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Abstract were motivated mainly by its connection to program check-

ing. This notion arises naturally in the context of program

Property testing is a relaxation of classical decision Vverification [7, 25], learning theory, and, in a more theo-
problems which aims at distinguishing between functions retical setting, in probabilistically checkable proofs [6]. In
having a predetermined property and functions befag [17], the study of property testing faombinatorial objects
from any function having the property. In this paper we was initiated. In this and other more recent papers (see, the
present a novel framework for analyzing property testing al- excellent surveys in [13, 16, 24] and the references therein),
gorithms with one-sided error. Our framework is based on a various algorithms have been proposed for testing graph and
connection of property testing and a new class of problemshypergraph properties, for testing geometric properties, for
which we callabstract combinatorial program&Ve show  testing properties of metrics and matrices, for testing prop-
that if the problem of testing a property can be reduced to an erties of regular languages and branching problems, for test-
abstract combinatorial programfismall dimension, thenthe  ing monotonicity, properties of Boolean functions, etc.
property has an efficient tester. We apply our frameworktoa A property testing algorithmpfoperty testey is a ran-
variety of classical combinatorial problems. Among others, domized algorithm that distinguishes (with low error prob-
we present efficient property testing algorithmsdeomet- ability) between the functions that have a predetermined

ric clusteringproblems, for theeversal distanceroblem, property and functions that are “far” from any function hav-
for graph and hypergraph coloripgoblems. We also prove ing the property. A good property tester is one that looks
that, informally, anyhereditary graph propertyan be effi- only at a small fraction of the function values. There are
ciently tested if and only if it can be reduced to an abstract two error models for property testing algorithms. In this pa-
combinatorial program of small size. per we consider only thene-sided errormodel, in which

Our framework allows us to analyze all our testers in the tester musacceptevery function that has the property
a unified way and the obtained complexity bounds either and mustreject with probability at Ieast% every function
match or improve the previously known bounds. We believethat is “far” from having the property. To specify the notion
that our framework will help to better understand the struc- of being “far” from having a property, one has to define a
ture of efficiently testable properties. distance measure between functions. For a given parameter
€, afunction ise-far from having a property if it has distance
bigger thane from any function having the property.

Since property testing is a relaxation of the traditional
decision problem, it is often possible to design algorithms
that are much faster than their “classical” counterparts.

In this paper, we consideProperty Testingoroblems,  |n particular, there exist many property testing algorithms
that is, problems of determining whether a given function whose complexity is sublinear, or even independent of the
has a predetermined property or is “far” from any function input size (see, e.g., [13, 16, 24]). This, in turn, resulted
having the property. A notion of property testing was first in development o$ublineartime approximation algorithms
explicitly formulated by Rubinfeld and Sudan [25], who (in the "traditional” sense) for many classical combinato-
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1. Introduction




Although many efficient testing algorithms are known, s such that iff is far from having the property, thefiwill
most of them have been analyzed using ad-hoc techniquede rejected with probability at Iea§t Our framework is
designed specially for the problem at hand. There is still in- designed to help in the analysis needed in this step.
sufficient methodology and a very few tools that could help  In order to define our framework, we first introduce
in the analysis of efficient testers for new problems. Gol- briefly a notion of anabstract combinatorial program
dreichet. al. [17] (see also Theorem 4.3 in [13]) presented (ACP). An ACP consists of ground setwhich is typically
a fairly general framework (for the two-sided-error model; a set of basic objects underlying the property testing prob-
see [18] for a characterization in a one-sided-error model) lem, a set obaseswhere each basis is a configuration of a
of studying testing of certain graph partitioning problems. subset of the ground set, andialation functionthat veri-
They were able to apply this framework to some graph prob- fies the input constraints and specifies whether an element
lems, including graph coloring, clique, cut, and bisection. violates a given basis or not. We call a bdsiasibleif it is
Another general approach, which uses the Szédieegu- not violated by any object from the ground set. We investi-
larity lemma, has been proposed recently for studying graphgate a generic problem tdsting feasibility of an ACRhat
problems and problems on matrices [3, 14, 21]. Evenif this is, for a given ACP, we want to distinguish the case when
method is very powerful (and in particular, it allowed to the ACP has a feasible basis from the case when any basis is
prove that all first order graph properties without a quanti- violated by at least aafraction of objects from the ground
fier alternation of typ&'3 have property testers whose com- set. We present a sampling theorem (Theorem 1) that gives
plexity is independent of the size of the input graph), there a bound for the size of the random sample taken in the sam-
are still some limitations of this approach. Furthermore, pling property tester when testing feasibility of ACPs. We
even though the bounds obtained by using the regularityshow that if a certain monotonicity property is satisfied by
lemma lead to the complexity bounds that are often inde- an ACP, then the sample sizedepends only on the maxi-
pendent from the input size, their dependence on the ap-mum size of the basis in the ACP. Thus, the sample size is
proximation parameteris often enormous (see, the “tower” independent of the size of the ground set.

bounds in [3] and superpolynomial lower bounds in [1]). The main idea behind introducing abstract combinato-
rial programs is that for many properties ACPs capture the
1.1. A Framework for Property Testing Problems structure essential for testing the property. Therefore, in

our framework we reduce property testing of a given prop-

The main contribution of this paper is introduction of a €rty @ to the problem of testing feasibility of related ACPs.
novel framework to analyze property testing algorithms. We We show that property) (closed under taking restrictions)
focus on functiongropertiesthat areclosed under taking ~ can be tested efficiently if theexistsareductionto abstract
restrictions That is, we consider properties of the follow- combinatorial programs that satisfies two properties:
ing form: If a functionf : D — R has a given property,
then so has the functiofi x (function f restricted to.X),
for any X C D. This class of properties captures a type
of monotonicity which is essential for almost all (if not all
non-trivial) one-sided erroiproperty testers and it includes
many natural properties. For properties closed under tak-
ing restrictions, we consider property testing algorithms that
choose a sample of the dom&nC D uniformly at random
and then verify iff| s has the property:

e the reduction iglistance preservinghat is, any func-
tion that is far away fronQ) is mapped to an ACP in
which each basis is violated by many objects from the
ground set, and

¢ the reduction ideasibility preservingthat is, if the
function restricted to a sample s&thas propertyQ,
then the subset of the ground set corresponding to
has a feasible basis in the ACP.

