responses to queries that will be made later in the protocol). These systems can clearly be simulated by a
function-restricted prover, since� can decide on all of its responses before the start of the protocol. All
protocols in this paper are described within the PCP model.

3 Some basic building blocks

3.1 Multiset equality (Permutation enforcement)

Given an input list� � � � � � � � � � � � 	 , many of our protocols require that the prover rewrite the list in a
different order� � � � � � � � � � � � 	 (for example, the sorted order). We would like the verifier tobe able to
ensure that	 �
 � 	 � � � � � � � . In particular, the verifier should be able to access elements from � while
ensuring that each accessed element corresponds to a uniquelocation in� . The difficulty comes from the
possibility that neither list is necessarily distinct. Onewould like to prevent the possibility that an� � from
� was duplicated more than once in� , or that two equivalent elements� � � � � in � are replaced by only
one element in� . Without the aid of a prover,� requires � � � � � time to ensure that	 �
 � 	 � � � � � � �
[EKK+98]. Here we show that it can be done in� � � � � � time.

Thepermutation enforcerconsists of two arrays� � � � � of length� , where the contents of location� in
� � contains a pointer to the location of� � in � . Similarly, the contents of location� in � � contains a pointer
to the location of� � in � .

5

Let � begoodif � � � � � � � � � � � and� � � � � � � � � . Then it is easy to see that:

Lemma 5 	 �
 � 	 � 	 � � 	 � � � � � � � � 	.
Thus, to verify that	 �
 � 	 � � � � � � � , the verifier should choose� � � � � � random� ’s and output fail if it
ever finds an� that is not good. If� � � , the correctly written permutation enforcer will always cause� to
pass, and if	 �
 � 	 � � � � � � � , no matter what� writes in place of the permutation enforcer,� will fail
with probability at least	 �
 .

Let � � � � � � � � if � � � and � otherwise. Given two multisets� � � , let � � � � � � be the min-
imum number of elements that need to be inserted to or deletedfrom � in order to obtain� . Then
� � � � � � � � � � 	 � � � �
 � �
 � � � � �
 � �
 � 	 � is infinite if either � �� �
 or � �� � � �
 � �
 � , and otherwise is
� � � � �
 � � 	 � 	. One can see that this definition of� is small only for multisets� and� that are at least close
to equal.

Theorem 6 Given two multisets of size� and constant� , there is an� � � � � -ISC for multiset equality with
distance function� .

3.2 Element distinctness

Given an input list� � � � � � � � � � � � 	 , it is often useful for the verifier to ensure that the� � ’s are distinct.
Here we give a� � � � � � time protocol by which the verifier can ensure that the numberof distinct elements
in � is at least� � � � � � . Without the aid of the prover,� requires � � � � time to determine the same
[EKK+98]. The protocol we use can be viewed as a simplification of the protocols given by [GMW, For89].
The protocol of [For89] allows a prover to convince a verifierof an upper bound on the size of a set.
Interestingly, we use the same technique here to give a lowerbound on the size of a set.

Repeat � � � � � � times:
� chooses � � � � � � � � � �
� sends � � to �
� returns � to �
� fails if � �� �

If � is distinct, then� can answer so that� always passes. If the number of distinct elements in� is less
than � � � � � � , then for all provers�
 , � fails with probability at least	 �
 . More formally, let� � � � � � if �
is distinct and� otherwise. Define� � � � � � 	 � � �
 � � � �
 � 	 � to be infinite if � �� � � �
 � , and� � � � �
 � � 	 � 	
otherwise (� is as defined previously). Note that it is important for the correctness of the protocol that� is
restricted to a function determined before the start of the interaction.

Theorem 7 Given a multiset of size� and constant� , there is an� � � � � -ISC for element distinctness with
distance function� .

Proof: If the multiset� is distinct,� can always uniquely determine� � � . If the number of distinct
elements in� is less than� � � � � � , the probability that� chooses an� corresponding to a nondistinct
element is at least� , and if � � is not distinct, the probability that� � � is at most� � � . Thus, there is a
constant� such that after� � � trials, � will fail with probability at least	 �
 . �

A SPACE EFFICIENT PROOF. If the function-restricted� in the previous protocol is implemented by
having� write down the answers to all queries of� in advance of the conversation,� writes a table of size
proportional to a bound on the maximum value of� � . It is possible to save space, by using an algorithm in
which � runs in� � � � � � � � � � � � time: � writes a list of ordered pairs containing each input elementand its
location in the input list� � � � � � in order sorted by the value of� � . � then performs a binary search to find
� � � � � � based on the keyword� � and checks that� � � .

