Property Testing in Computational Geometry*
(Extended Abstract)

Artur Czuma], Christian Sohlér, and Martin Zieglet

! Department of Computer and Information Science, New Jdrsgitute of Technology,
Newark, NJ 07102-1982, USAzumaj @i s. njit. edu
2 Heinz Nixdorf Institute and Department of Mathematics & Garter Science, University of
Paderborn, D-33095 Paderborn, Germargohl er, zi egl er @uni - pader bor n. de

Abstract. We consider the notion @froperty testings applied to computational
geometry. We aim at developing efficient algorithms whictedmine whether a
given (geometrical) object has a predetermined prop@rty is “far” from any
object having the property. We show that many basic geomptaperties have
very efficient testing algorithms, whose running time isfigantly smaller than
the object description size.

1 Introduction

Property testings a rapidly emerging new field in computer science with mdmgot
retical as well as practical applications. It is concerndth the computational task of
determining whether a given object has a predeterminedeptyppr is “far” from any
object having the property. It is a relaxation of the stadabefinition of a decision task,
because we allow arbitrary behavior when the object doetiane the property, and
yet it is close to an object having the property. A notion afprty testing was first ex-
plicitly formulated in [15] and then extended and furtheveleped in many follow-up
works (see, e.g., [1,2,4,7-12,16]). Property testingearisaturally in the context of
program verification, learning theory, and, in a more thecaésetting, in probabilisti-
cally checkable proofs. For example, in the context of pragchecking, one may first
choose to test whether the program’s output satisfies ngataperties before checking
that it is as desired. This approach is a very common praictiseftware development,
where it is (typically) infeasible to require to formallystethat a program is correct, but
by verifying whether the output satisfies certain propsrtiee can gain a reasonable
confidence about the quality of the program’s output.

In this work we consider property testing as appliedyemmetric objects in Eu-
clidean spaces/Ne investigate property testing for some basic and moseseptative
problems/properties in computational geometry. The maai gf this research is to de-
velop algorithms which perform only a very small (sublingsolylogarithmic, or even
a constant) number of operations in order to check with aoregtse confidence the
required geometric property.

We study the following family of tasksGiven oracle access to an unknown geo-
metric object, determine whether the object has a certaidgimed property or is “far”
from any object having this properiistance between objects is measured in terms of

* Research supported in part by DFG Grant Me872/7-1.

arelative edit distancg.e., an objeci (e.g., a set of points ilR?) from a clas€’ (e.g.,

a class of all point sets ilR?) is callede-far from satisfying a property) (over() if no
objectY from C which differs fromX in no more than am fraction of places (e.gY
can be constructed frold by adding and removing no more than|X | points) satis-
fies Q. The notion of ‘bracle accesscorresponds to the representation of the objects
in C, and it is more problem dependent. And thus, for example giéametric object
is defined as a collection of points in Euclidean space, thenreasonable to require
that the oracle allows the algorithm to ask only on the cowtdi-position of each sin-
gle input point. If however, a geometric object is, say, aygoh, then the oracle shall
typically allow the algorithm to query for the position ofadapoint as well as for each
single neighbor of each point in the polygon. In this papeshal always use the most
natural notions of “oracle” for each problem at hand.

An e-testerfor a property(is a (typically randomized) algorithm which always
accepts any object satisfyirfggand with probability at Iea% rejects any object being
e-far from satisfying@ . There are two types of possible complexity measures we
focus on: thequery complexityand therunning timecomplexity of ane-tester. The
query complexity of a tester is measured only by the numbejuefies to the oracle,
while the running time complexity counts also the time neklg the algorithm to
perform other tasks (e.g., to compute a convex hull of sonia get).

To exemplify the notion of property testing, let us consitierstandard geometrical
property(of a point setP in Euclidean spac®? of being inconvex positiof In this
case, we aim at designing an algorithm which for a given erackess td® has to
decide whetheP is in convex position o is “e-far” from being in convex position.
Here, we say @&et P is e-far from being in convex positiod < e < 1, if for every
subsetX C P of size at most - | P| the setP \ X is not in convex position. Moreover,
we assume that the oracle allows to query for the siz@ ahd for the position of each
ith pointin P.