To demonstrate the applicability of our framework, we

SAMPLING PROPERTYTESTER show its generality by applying it to a variety of problems.
sample a sef of s objects fromD uniformly at random We illustrate our framework on problems from geometric
if fs has the propertthen acceptelsereject optimization, computational biology, and on graphs and hy-

pergraphs. An important feature of the framework is that it
Property testing algorithms of this kind are simple to im- provides a powerful tool that allows to concentrate on the
plement. The main difficulty with their use is the estimation combinatorial structure of the problem at hand rather than
of the sample size: what is the right sample sizgvhich on probabilistic arguments about sampling. For example,
is thequery complexityf the tester) so that the algorithm our analysis of clustering has a similar flavor as the previous
is a correct property tester? It is easy to see that for prop-analysis of this problem in [2]. What distinguish our anal-
erties closed under taking restrictionsfihas the required  ysis, however, is that we do not have to deal with the prob-
property then the algorithm always accepts Thus, the abilistic analysis of the sampling required by the tester that
challenging part of the analysis is to estimate the value of actually hides the combinatorial structure of the problem.



Problem Source Query complexity
k-diameter [2] Q((1/8)@=V/Y. Q(yn)forg =0
clustering 121 O(k?de~t (2/8)%%); onlyin Ly metric
in R? this paper | O(ke~* (14 2/8)%); anyL,, metric
this paper | O(kde~* (2/8)1~1); anyL,, metric
sorting by reversals| this paper | O(k/e€)
k-coloring [11] (O(K? 22 /e?))*
of £-uniform [5] (O(K*~1/e?))*
hypergraphs this paper | (O(k £/€2))*

Table 1. Summary of selected specific results.

Instead, we can deal with pure combinatorial arguments and

hence, simplify the proof to obtain a stronger bound for the
complexity of the tester. Our tester for hypergraphs color-
ing is also of similar flavor (compare to [4, 5, 11], where
more complicated arguments are used and weaker bound
are obtained).

In this paper, we first introduce abstract combinatorial
programs and show that they are testable if certain require
ments are satisfied. Then, we present a simple version o
our main theorem and we illustrate it on the examples of
the diameter clustering problem and the sorting by rever-
sals problem. Then, we present our full framework and dis-
cuss its applicability on the example of hypergraph coloring
problem, in which the new framework leads to compact and
elegant proofs. In the last section, we show that for any
testable hereditary graph property there exists a reductio
to ACPs that proves that the property is testable.

We can apply our framework to some other combinato-
rial problems. However, due to space limitations we only
consider the problems listed in Table 1.

2. Property Testing and Abstract Combinato-
rial Programs

Throughout the paper, we denoteBya finite set called

domainand byR a set calledange By F we denote the
set of functions fronD to R and byF* be the set of “re-
strictions” of functions inF, thatis,7* = {f : X - R :
X C D}. AsetQ C F*is called aproperty of F (or
a property defined on the elements’®f). A property Q
of F is calledclosed under taking restriction f| 5 € Q
holds for everyf € Q and anyS C D.

We assume there is given a (problem dependiistince
measurs; : F x F — [0, 1] that measures the distance be-
tween any two functions itF (it is not required fors to be
a metric). Typically, our distance measure will be teé
ative distance between the functiofsee, e.g., [6, Defini-
tion 4.1]), that is, for any two functiong, g € F, we define
s(f,9) = Pryep|f(z) # g(x)], where the probability is
taken according to the uniform probability distribution over

n

D. Given a real number, 0 < e < 1, we say a function
f € Fise-far from (having a property® if ¢(f, g) > e for
any functiong € QNJF. An e-tester for propertyQ is an al-
gorithm that (i) accepts any functiohe Q and (ii) rejects
with probability greater than or equal goany function that
is e-far from Q.

We assume the access to any functfoa F is given by
anoraclethat can access values 8f Then the number of
the queries to the values of the input functipre F is the
guery complexityf the property tester.

2.1. Abstract Combinatorial Programs

In this section we describe the notion athstract com-
binatorial programs An abstract combinatorial program
(ACP) is defined by an abstract set of objects, which we call
gground set a set ofbases which consists of some “ba-
sic” configurations of subsets of the ground set, and a set of
constraints described byéolation function

Theground sedepends on the problem under consider-

Tation (and in all our applications is independent of the input

instance). For example, this may be a vertex set of a graph
or a set of halfspaces describing a linear program.

A set ofbasesconsists of some “basic” configurations of
subsets of the ground set. And so, for example, if the ground
set is a vertex set of a graph, then a basis may be defined as
a subset of vertices, or as a subset of verti&etogether
with an associated&-vertex-coloring ofX. If the ground
set is a set of halfspaces R defining a linear program,
then we could take as the set of bases the intersection of
any d halfspaces (which is known to define a pointRd
in a non-degenerated case). Because of technical reasons,
we shall always assume that every basis is defined as a pair
(X,¢), whereX is a subset of the ground set ahds an
index describing a configuration of (for example, in the
graph-coloring example above, it is a coloring of vertices in
X). Unlike the ground set, the set of bases usually depends
on the input instance.