6

3.3 Lower bounds on the size of a set

Given a set� represented by a list enumerating its elements, it is nontrivial to deduce the size of� from
the size of the list, since it is not known whether the elements in the list are distinct. Given a method by
which � can determine whether a� -bit element� is in � (for example, if� is in fact represented by a list,
� could be convinced in constant time that� � � if � sends� a pointer to the location of� in �), � could
estimate	 � 	 � � � to within a multiplicative error of� by sampling:� chooses a random� -bit element� and
if � � � , then� proves it to� . This requires � � � � � � 	 � 	 � � samples [DKLR95, CEG95]. The method given
here is significantly more efficient with the running times described in terms of� , an upper bound on an IP
(or a PCP) protocol by which� can convince� that � � � . Our protocol is simple, fast, and has one-sided
error. We note that there are protocols for lower bounding set size due to [GS86] and [FGM+89] which can
be performed directly in an IP setting (the former protocol has 2-sided error and the latter is slightly less
efficient than the one given here). In our applications for these protocols, any one of the three can be used
interchangeably.

The following protocol allows� to convince� that the size of� is at least� � � � � 	 � 	 for any � 	 � . In
particular, let� be � ’s claimed size of� , then if 	 � 	 	 � the protocol always passes and if	 � 	 � � � � � � �
the protocol fails with probability at least	 �
 .

We use the protocols of the previous sections such that each has probability of error at most� � � . An
auxiliary array� will be used to refer to both an array used to represent the setand the multiset which is
defined by its contents.

� sends � to �
� writes the elements of �
to an array � of size �

Perform element distinctness protocol
on � with parameter � � �

Repeat � � � � � � times:
� sends � � � � � � � � � � � � to �
� sends � a proof that � � � � � �

Clearly if 	 � 	 	 � , there� will pass. Conversely,� ensures that the fraction of distinct elements in� is at
least � � � � � � � and that at most� � � fraction of the elements are not in� . Thus, 	 �
 � 	 � � � � � � � .

Theorem 8 There is an� � � � � -approximate lower boundPCPfor the size of a set.

3.4 Lower bounds on sums

Given positive integers� � � � � � � � � , we show how� can convince� of a good approximation to a lower
bound on� �� � � � � . Without aid of a prover,� requires � � � time to estimate the lower bound, since it is
possible that all but one of the� � ’s are� . We give two methods by which the prover can convince the verifier
that the sum is at least� � � times the claimed value. The first requires only that� use constant time but
requires a very large proof size (proportional to the magnitude of the sum). The latter requires that� spend
� � � � � � time, where� is an upper bound on the� � ’s (since we assume� � fits in a word,� � � �) but only
requires a proof whose size is� � � � words.

USING LOWER BOUND PROTOCOLS. Consider the set� � � � � � � � 	 � � � � � � � � � � � � � (if � � � �
then there will be no� such that� � � � � � �) whose cardinality is� �� � � � � . Note that given� � � � � , � can
determine membership in� in constant time: first verify that� � � � � and then that� � � � � � . The
lower bound protocols of the previous section may be used to estimate a lower bound on	 � 	 such that� ’s

7

running time is� � � � � � . If the weights are too large to fit in a word, then it is enough to work with only the
� � � � � � most significant bits of the weights.

Theorem 9 There is an� � � � � -approximate lower boundPCPfor the sum of� integers.

GROUPING ELEMENTS BY SIZE. In the second protocol,� uses random sampling to estimate the sum.
Since the number of samples required to get good estimates depends on the variance of the sample,� helps
� by putting the� � ’s in groups for which the variance is small:� groups the� � ’s such that the� -th group
contains all� � whose weights are between� � � � and� � � � � � and writes down the contents of each group in a
separate array (along with the size). Since we assume integer weights, there are at most� � � such groups.�
could try to make the sum look larger than it is by inserting new large elements when it rewrites the� � ’s into
the arrays. In order to protect against this,� must ensure, using the permutation enforcer, that in fact each
element sampled comes from the original set of� � ’s. Suppose� chooses element� � in one of the groups.
Say that� � is goodif � � ’s weight is consistent with its group and the permutation enforcer is consistent, i.e.,
� � � � � � � � � � � and � � � � � � � � � . Let

� � � � 	 � � � � � � � � � . Then� � � � � � � � � � � . � uses sampling to
lower bound� � � � � � . To do this, suppose the� -th group has� � elements. Then� picks � � � � � � elements
from the � -th group, checks that they are good, and sets� � to be their average multiplied by� � . This gives
an � -approximation for a lower bound on the sum of the elements inthe � -th group (cf. [DKLR95]). Finally,
� outputs� � � , the total sum, which lower bounds� � � to within a multiplicative factor of� � � . The total
running time is� � � � � � � � � � � .
Theorem 10 There is an� � � � � � � � � � -approximate lower boundPCPfor the sum of� integers, where the
proof size is� � � � .

4 PCPS for optimization and graph problems

4.1 Constraint satisfaction problems

A WARMUP: LOWER BOUNDS ON THE CUT SIZE. We give a protocol by which� can be quickly
convinced by� that a given graph

� � � � � � � has a large cut. In this warmup case, the PCP is especially
straightforward. The main idea is to use the lower bound protocol described in the previous section to allow
� to convince� that the cut is at least a certain size.