Another type of property we shall consider in this paperad ti being arkEuclidean
minimum spanning tre@EMST). That is, for a given s of points in the plane we have
to verify whether a given grap& with the vertex seP is an EMST forP or it is e-far
from being an EMST forP. Here we assume the algorithm can query the siz®,of
the position of each singlgh pointz in P as well as query thgth neighbor ofz in
G (with the special symbol indicating non-existence of sucteghbor). We say here
that an Euclidean grapfi with vertex setP is e-far from being an EMST fof if the
minimum spanning tree dP differs fromG on at least - | P| edges.

1.1 Description of New Results

In this paper we provide efficierttesters for some basic problems in computational
geometry. We investigate problems which we found most sspretive for our study
and which play an importantrole in the field. The followingperty testers are studied:

! One could consider alsotavo-sided errormodel or consider a confidence paraméteather
than fixing an error bouné. These models are not discussed in this paper.

2 A set of pointsP in IR? is in convex position if every point aP is extremethat is, it is a
vertex of CH(P), the convex hull ofP.

||Prob|em | Query complexity | Lower bound | Running time ||

O(n?3(1/e) /3 log(n/e)) d=2
convex position O(nd/e)/ @+ | Q(nd/e)t/(d+1) O* /) log(n/e)) d=3
@] (n polylog(1/e)+ d>4
() (Ld/2D)/(+Ld72]) p0|y|og(n))
disjointness of geometric objects O(+y/n/e) 2(y/n/e) T(O(y/n/e))
disjointness of polytopes O ((d/e) - log(d/e)) 2(1/e€) O(1/¢) deterministic(!)
Delaunay triangulation
Hamming distance O(n) 2(n) O(n)
Distance defined in Theorem %.2 O(1/e€) 2(1/e€) O(1/e)
EMST O(y/n/e log*(1/€)) - O(y/n< log*(1/e) log n)

Table 1. e-testers obtained in the pap&t(m) denote the best known running time of the algo-
rithm deciding given property and we consider lower bounitls vespect to the query complexity.

convex position: property that a set of points is incenvex position

disjointness of geometric objects:property that an arrangement of objects is intersection-
free,

disjointness ofV-polytopes: property that two polytopes are intersection-free,

EMST: property that a given graph is a Euclidemmimum spanning treef a given
point set in the plane, and

Delaunay triangulation: property that a triangulation has the Delaunay property.

Table 1 summarizes the bounds of attiester developed in the paper in details. As
this table shows, all our algorithms are tight or almostttiglyarding their query com-
plexity. We also prove a general lower bound which showsftiratnany problems no
deterministice-tester exists with the query complexityn) already fore = 1.

There are two main approaches used in our testers. The fesstubiich is quite gen-
eral and is used in all our algorithms, is to sample at randsnfficiently large subset
of input basic objects (e.g., input points) and then analyeesample to obtain informa-
tion about the whole input. The key issue in this method igtwidle a good description
of the input’s property using a small input’s sample. Thipraach is used in a simple
way in oure-testers for disjointness of geometric objects and Debadrangulation,
where such a description is easy to show. In etesters for convex position and dis-
jointness of polytopes this approach is used as well, batitdre complicated to prove
the desired property of the whole input out of the analyssnoéll sample. The second
approach (combined with the first one) is used in our testeEfST: after sampling
a portion of the input (which are the vertices of the graphpatdom, we enlarge the
sample in a systematic way by exploring the paths of the frengttoO(1/¢) starting
in the vertices chosen. Only then we can show that the sarhplgea can be used to
certificate whether the input graph is the EMST of the inpuh{so

We mention also an important feature of all our algorithmkiclv is that all our
testers supply proofs of violation of the property for régetobjects (because of space
limitations we do not elaborate on this issue here).

Throughout the paper we always assume thahe dimension of the Euclidean
space under consideration, is a constant. Moreover, wergsghe size of the input
object to be much bigger thah To simplify the exposition, we suppose also that all
points/arrangements are in general position.