A violation functionis used to determine which bases are
feasible Typically, the violation function depends on the
input instance. To define a violation function, for example,
in the linear programming case, we can say that a given
halfspaceH violates a given basis if and only if the basis
determines a point which is not contained if{. For the
graph-coloring example above one can define the violation
function such that a vertexviolates a basis (colored vertex
setX) if and only if in the input graph thé&-coloring of X
cannot be extended to a propecoloring of X U {v}.

Formally, we define an abstract combinatorial program
in the following way.

Definition 2.1 Let C be a finite set (called ground sét
An abstract combinatorial progra@ACP) overC is a pair
(B, w), where



e BC{(K,l): K CC,( e N}isasetofbasesand
e w : B xC — {true, false} is a function defining
whether a basi$é € 5 is violatedby an element € C.

A basish is feasibleif it is not violated by any: € C, that s,
if (b, c) = false for everyc € C.

An abstract combinatorial program feasibleif it has a
feasible basis.

3. Simple Reductions to ACPs

Our main motivation to introduce abstract combinatorial
programs was to study their relation to property testing al-
gorithms. In this section, and later in Section 4, we show
how the framework described in Section 2.1 can be applied
to obtain various efficient property testers, where in many
cases the structure of the problems on the first glace does

We study abstract combinatorial programs in the context of N0t seem to fit into the framework of abstract combinato-

deciding whether a given ACP feasibleor not. In our
framework we shall use also the following definitions.

Definition 2.2 (ACP Dimension) An abstract combina-
torial program A = (B, w) overC hasdimension(d, ) if
forall b = (K, ¢) € Bitholds that| K| < § and? < p.

Definition 2.3 (Self-feasible bases) Let (B,w) be an
abstract combinatorial program. We say a basis=
(K,¢) € Bis coveredby a subseC* C Cif K C C*.
We say that a basi is feasiblefor a subsetC* C C, if
noc € C* violatesb. We say a subsét* C C contains a
self-feasible basis there is a basi® that is covered by’*
and that is feasible fo€*.

Definition 2.4 ((Semi-)monotone ACPs) A feasible ab-
stract combinatorial progran{3, ) over C is monotone

if any subsetS C C contains a self-feasible basis. Let
be any integer. A feasible abstract combinatorial program
(B, w) overC is s-semi-monotond any subset C C with

|S| > s contains a self-feasible basis.

2.2. Testing Abstract Combinatorial Programs

In this section we consider the problem of testing ACPs.

An abstract combinatorial programddar from feasiblef
any basis is violated by more than |C| objects from the
ground set. An e-testerfor ACPs is an algorithm that (i)

accepts every feasible ACP and (i) rejects with probability

at least2 any ACP that ig-far from feasible. The following
key theorem characterizes testable ACPs.

Theorem 1 (Testing ACPs)Let C be a finite ground set
and let ACP ;5 ,)(C) be the set of abstract combinatorial
programs ovel of dimension(d, o). Lets = O(e~! - (4 -
In(d/€) + In p)). Then, the algorithm that takes as its input
an ACPA € ACPs ,)(C), samples a se&f of s objects from

C uniformly at random, and accepfsif S contains a self-

feasible basis (and rejects otherwise), satisfies the following

properties:

1. If Aise-far from feasible, ther is rejected with prob-
ability at leastZ.

2. If A is feasible and it is either monotone ordssemi-
monotone, ther is accepted. O

rial programs. We present a rather general reduction-based
technique that can be used to prove the correctness of var-
ious property testing algorithms by reductions to abstract
combinatorial programs.

Our approach of using the framework of abstract com-
binatorial programs to study property testers of functions
f € F is to reduce testing of to testing certain ACP. In
the simplest case this reduction is done in a rather easy way,
because there is a one to one correspondence between the
domain of f and the ground set of the ACP. A more com-
plicated reduction requires some manipulations with the
ground set, bases, and the violation function. Therefore,
for simplicity of presentation, we first describe the simpler
model and only later, in Section 4, discuss its extensions to
the full framework.

The following theorem describes a simple version of our
framework.

Theorem 2 Let F be a set of functions from a finite sbt
to a setR and letQ be a property offF that is closed un-
der taking restrictions. Led < ¢ < 1. LetACP s ,) (D)
be the set of abstract combinatorial programs ofeof di-
mension(§, o). Lets = O(e~! - (4 - In(6/€) + Inp))). If
for everyf € F there exists an abstract combinatorial pro-
gramA; € ACP; ,) (D) such that:

(Distance Preserving)if f is e-far from Q thenA ¢ is e-far
from feasible and

(Feasibility Preserving) for everyS C D, if S contains no
self-feasible basis thefis ¢ Q,

then the following algorithm is ae-tester forQ with the
query complexity 0®(e =1 - (6 - In(d/¢) + In g)))

TESTER(f)
Sample a sef of s elements irD uniformly at random
if fis € Qthenacceptf elsereject f

Furthermore, the same algorithm is artester forQ if the
Feasibility Preserving property is replaced by the following
s-semi Feasibility Preservingproperty:

for everyS C D with |S| > s, if S contains no self-
feasible basis theifis ¢ Q.

Proof : We first observe that the query complexity of
TESTERf) follows directly from the fact that ESTER f) queries
for exactlys values off.



In order to show that ESTER(f) is ane-tester forQ, we have
to prove that any function having proper) is accepted by the
tester and any function that ésfar from having propertyQ is re-
jected with probability at Ieasg. SinceQ is closed under taking
restrictions, iff € Q then for anyX C D (and in particular, for
X = 8) fix € Q. This immediately implies that everf ¢ Q
is accepted by ESTERf). Therefore, it remains to prove that if
f is e-far from Q, then the algorithm rejects the input with proba-
bility greater than or equal t§. We prove this by relating ACP-
TESTERAy) with TESTER(f) and by applying Theorem 1.