We first describe the protocol for proving a lower bound on thecut size in an unweighted graph. Given
a cut � � � � � , for each vertex� , let � � � � if � � � and� � � � if � � � .

� writes down � � for each vertex �
� and � perform the lower bound on set
size protocol for the set� � �
 � � 	 � � � 	 �
 �� � � �

Note that� can determine membership in
�

in constant time. The weighted case may be treated by per-
forming a lower bound protocol on� �
 � � � � � � 	 � � � , where� � 	 � � � is the weight of edge� 	 � � � .

Obtaining a sublinear protocol in which� can convince� of a multiplicative approximation which
upper bounds the size of a given cut is not possible:� requires � � � � time to distinguish between a cut size
of 0 and 1, assuming the input graph is given in terms of its adjacency matrix.

MAXIMUM CONSTRAINT SATISFACTION PROBLEMS. Constraint satisfaction problems (CSP) [Sch78,
KST97] refer to a class of problems that can be represented asfollows: Define a set ofconstraint func-
tions � such that� � is satisfied by� � � � � � � � if � � � � � � � . A constraint

8

applicationof � � to boolean variables� � � � � � � � � is an ordered pair� � � � � � � � � � � � � � � 	 , which is satisfied if
� � � � � � � � � � � � � � � � � . We assume constraints can be evaluated in� � � time. On input a collection of
constraint applications on boolean variables� � � � � � � � � , theMax CSPproblem is to find a boolean setting
of the � � ’s such that the number of satisfied constraints is maximized. In the case that the input also includes
weights on the constraint applications, theWeighted Max CSPproblem involves finding a setting of the� � ’s
which maximizes the sum of the weights of the satisfied constraints. The Max SAT problem and the Max
Cut problem can both be cast as constraint satisfaction problems.

If � knows a solution of value� to the weighted Max CSP problem, then� can convince a verifier�
that the solution to the weighted Max CSP problem is at least� � � � � � as follows:� initially writes down the
� � � settings of the� � ’s. Then, using one of the protocols for showing approximatelower bounds on sums
from the previous section,� convinces� that the sum of the weights of the satisfied constraints is at least
� � � � � � . During the protocol, whenever� sends� pointers to constraints that are purportedly satisfied,�
checks that the settings of the� � ’s initially written by � satisfy those constraints.

Theorem 11 Let � be the number of variables and let

be the maximum size of constraints for a Weighted
Max CSP problem

�
. Then there is a� � � � -approximate lower boundPCPSfor

�
.

M IN ONES CSPS. TheMin Ones CSPproblem involves finding a setting of the� � ’s which minimizes the
number of� � ’s set to 1 and satisfies all of the constraints. It is easy to see that:

Theorem 12 There is a� � � � -approximate lower bound protocol in which� can convince� that there
exists a setting of the� � ’s which sets at most� of the � � ’s to 1 and satisfies at least� � � fraction of the
constraints.

We present the example of vertex cover of a graph with maximumdegree
�
. This problem is NP-complete

for any
� � 	 . Given graph

� � � � � � � of degree at most
�

with 	 � 	 � � , 	 � 	 � � , and a bound� , is there
a set

� � � which is a vertex cover and	� 	 � � . If there is such a vertex cover, then there is a protocol
by which � can convince� that there is a vertex cover of size at most� � � � � � � : � writes down an array
of size at most� containing the vertex cover

�
. � chooses� � � � � � edges and sends them to� . � returns

pointers to vertices in
�

which cover each of the edges. and� fails if some edge is not covered.
If

�
covers less than� � � � � � edges,� is likely to fail. Otherwise, at most� � additional vertices will

be required to cover the remaining ones. The claim follows since� � � � � � � .
A similar approach can be used for dominating set with a degree bound and set cover with bounded

subset size, which are also NP-complete when the degree or cardinality of the subset is at least 3.

4.2 Constraint enforcement protocols

We have seen that designing protocols for proving lower bounds seems to be much easier than proving up-
per bounds. We, however, show that a prover can convince a verifier that a good solution to an optimization
problem satisfies certain types of upper bound constraints.We first apply our technique to approximations
for

�
-sparse fractional packing problemsand then show how the technique can be used for other approxi-

mation problems.

FRACTIONAL PACKING PROBLEMS. Fractional packing problems are a class of linear programming
problems defined by [PST95]. We consider asparseversion of the problem where we are given� � � � � � � � � �
� and � � � � � � � � � � � � � , such that for each� , at most

�
of the � � � ’s are nonzero (we refer to

�
as thesparsity

of the problem). LetOPT be the solution to the following maximization problem:� � � � � �� � � � � � � � subject
to � � � � and the� constraints� � � �� � � � � � � � � � � � � . Since the� � � ’s are sparse, we assume that for
each variable� � , there is a list� � of � such that� � � 	 � . (We assume this for convenience in presenting our
protocols. As long as there is an easy way to find all nonzero� � � for any given� , other ways to represent

9

the sparse data can be used.) We assume that all� � ’s, � � � ’s, � � ’s, and � � ’s can be represented in a word in
memory.