1.2 Motivation and Applications

What does this type of approximation meadresting a property is a natural relaxation
of deciding that property, and it suggests a certain notfoapproximation: the tester
accepts an object which either has the property or whichlis#& to some other object
having the property. Under this notion, in applications rehabjects close to having the
property are almost as good as ones having the propertytea telsich is significantly
faster than the corresponding decision procedure is a \adnable alternative to the
latter. We refer the reader to [7, 10, 15], where many morailéet applications of this
notion of approximation have been discussed (see, eslyefldl, Section 1.2.1]).

In the context of computational geometry a related resehashbeen presented
in [3] and [14]. For example, Mehlhorn et al. [14] studipgram checkerfor some
basic geometric tasks. Their approach is to design simpleicient algorithms which
checks whether an output of a geometric task is correct.dbhésvn in [14] that some
basic geometric tasks can be designed so that program chezzde be obtained in a
fairly simple (and efficient) way. This approach has beea sigcessfully implemented
as a part of the EDA system. The main difference between our approach and that in
[14] is that we (and, generally, property testing algoritmio not aim at deciding the
property at hand (in this case, whether the task output iect)r but instead we provide
a certain notion ohpproximation— we can argue that we do not accept the property
(or the algorithm’s output) only if it is far from being sdted. This relaxation enables
us to obtain algorithms with running timsggnificantlybetter than those in [14].

Output sensitive algorithmsAn important, novel feature of our property testing al-
gorithms is that they can be used to deswriput sensitivealgorithms for decision
problems. Consider for example, the problem of decidingtivbrea setP of n points
on the plane is in convex position, and if it is not, to repastidset ofP which is non-
convex. Below we show how ourtester can be used to obtain an “output sensitive”
(randomized) algorithm.

We set firste = % and apply our tester to verify whethé¥is e-far from being in
convex position. If it is so, then we report a subsePoivhich violates the property of
being convex. Otherwise, we decreade ¢/2 and use our tester to verify whethBr
is e-far from being in convex position. We repeat this procedurtl we either reject
set P, in which case we report also a subsetfofvhich is non-convex, or we reach
e < 1/n. In the latter case, we run a deterministic algorithm whisksaon positions
of all the points (and hence, whose query complexity is lipaad then tests whether
P is an extreme point set or not (in the latter case we alsonetisubset of” which
is non-convex). Observe that ’ is in convex position, the query complexity of our

algorithm (cf. Lemma 3.1) i© (z,[‘;§2 2/, 2k/3) + O(n) = O(n), which is
clearly optimal. On the other hand Afis g-far from being in convex position, then with

a constant probability our algorithm will rejeét for e > % o. Therefore, the expected
query complexity of our algorithm i€ (Z,Eli?(l/gﬂ n?/3 -2k/3) = O(n?/3/1'/3),
where! is the number of interior (i.e., non-extreme) points.

We can combine our algorithm with Chan’s algorithm [5] to aibtan algorithm
that is output-sensitive ih (the number of extreme points) and relative edit distance.

Property testing in computational geometryypical applications of property testing
are program checking and input filtering. In many appligadi@t is good and often
necessary to ensure the correctness of results that arexdéonple, computed by a
possibly unreliable library (e.g., a library that does ne¢ @xact precision arithmetic).

Although property testing does not give a 100% guaranteéhiicorrectness, it
does provide a good trade-off between running time andysafeturther advantage
is the possibility to trade running time against algoritbhrsimplicity. Since our testers
have sublinear running time we do not have to use optimatigos when we compute
the structures needed while still achieving a sublineaitime. In this setting especially
the query complexity of an algorithm is important.

A particular application of property testing in computageometry in the context
of robustness itazy error correction It is well known that incrementally computing a
complex structure (e.g., a Delaunay triangulation) witkdiyprecision arithmetic might
lead to serious structural defects of the output. Furtheemearly small errors in the
structure frequently lead to large structural defects efthal structure. To ensure that
the structure is always close to the correct one, we run agptppester after a couple
of updates. If the tester rejects, we use some lazy erroection method (e.g., edge
flips with exact arithmetic) to fix the structure and continiethe end of the algorithm
we fix the final structure. We believe this might become an irtgra application of
property testing in the context of computational geometry.