By the Distance Preserving property fifis e-far from Q then
Ay is e-far from feasible. Furthermore, by Theorem 1Aif is
e-far from feasible then ACP-ASTERA ¢) rejectsA ;¢ with prob-
ability at least. Ay is rejected by ACP-ESTER(A) only if the
chosen sample sét contains no self-feasible basis. But now, ac-
cordingly, either the Feasibility Preserving or thiieemi Feasibil-
ity Preserving property implies thatd& contains no self-feasible
basis thenf s ¢ Q. Therefore, we can conclude thatfifis e-far
from Q then f|s ¢ Q with probability at Ieast%, and hencef is
rejected by ESTER(f) with probability at Ieast%. This implies
that TESTER(f) is a propef-tester forQ. O

Let us mention briefly that the ACP formulation is usu-

With this definition, our goal is to design an efficient
property tester that for giveh, ¢ ands > 0 (i) always ac-
cepts any point set that isclusterable and (i) rejects with
probability at Ieas% any input that ige, 3)-far from being
k-clusterable.

For any non-empty setX of points in R? with
dist(xz,y) < 1 for everyz,y € X, thekernelkern(X)
of X is defined as the intersection of unit balls with centers
at the points inX.

Let P be a point set iR¢, k a positive integer, and
a positive real. LetXy, ..., X} be any disjoint subsets of
P. We say a poinp € P is g-coveredby {X1,..., X}
if for somei and some; € X; we havep € kern(X;) and
dist(p,q) < .

To use the framework from Theorem 2 we define domain
D to be the sef1,... ,n}, rangeR to be the seR?, set of
functionsF to map the points to their locations Rf (i.e.,
from D to R), and propertyQ to correspond to all func-
tions inF* that represent point sets that are clusterable into
at mostk-clusters such that any pair of points in each cluster
is at distance at modt Now, in order to use our framework

ally not equivalent to the problem under consideration: It from Theorem 2 we have to describe for any inputBeif
is pOSSible that the ACP has a self-feasible basis for a Sub'n points inR<¢ an ACPA p overD that satisfies the precon-

setS of its ground set buff|s does not have propert§.
For example, this is the case for the ACP formulations of

ditions of the theorem.
The bases i\ p are formed byt sets of points (ground

the diameter clustering problem and the hypergraph color-get elements), one set for each cluster. (In the remainder of

ing problem presented later in this paper.
3.1. Testing Diameter Clustering

In this section, we demonstrate how to apply our frame-
work of testing ACPs to test the classical problendiaim-
eter clusteringin R¢. For a given point sekX in R?, the
diameterof X is the maximum distance between any two
points in X. The (decision version of thejiameter clus-
tering problem (see, e.g., [2] and [15, Problem MS9]) is to
decide if an input point s® in R can be partitioned inté
sets (callectlusterg such that the diameter of each cluster
is bounded from above by a given real numiberin this
paper, we mainly focus on the problems underthemet-

this section we assume that a basis is given as a partition of
a set of points int& sets rather than a set of points with an
encoding of such a partition.) The idea of introducing the
sets associated with the clusters is to represent each cluster
by a small set of pointX for which the kernel will approxi-
mate the kernel in the real clustering. We want to define the
bases such that if the input point g&fs k-clusterable, then
there is a basi$ X, ... , Xx} such that each point € P

is 8-covered by{ X1, ... , X;}. On the other hand, we de-
fine the bases such that if akyclustering of P has diam-

eter greater tham + 3, then for any{ X1, ... , X} there

is a pointp € P that is notg-covered by{X;,..., Xy}.
These two properties will then be used to distinguish be-
tween point sets that aveclusterable and those for which

ric (Euclidean), but we show also that our arguments can beany k-clustering has diameter greater thias 3.

carried over to an arbitrarg, metric,p > 1.

We consider aicriteria relaxation of the diameterk-
clustering problem introduced by Alagt. al. [2]. We use
the following notion (notice that Aloet. al. [2] proved that
without using the bicriteria relaxation, that is, whén= 0,
there is noc-tester having the query complexity of\/n)
even in the most basic caselof 1):

Definition 3.1 [2] Let P be a point set iR andk be a pos-
itive integer. We say is (¢, 3)-far from beingk-clusterable
if for any partition of P into setsCy, C1, . .. , C}, satisfying
dist(z,y) <1+ pforall1 <i<kandz,y € C;, itholds
thatCy > € |P|.

Bases for diameter clustering: We recursively define the
set of bases as follows:

e {(,...,0}is abasis (wher¢f, ... , 0} is the set con-
sisting ofk empty sets)

o ifb={X,,...,X;}Iisabasisthed X;,... , X;_1,
X;U{p}, Xit1,...,Xr}isalsoabasisip € Pisa
point that is not3-covered by and (i) eitherX; = 0
or (i) p € kern(X;).

A simple volume argument gives us the following result:



Lemma 3.1 The ACP defining diameter clustering has di-
mension(k - (1 + (2/8))%, k*1+2/8)"), O
Violation function for diameter clustering: A basis b is
violatedby a point p if p is not 3-covered by b.

Now, we show that the Distance Preserving andshe
semi Feasibility Preserving properties of Theorem 2 are sat-
isfied withs = O(k - e 1 - (1 + (2/8))* - In(ke (1 +
(2/8))1).