Now, � has a solution of valueOPT in hand and wishes to convince� of the existence of a solution
with value� � � � � � OPT which satisfies all of the constraints. To this end, we give aconstraint enforcement
protocol. All our results apply to the case when� has a solution of value� (not necessarily optimal) and
would like to prove to� that the solution is of value at least� � � � � � .

4.2.1 Constraint enforcement: unweighted version

In order to describe the constraint enforcement protocol, we begin with the simpler case ofunweighted
fractional packing problems, in which all the� � ’s and � � � ’s are � or � , and each� � is further constrained
to be either� or � . Note that� � � � � � � � � � � . � must ensure that there are a large number of� � ’s that
are set to� , such that they do not violate any of the constraints.� writes down the followingconstraint
enforcement structurewhich consists of three parts: (i) An array� of length � such that the� -th entry is
the value of� � . (ii) For each constraint� , a list of the� � ’s that are allocated “space” in constraint� (i.e.,
� � � � � � �). More specifically,� writesconstraint arrays

� � � � � � � � � , where
� � is of length� � . For every

� � such that� � � 	 � and such that� � is set to � in the optimal solution, there is a location� such that� � � � � � � . If space is allocated in
� � for each� � such that� � � � � � � , then the capacity constraints are not

violated. (iii) For each� , pointers to the locations in the constraint arrays in which� � is allocated space, so
that for each� � set to� , � can ensure that it is allocated space in each constraint� for which � � � 	 � . More
specifically, a modification of permutation enforcement is used:� writes an array� of size at most� , such
that � � � � � � � � � � � � 	 � � � � � � � � � � � 	 	 where� � � � � � 	 � � � � � whenever� � is present in constraint� � and� � is that
location in

� � � such that
� � � � � � � � � .

Figure 1 shows the unweighted constraint enforcement protocol used for the following problem: Maxi-
mize � � � � � � � � � � � subject to

� ,
� � � � � � � � � � ,

� � � � � � � � � � � � � ,
and

� � � � � � � � � � . The solution setting� � � � � � � and� � � � � � � has value� .

x

x

x

x

1

2

3

4 1

0

1

0

T[1]

T[2]

T[3]

T[4]

1 C1

4 C2

1 C3

Figure 1: The unweighted case.

We say that element� � is goodif: (i) � � � � (i.e., � � � � � �), (ii) for all � � � � (� � is given as input),
there is a pair� � � � 	 � � � � � such that

� � � � � � � . Let
� � � � 	 � � is good� be the set of good elements.

Testing that� is good can be done in� � � � time.
We do not want the verifier to check the entire structure or even an entire constraint; our gain comes

from the fact that: (i) the constraint enforcement structure ensures� � � �� � � � � � � � � � � � � � � and (ii) the
value of the solution is at least the number of good elements.Setting �� � � � � for all � � �

and �� � � � for
all other� , we have:

Lemma 13 � �� � � � � � � �� � � is a feasible solution of value at least	 � 	.

10

Thus the protocol is simply for� and� to run the protocol in Section 3.3 for showing that the size ofthe
set

� � � � 	 � � � � � � � � is at least� � � � � OPT, which in turn requires that� is able to check that a given� is
good. The total runtime of� is � � � � � � .
Theorem 14 There is a� � � � � -approximate lower boundPCPSfor unweighted fractional packing problems.

4.2.2 Constraint enforcement: weighted version

We now consider the problem in the general form described above. We modify the previous protocol in two
ways: (i) We modify the notion ofgoodso that it is still the case that a solution�� � � � � � � �� � to the fractional
packing problem that sets�� � to � � when � is good and� otherwise satisfies all constraints and has value
� � � � � � � � � . � can test whether� is good in� � � � � � � � � � time. (ii) We use the protocols from Section 3.4 so
that � can guarantee that� � � � �� � � � � � � � OPT.

Since the values of the� � ’s and their� � � multipliers are no longer constrained to be either� or � , we need
to modify our method of keeping track of the “space” taken up by each nonzero� � � � � in each constraint. A
first idea would be to write down the name of the� -th variable in� � � � � consecutive locations in the constraint
array

�
� . However, testing that a variable was allocated enough space in a constraint array would then take

� � � � � � � � time. Since the “resources” allocated to each variable within a constraint can be very different, we
essentially keep track of the range of space taken by each variable in each constraint. For each constraint� ,
we maintain an array of length� , where the� -th entry records the running total of space taken up by the first
� variables (we imagine the set to be a physical space of size� �): the array

� � is � � � � � � � � � � � � � � � � � where
� � � � �

� � � � � � � � � � represents the space taken up by the first� objects,� � � � � � � represents the space taken
up by object� (and should be� � � � �), �

�
is assumed to be� , and� � should be� � � . Note that since the� � � ’s

and� � ’s are positive, if the� � ’s are given correctly, they will form a monotone sequence.
Figure 2 shows the weighted constraint enforcement protocol used for the following problem: Maximize

� � � � � � � 	 � � � � � subject to
� � � � � � � � � � � � � � � � ,

� � � � � � � � � � ,
� � � � � � � � � � � �
 , and� � � � � � � � � � � . The solution setting� � � � � � � � � � � � � � � � � has value� .