2 Disjointness of Generic Geometric Objects

We begin our investigations with a simple tester for the fEobof testing whether a
collection of objects is disjoint. The main reason to preskis algorithm in details
is to show the reader the flavor of many testers which run in fivases: (i) sample
at random a sufficiently large subset of input objects and fliganalyze the sample
objects to obtain information about the whole input. Thipraach works fairly easily
for the problem studied in this section; other problemsstigated in following sections
require more complicated analysis.

The problem of deciding whether an arrangement of objedtgessection-free be-
longs to the most fundamental problems in computationairgery. A typical example
is to verify whether a set of line segments in the plane or a&byper-rectangles or
polytopes inR¢ is intersection-free. We assume the oracle allows to quarshe in-
put objects and we suppose that there is an algorithtinat solves the exact decision
problem of testing whether a set of objects is disjoint. Reitwe consider the problem
only for generic objects We shall use the following further definitions.

% That is, we never use any information about the geometricstre of the objects and our
solution can be applied to any collection of objects (in gogce, not necessarily metric one).

Definition 2.1. LetQ be a set of any objects iR¢. We say0 is (pairwise) disjoint if
no two objects irD intersect;Q is e-far from being pairwise disjoinif there is no set
T C Owith |T| < €|Q] suchthatO \ T is disjoint.

Then the following algorithm is a simptletester:

DISJOINTNESS(SETQ consisting ofn objects):
Choose a sef C O of size8 y/n/e uniformly at random
Check whethef is disjoint using algorithmd
if S'is disjointthen accept
elsereject

Theorem 2.1. AlgorithmDisJOINTNESKQ) is ane-tester with theptimalquery com-
plexity©(y/n/¢). If the running time of the algorithm for k objects isT'(k), then the

running time ofDISJOINTNESKQ) is O(T'(8 \/n/¢)).

Proof. We prove only that DsJO0INTNESKQ) is ane-tester and show the required upper
bound for the query complexity. (The proof that evetester has query complexity of
£2(y/n/e) is omitted.) Clearly, ifO is intersection-free, the algorithm accefitsSo let
us suppose thdb is e-far from being intersection-free. In that case we can aépiys
times the following procedure t@: pick a pair of intersecting objects and remove it
from Q. We can prove that with probability at Iea%at least one of the pairs is chosen
to S (because the objects from each pair intersect each otliace e size of5 is

8 \/rm the upper bound for the query complexity follows.

3 Convex Position

In this section we consider one of the most classical prasedf a setP of points:
being inconvex positionWith respect to vertex representations of convex polydpje
reflects the concept of “minimality” in that no point may ben@ved without affecting
the convex hull ofP. Many algorithms (such as the intersection test present8dation
4) therefore require that their input be in convex position.

Definition 3.1. A setP of n points inIR¢ is in convex positioriff each point inP is
an extreme point of the convex hH(P). We sayP is e-far from being in convex
positionif no setQ of sizeen exists s.tP \ @ is in convex position.

While it is possible to test whether a single point is extremé(n) time [6, Sec-
tion 3], no such algorithm is known to compuati extreme points of a given sét The
fastest algorithm known due to Chan [5] uses data strucfaremswering many linear
programming queries simultaneously and requires time

T(n,h) = n-log®Y h + (nh) CEES 1og®M | 1)

whereh denotes the output size (number of extreme points). It & @®jectured that
the problem of testing whether a set of poifités in convex position is asymptotically
as hard as the problem of finding all extreme point®of

In this section we introduce twetesters for being in convex position. We begin
with the algorithm that has asymptotically optimal querynexity.