Distance Preserving Property: The proof is by contra-
diction. Let us assume® is (e, ()-far from being k-
clusterable and suppose there is a basis (X7, ... , Xi)
that is violated by less thatw points. We delete all points
in P that violateb and let P* be the remaining point set.
Since all the points iP* are-covered byb, for each point

p € P* there is anX; with p € kern(X;) and for which
there existsy, € X; with dist(p, ¢,) < 3. We assign each
such a poinp to the cluster corresponding ;. Observe
that all points in the cluster are containedcirn(X;). Fur-
thermore, for any point € kern(X;) the distance between
p andr is not larger than the distance frgmto ¢, plus the
distance fromy, to . Hence, we can conclude that the dis-
tance between two points in the cluster (both of which must
be contained irkern(X;)) is at mostl + 8. This implies
that P* can be partitioned intb clusters of diameter at most
1 + B each, which is a contradiction.

s-semi Feasibility Preserving Property: Let S be a set

of points with|S| > s that contains no self-feasible basis.
Then, every basié that is covered by is violated by cer-
tainp € S. If p violatesb, thenp is either outside the kernel
of every cluster irb or p is in some kernel but the distance
to each other point defining the corresponding cluster is big-
ger thang. In the latter case, we can obtain a new basis
covered byS by addingp to b. Sinced’ is also violated
by some point inS and the size of each basis is bounded
we can conclude inductively that any basiis violated by
some pointy € S that is outside the kernel of every clus-

ter. But by our discussion about the bases, this implies that[

S is not k-clusterable. This yields the-semi Feasibility
Preserving property.

Now, by our discussion above, we can apply Theorem 2
to obtain a property tester for the diameter clustering prob-
lem under theL, metric having the query complexity of
O(k-e~1-(1+(2/8))%). Actually, one can slightly modify

probability at Ieast% rejects any input which ige, 3)-far
from beingk-clusterable, and has the query complexity of
O(k-d-et-(2/8)%1). O
3.2. Testing Reversal Distance

The study of genome comparisons and rearrangements is
one of the major topics in modern molecular biology. Math-
ematical analysis of genome rearrangements was initiated
by Sankoff, who introduced thsorting by reversals prob-
lem(see, e.g., [22, Chapter 10]). In sorting by reversals one
asks to compute theeversal distancef a given permuta-
tion, which is the minimum number oéversalsneeded to
be performed to transform the permutation into the identity
permutation. Because of its applications in computational
biology, sorting by reversals has been widely studied in the
last years (see, e.g., [22, 23)).

In this paper, we introduce the notion of property testing
in the context of sorting by reversals. We design a property
testing algorithm that verifies if a given permutation has re-
versal distance at mogt or is e-far from having reversal
distance at most. We apply our framework to show that it
has the query complexity @ (k/¢).

LetS,, denote the set of all permutations{df,... ,n}.

A reversalo(i, j) of an interval[i,j], 1 < i < j <
n, is the permutation that for each permutation =

(m1,...,7) € Sy, 0{i,j) has the effect of reversing the
order of (m;, mi41,... ,m;) and transformingr into w -
Q<Z,j> = (7Tl, e 77T1‘,1,7Tj77rj,17 e ,71'2‘,7'l'j+17 e 77Tn)

(see, e.g., [22, Chapter 10]). Given a pair of permutations
m,0 € S,, thereversal distancédbetweenr ando is the
minimum number of reversals needed to transfarinto o
(that is, the minimum numbeék¥ such that there exists a se-
guence of reversals,, 02,... ,0r With 7w - 01 - 02 -+ 0 =
o). The reversal distance betweeand the identity permu-
tationid = (1,2,... ,n) is called thereversal distancef
m. Thesorting by reversalproblem is for a given permuta-
tion 7 € S,, to find the reversal distance of

To apply our framework in the context of sorting by re-
versals, we have to consider also restrictions of permuta-
ions. We sayr = (m,...,m) € S, is arestriction
of a permutationr’ = (nf,...,7,) € S, if for eachj,
1 <4 < n, eitherr; = 7} or m; = undefined. Now, to apply
our framework, we define domaiP and rangéR to be both
equal to{1,... ,n}, and we defineF = S,, and F* to be
the set of restrictions of permutationsSp. We extend the
reversal distance to functions ji* in the following natural

our arguments to obtain even a stronger result that holds forwvay: A restriction of a permutation € F* hasreversal

arbitrary L,, metrics.

Theorem 3 There is a property tester for the diameter clus-
tering problem under theé,, metric,p > 1, that for any
8,0 < @ < 1/d, always accepts a feasible input, with

distanceless than or equal t& if there existk reversals
01,...,0k SUCh thatifr - g1+ 0 = 0 = (01,... ,04),
then for anyl < i < n, eithero; = i or o; = undefined.

We define the:-reversal distance propert@ to be the
set of all permutationg € F* that have reversal distance



smaller than or equal th. One can easily verify thad is
closed under taking restrictions.

set elements and let = p;--- o, be ak-reversal with
(- 0)~(m) m; for eachm; € S. We show that in

In order to design a property testing algorithm we use this caseS has a self-feasible basis. Let us consider a max-
the relative distance in our context. We say a permutationimal set of maximal intervals not split by. We observe
T € S, ise-far from having reversal distance smaller than or that this set has cardinality at mast + 1 since a single

equal tok if for any sequence of reversalw, 0o, . .. , 0k,
permutationt - o1 - 05 - - - o, disagrees with the identity per-
mutation on more thaa- n places.

Theground set’ in ACPs used in our framework is iden-
tical with the domain{1, ... ,n} and, for simplicity of no-
tation, we identify each € C with ;.

Let us notice that we can encode an intefygf] by ;
andr; (using the fact thatr—!(m;) = i and7!(r;)
4). If we apply a reversap to 7 thenw; andr; inducethe
interval[(m-0) = (m;), (m-071)(7;)]. We denote the interval
induced by two elements; andr; by [r;, 7;].