0

1

1

2

0 1 1 1

0 1 2 4

0 0 2 2

S1

S

S

S

2

3

4

x

x

x

x

1

2

3

4

C

C

C

1

2

3

Figure 2: The weighted case.

In order to ensure that each constraint is satisfied, we need adefinition of agoodelement which is strong
enough so that: (i) the sum of all good elements do not violateany constraints and (ii)� can efficiently
determine whether an element is good (in particular,� does not have to look at many variables in the
constraint).� could try to cheat� by giving a list of� � ’s which is not monotone. However, if� � � � � � � � � �
� � � � � � � � � � � � form a monotone increasing subsequence, then it is easy to see that objects� � � � � � � � � can be
simultaneously placed into the constraint without violating the capacity constraint. Our new definition of
good borrows from the sorting spot-checker in [EKK+98]. Forthe purpose of the following definition, if
� 	 � then� � is assumed to be infinite, and if� � � , � � is assumed to be 0.

Definition 15 (Heavy element)An element� � in a list of length� is said to beheavyif for all

, � � �

� � � , � � � � � for at least 3/4 of the� � � � � � � � � � and � � 	 � � for at least	 �
 of the� � � � � � � � � � .

11

The usefulness of the definition comes from the fact that in [EKK+98] it is shown that the heavy elements in
a list form an increasing subsequence. Note that in a monotone list, all elements are heavy. Also note from
the definition of a heavy element that it is possible to test the heaviness of an arbitrary element in� � � � � �
time.

We say an object� is goodif for all � � � � : Let � � � � � � � � , and� � � � � � � � � � � � , then: (i) � � � � � � � �
� � � � � � , (ii) � � � � � � � � � � � � , and (iii) � � and the preceding element� � � � are both heavy with respect to
the list � � � � � � � � � . � can test if� is good in� � � � � � � time.

Note that if both the corresponding� � and� � � � are heavy for each good element in a constraint,�
� � �

and � � is less than the capacity of the constraint, then the sum of the good elements do not violate the
constraint.

Thus,� need only ensure that the set of good elements is big.

Theorem 16 There is a� � � � � � � � � � � -approximate lower boundPCPSfor fractional packing problems.

4.2.3 Other applications of constraint enforcement

The constraint enforcement structure can be applied to several optimization problems. We give a few exam-
ples to demonstrate the scope of the technique:

MAXIMUM FLOW . A graph
�

with capacity constraints on the edges and special nodes� � �
is given. If �

knows how to construct a flow of size� , it can quickly prove to� that a flow of size� � � � � � � exists by
the following method. To verify that a flow is legal,� must verify that the solution observes conservation
of flow at each node and capacity constraints at each edge.� writes a list� of path-flows that combine to
make up the flow of size� . � picks random path-flows and ensures that they are “good” by checking that
the flow is correctly packed into each edge that it follows—indoing so,� ensures the path-flow satisfies
conservation of flow at each node along the path from� to

�
. Since each path-flow is of length at most� (the

number of vertices), we have an� -sparse packing problem. The constraint enforcement structure ensures
that no more than�
 � � capacity is needed to accommodate all of the path flows simultaneously on each edge
� 	 � � � . For relatively small flows, we use the fact that any flow of integer magnitude� can be decomposed
into � unit size path-flows. The unweighted version of the constraint enforcement protocol can be used
to give a protocol by which the verifier can determine that there are enough good unit path flows in time
� � � � � � .
Corollary 17 There is an� � � � � � � -approximate lower bound PCPS for the maximum flow problem.

The above protocol uses a proof of size� � 	 � 	 � . For larger flows, it may be desirable to find a protocol that
uses a proof whose size is polynomial in� , even at the cost of requiring a slightly less efficient verifier. We
use the result of [EK72] which shows that any flow can be decomposed into at most� (where� is the
number of edges in the graph) path-flows. The weighted version of the constraint enforcement protocol can
be used to give a protocol with runtime� � � � � � � � � � � .
Corollary 18 There is an� � � � � � � � � � -approximate lower bound PCPS for the maximum flow problem in
which the proof size is� �

� � � � � .
The constraint enforcement structure can also be used to show a lower bound on the size of a multicommod-
ity flow, in which the runtime of� is � � � � � � � � � � � � � , where� is the number of commodities.

BIN PACKING. A set of � weighted objects, a bin size� , and an� � � are given. If it is possible to
pack the objects into� bins, � can convince� that � � � � bins are sufficient:� will use the constraint
enforcement structure to assure� that at least� � � � � fraction of the objects can be packed into� bins. The
bound follows by placing the other objects into their own bins. � ’s running time is� � � � � � � � � � � .

12

Corollary 19 There is an� � � � -additive approximate upper bound PCPS for the bin packing problem.