CONVEX-A(P):
Choose a sef C P of size36 - “*1/nd /e uniformly at random.
Compute allh extreme points of.
if h < m then reject
elseaccept

Lemma 3.1. Algorithm CONVEX-A is ane-tester for the property of being in convex
position. Its query complexity i©(“*/n?/€) and it can be implemented to run in

time O(T(**/n/e, “*/n?/e)). Furthermore, its query complexity is asymptotically
optimal in the sense that evegytester for convex position has the query complexity

N(*R/nd/e).
Proof. It is easy to see that Algorithm @VEX-A accepts sets in convex position.

Suppose now thae is e-far from being in convex position. Let = =*.. We can prove
that there exist setd’;, U; C P, j =1,...,J that satisfy the following conditions:

each seWV; is of sized + 1 and all setd¥; are pairwise disjoint,
for eachu € U; the setiW; U {u} is not in convex position,
eachl; is pairwise disjoint with any/;, and

eachU; is of size greater than or equalito ((11—;; —€).

Fix these set¥V; andU;, 1 < j < J. We can prove that with probability at Iea%there
is somej such that for some € U; setS contains¥; U {u}. SinceW; U {u} is notin
convex position, it will be detected thétas well asP are not in convex position. Hence,
Algorithm CONVEX-A is ane-tester for the property of being in convex position.
The sample complexity follows easily from the bound on thee 9f S and the
running time follows from the definition at the beginning bfg¢ section. Because of
space limitations we omit here the proof that evetgster for convex position has the

query complexity2(**/n?/e).

Now, we describe another algorithm for testing convex parsitvhich ford > 4
achieves better running times if the fastest known impldatems are used.

CONVEX-B(P):
Choose a sef C P of size4/e uniformly at random.
for eachp € S simultaneously
check whethep is extreme foICH(P)
if p is not extreme foCH(P) then exit andreject
accept

Lemma 3.2. Algorithm CONVEX-B is ane-tester for the property of being in convex
position. It can be implemented to run in i@ (n, 1/¢)).

The following theorem summarizes the running time compyexd algorithms pre-
sented in this section. It follows by plugging Chan’s boutjt6 Lemmas 3.1-3.2.

Theorem 3.1. There is ane-tester for convex position with the running time of order
dimensiond = 2 dimensiond = 3 dimensionsl > 4

[d/2]
n?/3 (1/€)'/3 log(n/e)|n>* (1/€)*/* log(n/e)|(n/e) W21+ 1og®™D (n) + n log® M) (1/e)

4 Disjointness of V-Polytopes

In this section we consider the property of whether two ppesCH(R) andCH(B),
represented by their vertices (so called V-Polytopes)dajeint. Denoten = |P| and
letP =RUB.

Definition 4.1. Two polytope<CH(R), CH(B) with finite points set®®, B C IR in
convex position are-far from being disjointif there is no set” C RU B, |V| <
e-|RU B| suchthatCH(R \ V) andCH(B \ V) are disjoint.

We propose the following simpletester for disjointness of V-polytopes.

DISJOINTNESS(R, B):
Choose a sef C P of size@((d/e) In(d/e)) uniformly at random
Test whetheCH(R N S) andCH(B N S) are disjoint
if CH(RN S)andCH (B N S) are disjointthen accept
elsereject

Theorem 4.1. AlgorithmDISJOINTNESSS e-tester for disjointness of V-polytopes with
the query complexit?((d/e) In(d/e)).

Proof. Since the query complexity follows immediately from the appound for the
size of S, we focus only on showing thatiIBJOINTNESSIS a propek-tester. It is easy
to see that ifR and B are disjoint then DsJOINTNESSalways accepts the input. So let
us suppose that the inputédsfar from being disjoint. For any hyperplahewve denote
by h— and k™ two halfspaces induced by. Two convex polytopes are disjoint iff
they can be separated by some hyperplane. Therefore, olisgoaensure that with
probability at Ieas% the sample se§ contains, for every hyperplarie a “witness”
thath does not separateH (R) from CH(B). Itis easy to see that such a witness exists
if we could ensure that for every hyperplatasetS contains two pointg, b such that
either(a, b) or (b,a) belong to one of the following four setéR N h~) x (RN A1),
(RNh™)x (BNh™),(RNht) x (BN hT),and(BNh™) x (BN k™). With our
choice for the size of, we can show that for at least one of these four sets, the both
sets in the Cartesian product are of cardinality at leag®. Let such two sets be called
representativéor h. To complete the proof of the theorem we only must show ghat
intersects each representative setfeeryhyperplane: in IR¢. And this follows from
the result on the randomized constructioreafets (withe = 2¢) [13]. Indeed, from
the result due to Haussler and Welzl [13] it follows that theSis with probability at
leastZ an (/2)-net of each of? and B for the range spac@R?,). Therefore, by the
definition ofz-nets (see, e.qg., [13]¥, intersects every representative of each hyperplane
hin R%.