We say a reversal(r, s) splitsan interval[r;, ;] if ei-
theri < r < jorifi < s < j. We generalize this notion
to k-reversals: A sequence éfreversals, ... , or Splits
an interval[m;, 7;] if there exists/, 0 < ¢ < k, such that
0cr1 SPlits[(m - o1 -+ 00) " (mi), (7 - 01+~ 00) " (my)]. If
01, - .. , 0, does not splifm;, 7;] then we say;, ..., ok iS
safefor [m;, 7;]. Notice thatifps, . . ., g is safe fof{m;, 7],
then each of the reversals, . . . , o, either entirely contains
[7;, ;] or it does not contain any, € [m;,m;]. There-
fore, in this case, after applying, ... , ox the positions of
,mj—1 are determined by the positionof andr;.

Titls - -

Bases for thek-reversal property: Our goal is to define
a basis as a set @k + 1 intervals induced by pairs of the

reversal can cause splits at no more than 2 places. We
conclude that these intervals form a bdsidt remains to
prove that this basis is not violated (tkereversal associ-
ated with the basis does not have to be identical wjth

By our construction of the intervals (i.e., by the maximal-
ity of the intervals) eaclr; € S is contained in a safe in-
terval. Therefore, its position after applying the reversal is
uniquely determined by the positions of the endpoints of the
interval. LetS; C S denote the set of endpoints of intervals
of the basig. Sinceb is a basis there is kxreversalp, with

(- op) H(m) = m = (7 0) (m) for eachm; € S;.
Since the endpoints are mapped to the identical positions
when g, andp are applied tar, we can conclude that each
other point inS is also mapped to the identical position.
Hence, nor; € S violatesb and the Feasibility Preserving
property is satisfied. We conclude:

Theorem 4 There exists an-tester for thek-reversal dis-
tance property with query complexi€¥(k /¢). O

4. Full Framework of Testing Algorithms via
Testing ACPs

In Section 3, we described a framework for testing prob-
lems via testing abstract combinatorial programs. The

ground set elements of the basis. For each such a set Weramework presented in that section has a few unnecessary
then consider only reversals that are safe for these intervalsassumptions that we want to address now.

Letr = (m1,...,m) € S. AsetZ of 2k + 1 intervals

The first restriction of the framework described in Sec-

is a valid basis for the reversal distance problem if there is tion 3 is that the ground sétin ACPs is required to be iden-

a sequencey, . .. , ox Of k reversals such that

o (m-01--- Qk)_l(m) =mand(r-o;--- Qk)_l(ﬂ'j) =
w; for each intervalr;, 7;] € Z, and

e nointerval[r;, 7;] € Zis splitbyes, ..., ok.

If the set of intervals is a basis then we associate with it
any such &:-reversalg, = o - -- o (ties broken arbitrar-
ily). It is easy to verify that the ACPs constructed this way
have dimensiondk + 2, (4k + 2)4*+2),

Violation function for the k-reversal property: Letbbe
a basis and let, = g1, ... o, be thek-reversal associated
with b. We sayb is violated by 7; € C if (1-0p) ™ (1) # ;.

Distance and Feasibility Preserving Property: With the

tical with the domairD of the functions. In order to avoid
this restriction, we introduce the notion ofterpretation
An interpretationof C in D is a function! that maps each
subset of the ground sétto a subset of the domaiP of
the functions we consider. For example, when we consider
graph properties we identify the ground set for the ACPs
with the set of vertices of the graph and the interpretation
gives us for each set of vertices the submatrix correspond-
ing to the induced subgraph. Since interpretations affect the
query complexity of the tester we need another notion: We
say that an interpretatiohof C in D is g-boundedf for ev-
ery X C Citholds|I(X)| < ¢g(|X|) whereg is a function
g:N—N.

We adapt the definition of the property being closed un-
der taking restrictions to interpretations in the following
way: A propertyQ is closed under taking restrictionsf

above definition the Distance Preserving property is triv- [, if Vf € Q, VS C D it holds thatf;s) € Q.

ially satisfied. The difficult part is to prove the Feasibil-
ity Preserving property. Lef C C be a set of ground

The main idea behind introducing these notions is to al-
low a more general analysis of algorithne3TER f) from



Section 3 via analyzing ACPs. As in the proof of Theo-
rem 2, we want to test an input functighe F via testing a
related ACPA ;. SinceAy is allowed to be an ACP over an
arbitrary ground sef, we use the interpretatiahof C in D

to link the domains of andA ; in the reduction. The notion

x(u). A hypergraph having a propércoloring is called
k-colorable The k-coloring problem for hypergraphs is to
decide whether a given hypergraphkisolorable. We as-
sume that &-uniform hypergraph withn vertices is rep-
resented by it€-dimensional adjacency matrix. We say a

of g-bounded functions is used to describe the size of thehypergraph is-far from having a propek-coloring if one

random sample in the tester. That is, if the interpretafion
is g-bounded and if in our analysis we requikg to sample
a setS of s elements irC, then we shall require to sample
setI(.S) from the domairD of f, where|I(S)| < g(s).

In Theorem 2 we used the Distance Preserving propertyinput hypergraph{ =

that requires that if a functiorf is e-far from property@
then the ACP is-far from feasible. In general, however,
one can parameterize this property and require(th#)-
Distance Preservingproperty: if f is e-far from property
Q then the ACP is \-far from feasible.

has to change more than’ entries in the adjacency matrix
to obtain a hypergraph with a propercoloring.

To apply our framework to hypergraph coloring, we
identify the ground sef with the set of verticed” of the
(V, E). SinceH is represented by its
adjacency matrix, we define the interpretatidio map each
set of vertices to the submatrix induced by these vertices.
That is, for anyiV C V, we havel (W) = W x --- x W.
Clearly, the interpretation i&7‘-bounded.