EXACT COVER BY 	 -SETS, MATCHING. Given set� with 	 � 	 � 	 � and a collection
�

of 3-element
subsets of� . Does

�
contain an exact cover for� , i.e., a subcollection� � �

such that every element of
� occurs in exactly one member of� ? If so, then� can prove to� that there exists a partial covering�
that covers at least� � � fraction of the elements of� such that no element in� is covered by more than
one set. The proof utilizes the unweighted constraint enforcement structure: For each set� � � �

there is
a variable� � that is set to 1 if� � � � and 0 otherwise. For each element in� there is a constraint which
ensures that it is contained in at most one of the sets in� : � � � is � if set � � contains element� . For each
� � � such that� � � � � � � � � � � � , � should appear in

� � � � � � � � � � � . If the verifier samples the� � � and
decides that most are good, then it can conclude that there isa collection�
 �

� such that	 �
 	 � � � � � � 	 � 	
and such that no� � � is covered more than once by�
 . � ’s running time is� � � � � � .

Note that this construction works for any

(the runtime of� has linear dependence in

). In particular,

since a matching is a cover by� -sets, the protocol can be used to show an approximate lower bound PCPS
on the size of a matching in a graph.

Corollary 20 There is an� � � � -approximate lower bound PCPS for the exact cover by

-sets problem.

SHOP SCHEDULING. In theopen shop schedulingproblem, a set of� products ,� work teams, and a
deadline� are given. Each product consists of� tasks, each designated to be processed by a different work
team� at some point during production. Task� of product� � takes

� � � time units to complete. A product
can be with at most one team, and a team can be working on at mostone product at any given time. If it
is possible to complete all� products before deadline� , � can convince a� � � � � � � � � � � -time � that at
least� � � � � � products can be completed before the deadline: The protocoluses the constraint enforcement
structure to ensure that products are with at most one team and that teams are working on at most one product
at any given time. Variants of the above problem, such as flow shop and job shop scheduling can be handled
in a similar manner.

SUBSET SUM. Given� � � � � � � � � and a bound� , � can convince an� � � � � � � � � � � -time � that there exists
a set� such that� � � � � � � � � � � � � � � . A similar result holds for partition.

4.3 Matching problems

In this section, we consider problems based on matching. We first given an alternate protocol for matching
which does not use constraint enforcement structure and then consider the problem of minimum maximal
matching.

MATCHING. The following protocol is used to show a lower bound on the size of a matching:� writes
a list � of edges in the matching.� convinces� that 	 �
 � 	 � � � � � � � �

. Then,� verifies that� � � �
fraction of edges involve vertices that are matched twice. To do this,� chooses a random edge� � � � � � 	 � � �
from � , then chooses a random vertex from� 	 � � � and sends it to� . � responds with the location� in � .
� accepts if� � � . Thus

Corollary 21 There is a� � � � � -approximate lower boundPCPSprotocol for matching.

M INIMUM MAXIMAL MATCHING . Given a graph
� � � � � � � , 	 � 	 � � , of degree at most

�
does

�
contain a maximal matching of size at most� ? This problem is NP-complete if

� � 	 . If there is such
a matching, then there is a protocol by which� can convince an� � � � � � time � that there is a maximal
matching of size at most� � � � � � : � writes down the edges of a matching into an array of size� . To
check that this matching is maximal,� randomly samples nodes and makes sure that a sampled node, if

13

unmatched, does not have any unmatched neighbors. If the number of unmatched nodes with unmatched
neighbors is more than� � , � is likely to fail. The bound follows since there exists a pairing of unmatched
nodes such that one needs to add at most one edge for every pair.

Corollary 22 There is an� � � � � � -additive approximate upper boundPCPSprotocol for minimum maximal
matching.

5 IPS for set problems

We consider simple set problems of set intersection and set union and show protocols by which� can
convince� of bounds on the result of these set operations. One application of these protocols is to proving
bounds on the sizes of unions and intersections of databasesqueries.

TWO SET INTERSECTION. Consider the simpler version of the set intersection problem: Given sets�
and � of cardinality� , and parameters� , is 	 �
 � 	 approximately� � ? Our interactive protocol will be
given as input the sets� and� of cardinality� , and parameters� � � , and will determine whether� � � � � � �
	 �
 � 	 � � � � � � � .