One can also easily improve the query complexity of alganifdiSIOINTNESSIn
the special case wheh= 2 and the input polygons are stored in a sorted array.

Theorem 4.2. For all pairs of polygons ifR? represented by a sorted array there exists
a deterministic e-tester for disjointness of V-polytopes with the query dewity and the
running time ofO(1/e).

5 Euclidean Minimum Spanning Tree

In this section we consider the problem to determine if amiwvgut graphG is a
Euclidean Minimum Spanning Tree (EMST). The verticeg:oére labeled with their
position in the plane. We have oracle access to édichertexv and thejth neighbor of
v (with a special symbol indicating non-existance of suchighi#or). Since the degree
of each vertex of the EMST is a constant (it is at most 5), ia thodel we may think
of the graph represented by the adjacency list representati

The distance measure for the EMST problem is defined as fsilow

Definition 5.1. Given a point sefP of n points in general position in the plane and
a graphG whose vertices are labeled with the pointsAnG is said to bee-far from
being the Euclidean minimum spanning tBeif G has edit distance at leastn from

T'. The edit distance betwe&n and T is the minimum number of edge deletions and
insertions to construct’ fromG.

In any testing algorithm it is very important to develop nwath to reject inputs that
are far away from the desired property. It is known that thegkest edge in a cycle of
the graph does not belong to the minimum spanning tree. Weheaafore reject,
if we find a cycle in the complete Euclidean graph whose lohgeége belongs to the
input graph (we call this a 'bad’ cycle). We start with a usédémma about the EMST
(which holds for any MST).

Lemma 5.1. Let P be a point set in the plane and let= (p;, p2) be an edge of the
EMST. Further, lef?’ be a subset aP and letp;, p» € P'. Thene belongs to the EMST
of P'.

The lemma above implies that we can rejgdf we find a bad cycle in the complete
Euclidean graph o& subsebf P. Until the end of this paragraph we assume tAas
e-far from the EMST. Under the assumptions that@l)s connected, (2) its straight-
line embedding is crossing-free and (3) there are no crgssiith edges of the correct
EMST, we can show that there are many bad cycles in the coenpletlidean graph of
P. In fact, there are many bad cycles evefifs only close to properties (1)-(3). Also
note that these properties are necessary conditior(s fobe an EMST. Therefore, our
tester for the EMST runs in two phases. It first checks (withapprty tester) whether
G satisfies properties (1)-(3). If the input graph passesthests but ig-far from the
EMST, it must have many “bad” cycles. We then run a tester fihds such a cycle
w.h.p. and we are done.

We begin with testing whether an input graph is connectedtararaight-line em-
bedding is crossing-free. Additionally, we reject graplighwnany vertices having de-
gree larger thah (we omit this issue in the extended abstract).

Definition 5.2. Let P be a set of points in general position in the plane and Et=
(V, E) be a graph whose vertices are labeled with the point®inV| = n. LetS
be the set of subsefs’ of E s.t.G' = (V,E \ E') is crossing-free. We sa¥ is e-
far from being astraight-line, crossing-free, connected embeddinging cs{|E’'| +
connected components@} > en.

For connectivity in graphs represented by the adjacentyhese is a test devel-
oped in [11] which runs ir(’)(%) time. We combine this algorithm with the tester
DisJOINTNESKQ) developed in Section 2 to obtain the following result.