Let (S, x) be a pair withS C V andy a properk-

Summiarizing, in the framework defined above, it is easy coloring of vertices inS. We say a vertex is i-colorable
to see that Theorem 2 can be generalized to the followingwith respect to(.S, x) if for everye € E with v € e, either

theorem, which describes the main property of our frame-

work in its full generality.

Theorem 5 LetF be the set of functions from a finite gt
to a setR, and letQ be a property ofF. Let0 < ¢ < 1. Let
C be a finite ground set and I&CP; ,)(C) be the set of
abstract combinatorial programs of dimensi¢f o) over
C. LetI : 2¢ — 2P be ag-bounded interpretation af in
D such thatQ is closed under taking restrictions &éf Let
0<A<landlets=0OM\"1-(6-In(d/\) +Inp)).

If for every f € F there exists an abstract combinatorial
programA; € ACP; ,(C) such that:

((e, M)-Distance Preserving)if f is e-far from Q then any
basis inA  is A-far from feasible and

(Feasibility Preserving) for everyS C C, if S contains no
self-feasible basis thef);(s) ¢ Q,

then algorithmTESTERf) is an e-tester for Q with the

query complexity of(s) = g(©@(A~L-(5-In(5/\)+1n g))).
Furthermore, the same algorithm is artester forQ if

the Feasibility Preserving property is replaced by the fol-

lowing s-semi Feasibility Preservingproperty: for every

S C C with |S| > s, if S contains no self-feasible basis

thenf|1(s) ¢ Q. U

5. Testing Hypergraph Coloring

In this section we demonstrate our framework from The-
orem 5 to design a very efficieptoperty tester for testing
hypergraph coloring A hypergraphis a pairH = (V, F)
with a finite vertex se¥” and the edge sét C 2. A hyper-
graphH is ¢-uniformif |e| = ¢ for all e € E. A k-coloring
of a hypergrapli isan assignment: V — {1,...  k}. A
k-coloring isproperif no edge inE' is monochromaticthat
is, if for every edge: € F there arev,u € e with x(v) #

(i) there exists a vertex € (S N e) with x(u) # 7 or (ii)
there exists a vertex € e \ (S U {v}).

In order to define bases we define a potential function
for partial colorings. The potential function is a measure
for the weighted number of “constraints” on the colors of
the uncolored vertices in the hypergraph. For any integers
i, j, let us define

Ai (S, x) = (1)

z’)} .

{ng DX =0-j &
Jec E (X Ce & Yyearx Xx(u) =
Then, thepotentialof (S, x) is defined as

i=1

-1
n’ |A:; (S, )| -

Jj=1

Next, we introduce the notion abnflictandheavyver-
tices. A vertexv € V \ S is aconflict vertexwith re-
spect to(S, x) if for every i, 1 < ¢ < k, v is not i-
colorable. A vertexw € V \ S is heavywith respect to
(S,x) if (i) there is ani, 1 < ¢ < k, such thatv is
i-colorable and (ii) for evenyi, 1 < i < k, if v is i-
colorable andy’ is the extension of to S U {v} by col-
oringv with colori thenA® (v, 4, (S, x)) > L
ADy(v,,(S,x)) = D ((SU{v}, X)) — Dr((S.x)).

The bases for the ACPs correspond to colorings of sub-
sets of vertices.

Bases fork-coloring:

e {0,0} is a basis (wher8 is the encoding of the color-
ing of the empty set of vertices) and

e if b = (K, ) is a basisp is aheavyvertex forb and
x* is an encoding of the previous coloringof K ex-
tended by a proper coloring ef then(K U {v}, x*)
is a basis.



Violation function for k-coloring: A basisb = (K, x) is
violated by a vertex v € V if either v is a heavy vertex for
(K, x) orv is a conflict vertex for (K, x).

Let us consider the subsets of vertices that belong-tp(.S, x)
ortoA,;{SU{v},x'), for certainr andj. From (1), itis easy to
see thatifX € A, ;{S, x), thenX € A, ;{S U {v},x’) too. On

Itis easy to prove that the ACPs defined above have di-the other hand, i ¢ A,.;(S,x), thenX € A, ;(S U{v},x')

mension3 k ¢ /e, k*#*/¢) and that the corresponding reduc-
tion is feasibility preserving. The difficult part is to prove
the distance preserving property:

Lemma 5.1 (e, ¢/3)-Distance Preserving property) Let
H = (V,E) be a hypergraph that ig-far from being
k-colorable and letS C V' be any set of properly-colored
vertices with a proper coloring. Then, eithel/ has more
thanen/3 conflict vertices with respect t&®, x) or V has
more thane n/3 heavy vertices fo(sS, x).

Proof : The proof is by contradiction. Let us assume there are (v})

at moste n/3 heavy vertices and at most./3 conflict vertices
with respect toS, x). Then, we show that it is possible to ex-
tend coloringy of S to a coloringx™ of V that has at mostn’
monochromatic edges iH. This will yield contradiction.