Without the aid of the prover, the task requires � � � � time (cf. [EKK+98]). The lower bound protocol
of [GS86] can be adapted to this setting to get multiplicative approximations of a lower bound, but we know
of no such way to get a multiplicative approximation for the upper bound using the methods of [For89],
since they require a fast method of generating a random element of �
 � . Our techniques can be viewed
as special cases of their techniques, where the identity function is used in place of a hash function. The
protocol for� is as follows:

� sends � to �
Repeat the following � times:
lower bound protocol
� picks

� � � � � � � �
� picks � � � �

and sends � to �
� returns

�
 � � � � � � and a pointer to
� in

�

If the pointer is valid and

� � �
,
� sets

 � � �

upper bound protocol
� picks � � � � and sends � to �
if possible � returns a pointer to

� in �
If the pointer is valid,

� sets � � � � �

� sets � � � � and � � � � �
Pass if � � � 	 � � � � � and � � � � �

For the lower bound, first observe that if the intersection islarge,� cannot but err on a lot of input elements.
Given � � �
 � , the probability that� agrees with� is � � � . If � �� �
 � , since� is required to return
a valid pointer, at best it agrees with� on all occasions. So, the probability that� agrees with� can be at
most �

�
	 �
 � 	

� � � � 	 �
 � 	
� � � � 	 �
 � 	

� �

14

� , therefore, estimates a lower bound on this probability andhence an upper bound on	 �
 � 	 � � � � � via � .
By Chernoff bounds, we can show that this estimate can be doneto within an additive factor of� by � with
probability of error at most� � � � � � � � � � � .

For the upper bound,� can return a valid pointer only with probability of at most	 �
 � 	 � � , which can
be upper bounded to within a factor of� by � via sampling. By Chernoff bounds, the probability of error is
at most� � � � � � � � � � � .
Theorem 23 Two set intersection has an� -additive approximate upper and lower bound IPS.

In general, if� and� are sets of different, but known sizes, using a variant of theabove protocol, we can
obtain upper and lower bounds on	 �
 � 	 � � 	 � 	 � 	 � 	 � . Also, note that using inclusion-exclusion, these
protocols can be used to estimate the size of two set union as well.

GENERAL SET INTERSECTION. This also gives interactive protocols for checking, given� � � � � � � � � if
	
 �� � � � � 	 is large: � picks � � � � � and then� � � � � and sends� to the prover.� returns

pointers

to location of� in each of� � ’s. � ensures that these pointers are valid. The analysis is similar to that of
Theorem 23.

6 Interactive spot-checking

We have already mentioned two examples—element distinctness and set intersection—in which ISCs are
provably faster than spot-checkers. A third example is fromproperty testing2 of the bipartiteness of graphs:
Given a graph

�
, represented by an adjacency matrix, can at most� � � edges be removed to make

�
bipartite?

A � � � � � � � � � time algorithm was given in [GGR98] which passes bipartite
�

and fails
�

which do not
satisfy the above requirement (behavior on other graphs is not specified). If the graph is bounded degree and
represented in the adjacency list representation, the above question is trivially true. However, the question
of whether at most� � edges can be removed to make

�
bipartite is considered by [GR97, GR98]. An

� � � � � time algorithm was given in [GR98] which passes bipartite
�

and fails
�

which do not satisfy the
requirement. It is known that � � � � time is required to solve this problem [GR97]. On the other hand, it
is easy to see that there is an ISC with runtime� � � � � � � � � for both representations by requiring� to write
down the color of each vertex.

Finally, consider the problem of spot-checking associativity: Given an� � � operation table for� , is
� an associative operation? We would like to pass if� is associative and fail if at least� fraction of the
entries need to be changed in order to turn� into an associative operation. The best known spot-checkerfor
associativity runs in� � � � � � � time [EKK+98]. One of the main bottlenecks in that test is that we need to look
at the operation table and ensure that all columns and all rows are mostly distinct. For each column/row,
this requires � � � � time without the aid of the prover. Using the results of Section 5, this can be done in
constant time and thus one can give an ISC for associativity whose runtime is� � � � .

References

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of approxi-
mation problems,J. of the ACM, 45(3):501–555, 1998.

[AS98] S. Arora and S. Safra. Probabilisticcheckable proofs: A new characterization of NP.J. of the ACM, 45(1):70–
122, 1998.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover interactive protocols,
Computational Complexity, pp. 3–40, 1991.

2Property testing problems as defined in [RS96, GGR98] can be cast as spot-checking problems.

15

[BFLS90] L. Babai, L. Fortnow, C. Lund, and M. Szegedy. Checking computations in polylogarithmic time.Proc.
31st Foundations of Computer Science, pp. 16–25, 1990.

[BGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs: How to remove
intractability assumptions.Proc. 20th Symposium on Theory of Computing, pp. 113–131, 1988.

[BK95] M. Blum and S. Kannan. Designing programs that check their work.J. of the ACM, 42(1):269–291, 1995.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems.J.
of Computing and System Sciences, 47(3):549–595, 1993.

[CMS99] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarithmic
communication. Manuscript, 1999.

[CLSY90] J. Y. Cai, R. Lipton, R. Sedgewick, and A. Yao. Towards uncheatable benchmarks.Proc. 8th Structure in
Complexity Theory, pp. 2–11, 1993

[CEG95] R. Canetti, G. Even, and O. Goldreich. Lower bounds for sampling algorithms for estimating the average.
IPL, 53(1):17–25, 1995.

[CGKS95] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.Proc. 36th Foundations
of Computer Science, pp. 41–50, 1995. To appear inJ. of the ACM.

[Con91] A. Condon. Space bounded probabilistic game automata. J. of the ACM38(2):472–494, 1991.