Lemma 5.2. The property of being a straight-line, crossing-free, cected embedding
can be tested id)(/Z log n) time.

We continue our studies with property (3). We need some éumbtation:

Definition 5.3. Let P be a point set in the plane an@d be a graph whose vertices
are labeled with the points i?. TheEMST-completionC(G) of G is the straight-line
embedding of7 together with all segments of the EMSTRf

We can viewC'(G) either as a set of segments or as a labeled graph. In the fofow
we will use these both interpretations. From now on we cakdge inC(G) red, if it
does not belong to the input graph abldie otherwise. Sinces and the EMST are
crossing-free, there can be only red blue intersections(id). The following lemma
shows that in order to detect a red-blue intersection, iuficient to find the blue
segment and one endpoint of the red segment.

Lemma 5.3. Let AB be a blue and’D be a red segment and let them intersect. Then
AB is not in the EMST of any set containing eit{et, B, C'} or {A, B, D}.

One can show that i€ (G) is e-far from (red-blue) intersection-free, then it is suf-
ficient to sample a set c@(\/?) points to rejecti. Therefore, our algorithm samples
a random sef of (9(\/?) points from P and adds the neighbors in the input graph
of each point taS. Then it computes the subgragt of G induced byS. This can
be easily done irO(|S]) time, if for each point inS its degree inG is constant. On
the other hand, if we detect a vertex with degree larger thame can immediately re-
ject the input. After that we compute the EMST®fnd thenC(G") in O(|S|log|S|)
time. Using a sweep-line algorithm we can check whe@@F') is intersection-free in
O(]S|log|S]) time. We reject the input, if an intersection has been folrepeating
this procedure a constant number of times we achieve thaad%‘probability.

If the input graph was not rejected so far, our goal is to findrshycles inC(G)
with at most two red edges. We call a cytlad if it has length at mosf}—2 and if it
contains at mos2 red edges. (The number of short cycles with less than twodgds
might be small and cycles with more thamed edges are more difficult to detect.)

Lemma 5.4. Let C(G) be the EMST-completion @, let G be not ;55-far from a
crossing-free, connected graph and &(G) have at mostgs red-blue intersections.

Then there are at leas; bad cycles irC(G).

We find bad cycles by sampling a set of random directed edgethan we walk in
both directions along the boundary of the face incident thealge (we can think a¥
as a planar map).

Each of the at mos{7 edges that can be removed to obtain an intersection-free
embedding might destroy two bad cycles (we cannot walk atbadpoundary to close
the face). Thereforesy — 52 > 2 bad cycles remain.

We distinguish between three types of bad cycles. Typeles,0 < i < 2, contain
i red edges. Type 0 and type 1 cycles are easy to detect. Itesifficample one of the
boundary edges and our walk procedure will find the comphate {recall that the red
edges are defined implicitly).

We classify the type 2 cycles according to the length of tkaiger blue chain
into setsC;. EachC; contains all cycles whose longer chain has lerigtti < I <
2i+1 EachC; is partitioned into subclassé ;. C; ; contains all cycles whose shorter
chain has lengtlk, 2/ < k < 27+, For eachC; ; we sample two different set$;
and S», one to detect the longer chain and one for the shorter oreS;Shas size
71/Z and setS, has size;/Z. The probability that a type 2 cycle in cla€y ; is
detected i@(%) = O(Z). Therefore, the probability that any bad cycle is
found is (1 — O(X))9m = O(1). Again amplification yields the desired bound of
%. The query complexity of the algorithm '(9(\/?105(%)) and its running time is

O(y/Zlog?(1)logn).

Theorem 5.1. There is arandomizegdtester for the EMST wit(j)(\/@ogz(%)) query
complexity and running timé(,/Z log(%)?log n).

6 Delaunay Triangulation

We summarize our results for the Delaunay triangulatioh@following theorems.