We definex™ as follows:

x(v) foranyv € S

1 if v e V\ Sandvis either a conflict vertex
or a heavy vertex with respect {6, x)

if v € V'\ S isi-colorable with respect tQS, x)
and: minimizes (over all possible choices of
proper coloring) the increase in potential,
i.e, ADy(v,1, (S, x)) < AP (v, ], (S, x))
for any proper coloring of v

if and only if (i) | X| = € — 4, (i) » = 4, (i) v ¢ X, and (iv)
there existee € E with X U {v} C e such that every vertex
u € e\ (X U{v}) hasy(u) = i. Therefore, if we define

Y78, X)) =

Je€ E: (XU {v} Ce & Ve (xufep Xx(u)=1) } ,

{XQV:\X|:€—]’ L v X &

then = ,
ADr(v,i,(S,00) = >w' T S0)]

j=1

©)

Next, let us observe that € E7;(S,x), thenX = e\ (S U
must belong tdr;”jl((S, x)). Furthermore, for a seX ¢
Y31 ((S, x)). there can be at mogt®') < n’ edgese such that

X = e\(Su{v}). Therefore|EY (S, x)| < /| Y51 ((S,x))]-
Hence, we can combine this inequality with inequality (2) and with
equation (3), to conclude that

£—2
n]

T3 (5,0)

)

C»JI»—lJ_lJ

-2
j=0

—2
7=0 J

-1

= AdDy(v,4,(S,x)) < - €en
Therefore, by our arguments above, we have proven that if a

vertexv is neither heavy nor conflict, not more than n*~! edges

incident tov may be monochromatic in coloring®. Since there

are at most such vertices, we get an upper bound%cﬂn‘ for

Now, we give an upper bound on the number of monochromatic the number of monochromatic edges in coloriptythat are not

edges in coloring¢* of H. Let us first consider heavy and conflict

incident to heavy or conflict vertices. This implies that the to-

vertices. By our assumption, the number of such vertices is Up- ta| number of monochromatic edges in colorigtyof 7 is upper

per bounded b;% en. Therefore, the number of edges incident to
these vertices is upper bounded%ayn". Hence, it is sufficient to
show that there are at mo§te n* monochromatic edges iH that
are not incident to heavy or conflict vertices.

Let us fix a vertex that is neither heavy nor conflict. We show
that there are at mo%tené‘1 monochromatic edges incident to
v in ‘H, which by our arguments above will complete the proof.
Vertexw is colored inx™ with color i such that (i) is i-colorable
with respect taS, x) and (i) the potential function satisfies

1 _

AQH(’U7Z7<S7X>)§ gsn[« ! . (2)

Let x’ be the extension of coloring to S U {v} by coloring

v with color i. Notice that in order for an edgeincident tov to

be monochromatic in coloring™, for every vertexu € (en S) it
must holdy(u) = 4. This motivates us to define the following set

E} (S, x)y:={e€ E:vee, le\S| =L—j Yucensx(u) =i}.

Thus, an edge incident tov may be monochromatic in color-
ing x* only if e € Uﬁ;ﬁ E7 (S, x) (notice thaty™ ensures that
E?, 1(S,x) = 0). We show thaiuf;g EY (S, X)‘
-1

1,,6-1
<gen,

which implies that there are at moéten monochromatic
edges incident te in H, and hence, yields the proof of the lemma.

bounded by n’. This in turn, implies that the hypergrag is
not e-far from beingk-colorable. This yields contradiction. [

The above results and our framework from Theorem 5
imply the following result.

Theorem 6 There is ane-tester for the hypergraptk-
colorability with the query complexit@ ((k £/€2)"). O

6. Hereditary Graph Properties and ACPs

In this section we considérereditary graph properties
A graph propertyi1 is any family of graphs that is preserved
under graph isomorphism (that is,f satisfies propertyl
andG’ is a graph isomorphic t6' thenG’ has propertyI
too). A graph propertyI is hereditaryif it is closed under
taking induced subgraphs, that is, if for every graphav-
ing propertyll every induced subgraph &f has property
IT too (see, e.g., [8]). We call a graph propeltystrongly-
testablg1] if for every e > 0 there exists a (one-sided error)
e-tester forll whose query complexity is bounded only by
a function ofe, which is independent of the size of the input



graph. We consider the standard adjacency matrix model[4] N.Alon, W. Fernandez de la Vega, R. Kannan, and M. Karpin-

(see the previous section for the more general definition for
hypergraphs).

In the previous section we gave a reduction from hyper-
graph coloring to ACPs that satisfies the requirements of
our framework which proves that hypergraph coloring can

be tested efficiently. We observe that the constructed ACPs

are not equivalent to the hypergraph coloring problem in the
following sense: There might be a subSetf vertices such
that the subgraph induced ydoes not have a proper col-

oring but the corresponding ACP has a self-feasible basis.
Nevertheless, the bases of the ACPs have a nice interpre-
tation on the corresponding hypergraph: each basis corre-

sponds to a coloring of a certain subset of vertices. Two
natural questions arise of whether it is possible to apply our
framework to other graph properties and, if this is possi-
ble, whether there is a nice interpretation of bases for thes
properties. We answer the first question by showing that we
can apply our framework to any testable hereditary graph
property. The second question remains open.

We show that dereditary graph propertgan be tested
efficiently in the adjacency matrix model if and only if there
is a reduction to ACPs. Although it is known [3, 18] that
a testable hereditary graph propeflycan be tested by a

canonical tester (a tester that samples a set of vertices and

accepts if and only if the induced subgraph has property
IT) the straightforward reductions to ACPs either violate the
distance preserving or the feasibility preserving property.

Theorem 7 LetIl be a hereditary graph property. Lét<

e < 1. Letg be the set of all graphs on the vertex set
V ={1,... ,n}. Foranyd, o € N, let ACP; ,)(V) be the
set of abstract combinatorial programs of dimens{énp)
over V. Then,II is strongly-testabléf and only if there
ared = d(e), o = o(e), and X = A(e), such that for ev-
ery G € G there exists an abstract combinatorial program
Ag € ACP 5, (V) satisfying the following two properties:

((e, N)-Distance Preserving)if G is e-far fromII then any
basis inAg is A\-far from feasible, and

(Feasibility Preserving) for any S C V, if the subgraph
G s satisfies propertyl then there is a self-feasible ba-
sisforSin Ag. O
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