[DKLR95] P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal algorithm for Monte-Carlo estimation.Proc. 36th
Foundations of Computer Sciencepp. 142–149, 1995.

[DS92] C. Dwork and L. Stockmeyer. Finite state verifiers I: The power of interaction.J. of the ACM, 39(4):800–828,
1992.

[EK72] J. Edmonds and R. Karp. Theoretical improvements in algorithmic efficiency for network flow problems.J.
of the ACM, 19(2):248–264, 1972.

[EKK+98] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers.Proc. 30th Symposium
on Theory of Computing, pp. 259–268, 1998.

[FGL+96] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M.Szegedy. Interactive proofs and the hardness of
approximating cliques,J. of the ACM, 43(2):268–292, 1996.

[For89] L. Fortnow. The complexity of perfect zero-knowledge.Randomness and Computation, 5:327–343, 1989.

[FL93] L. Fortnow and C. Lund. Interactive proof systems andalternating time-space complexity.Theoretical Com-
puter Science, 113:55–73, 1993.

[FRS94] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive protocols.Theoretical
Computer Science, 134(2):545–557, 1994.

[FS88] L. Fortnow and M. Sipser. Interactive proof systems with a log space verifier. Manuscript, 1988.

[FGM+89] M. Furer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On completeness and soundness in inter-
active proof systems.Advances in Computing Research: A Research Annual, Randomess and Computation,
5:429–442, 1989.

[GLR+91] P. Gemmell, R. Lipton. R. Rubinfeld,M. Sudan, and A. Wigderson. Self-testing/correcting for polynomials
and for approximate functions.Proc. 23rd Symposium on Theory of Computing, pp. 32–42, 1991.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approxima-
tion. J. of the ACM, 45(4):653–750, 1998.

[GMW] O. Goldreich, S. Micali, and A. Wigderson. Proofs thatyield nothing but their validity or All languages in
NP have zero-knowledge proof systems.J. of the ACM, 38(1):691–729, 1991.

[GR97] O. Goldreich and D. Ron. Property testing in bounded degree graphs.Proc. 28th Symposium on Theory of
Computing, pp. 406–415, 1997.

16

[GR98] O. Goldreich and D. Ron. A sublinear bipartite testerfor bounded degree graphs.Proc. 29th Symposium on
Theory of Computing, pp. 289–298, 1998.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems.SIAM
J. on Computing, 18(1):186–208, 1989.

[GS86] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems.Proc. 18th
Symposium on Theory of Computing, pp. 59–68, 1986.

[KST97] S. Khanna, M. Sudan, and L. Trevisan. Constraint satisfaction: The approximability of minimization
problems.Proc. Symposium on Structure in Complexity Theory, pp. 282–296, 1997.

[Kil] J. Kilian. Zero-knowledge with logspace verifiers.Proc. 29th Foundations of Computer Science, pp. 25–35,
1988.

[Kil92] J. Kilian. A note on efficient zero-knowledge proofsand arguments.Proc. 24th Symposium on Theory of
Computing, pp. 723–732, 1992.

[Kil94] J. Kilian. Improved efficient arguments (preliminary version). Proc. Advances in Cryptology—CRYPTO,
Springer LNCS 963:311–324, 1995.

[KO97] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private infor-
mation retrieval.Proc. 38th Foundations of Computer Science, pp. 364–373, 1997.

[Lip91] R. Lipton. New directions in testing.Proc. DIMACS Workshop on Distr. Comp. and Cryptography, pp.
191–202, 1991.

[LFKN90] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems,J. of the
ACM, 39(4):859–868, 1992.

[Mer90] R. C.Merkle. A certified digital signature.Proc. Advances in Cryptology—CRYPTO, Springer LNCS
435:218–238, 1989.

[Mic94] S. Micali. CS proofs.Proc. 35th Foundations of Computer Science, pp. 436–453, 1994.

[PST95] S. Plotkin, D. Shmoys, and E. Tardos. Fast approximation algorithms for fractional packing and covering
problems.Proc. 32nd Foundations of Computer Science, pp. 495–504, 1991.

[PS] A. Polishchuk and D. Spielman. Nearly-linear size holographic proofs.Proc. 26th Symposium on Theory of
Computing, pp. 194–203, 1994.

[RS96] R. Rubinfeld and M. Sudan. Robust characterizationsof polynomials and their applications to program testing.
SIAM J. on Computing, 25(2):252–271, 1996.

[Sch78] T. Schaefer. The complexity of satisfiability problems. Proc. 10th Symposium on Theory of Computing,
1978.

[Sha90] A. Shamir. IP=PSPACE.J. of the ACM, 39(4):869–877, 1992.

[Spi96] D. A. Spielman. Linear-time encodable and decodable error-correcting codes.IEEE Trans. on Information
Theory, 42(6):1723–1732, 1996.

[Sze99] M. Szegedy. Many-valued logics and holographic proofs. Proc. 26th ICALP, pp. 676–686, 1999.

17