Theorem 6.1. There is no sublinear property-tester for Delaunay triangulations us-
ing Hamming distance like measure (edge deletion and iiosgrt

Theorem 6.2. If we define a triangulation to befar from being Delaunay if there are
at leaste n edges that can be flipped to improve the minimal angle loctign there
exists are-tester with the running time @(1/e).

7 Deterministic Lower Bounds

We present a simple technique to prove lower bounds for ehiéstic property test
algorithms and apply it to the problems described in theiptes/sections. Our model
for the deterministic algorithms is as follows. The inpugigen as an array of input
items. The array has sizeand we may access any item by its index in constant time.
Let A be a deterministic tester for propei@ Let I be an instance of size with
property@. By definition A must accepl. LetT'(n) be the running time afi. Clearly,
A can access at mo%t(n) items ofI. We color the accessed items red and all other
items blue. Sinced is deterministic, changing the blue items does not affeetatit-
come of the algorithm. Thus, if we can construct an instaheg ise-far from P by
changing only blue items regardless how the red items argechloy the algorithm then
we could obtain a lower bound for the problem at hand. We calydpis approach to
obtain lower bounds which are summarized in the followirepitem.

Theorem 7.1. There is no deterministic proper%t—tester witho(n) query complexity

for the following problems (using the distance measure ddfin this paper and the
relative edit distance for sorting): Sorting, Disjointreesf Objects, Convex Position,
Disjointness of Polytopes, and EMST.

8

Acknowledgments

The second author would like to thank Stefan Funke for thpfhktliscussion about
lazy error correction.

References

10.

11.

12.

13.

14.

15.

16.

N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efict testing of large graphs. In
Proc. 40th IEEE FOCSp. 656-666, 1999.

. N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regulmguages are testable with

a constant number of queries.mPnoc. 40th IEEE FOCSp. 645-655, 1999.

. H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Nah8r,Schirra, and C. UhriAlgo-

rithmica, 8(5/6):365-389, 1992.

. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/corriact with applications to numerical

problems.Journal of Computer and System Sciendd4{3):549-595, 1993.

. T. M. Chan. Output-sensitive results on convex hullsiegre points, and related problems.

Discrete & Computational Geometr$6:369-387, 1996.

. M. Dyer and N. Megiddo. Linear programming in low dimemsioln J. E. Goodman and

J. O'Rourke, edsHandbook of Discrete and Computational Geometty 38, pp. 699-710,
CRC Press, Boca Raton, FL, 1997.

. F. Erguin, S. Kannan, S. Ravi Kumar, R. Rubinfeld, and Mwanathan. Spot-checkers. In

Proc. 30th ACM STOop. 259-268, 1998.

. F. Ergun, S. Ravi Kumar, and R. Rubinfeld. Approximateaiting of polynomials and func-

tional equations. IfProc. 37th IEEE FOCp. 592-601, 1996.

. O. Goldreich, S. Goldwasser, E. Lehman, and D. Ron. Tgstionotonicity. InProc. 39th

IEEE FOCS pp. 426-435, 1998.

O. Goldreich, S. Goldwasser, and D. Ron. Property @stinl its connection to learning and
approximationJournal of the ACM45(4):653-750, 1998.

O. Goldreich and D. Ron. Property testing in bounded ekegraphs. IfProc. 29th ACM
STOC pp. 406-415, 1997.

O. Goldreich and D. Ron. A sublinear bipartiteness tdstebounded degree graphHSom-
binatorica 19(3):335-373, 1999.

D. Haussler and E. Welzl. Epsilon-nets and simplex rajgeiesDiscrete & Computational
Geometry2:127-151, 1987.

K. Mehlhorn, S. Naher, M. Seel, R. Seidel, T. Schilz, &iB8a, and C. Uhrig. Checking ge-
ometric programs or verification of geometric structu@smputational Geometry: Theory
and Applications12:85-103, 1999.

R. Rubinfeld and M. Sudan. Robust characterization dfronials with applications to
program testingSIAM Journal on Computing5(2):252-271, 1996.

R. Rubinfeld. Robust functional equations and theirliappons to program testing. In
Proc. 35th IEEE FOCSp. 288-299, 1994.

