
Better Streaming Algorithms for Clustering Problems

Moses Charikar∗
Princeton University

Liadan O´Callaghan†

Stanford University
Rina Panigrahy‡

Cisco Systems

ABSTRACT
We study clustering problems in the streaming model, where
the goal is to cluster a set of points by making one pass (or
a few passes) over the data using a small amount of storage
space. Our main result is a randomized algorithm for the
k–Median problem which produces a constant factor approx-
imation in one pass using storage space O(k poly log n). This
is a significant improvement of the previous best algorithm
which yielded a 2O(1/ε) approximation using O(nε) space.
Next we give a streaming algorithm for the k–Median prob-
lem with an arbitrary distance function. We also study algo-
rithms for clustering problems with outliers in the streaming
model. Here, we give bicriterion guarantees, producing con-
stant factor approximations by increasing the allowed frac-
tion of outliers slightly.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—computations on discrete struc-
tures

General Terms
Algorithms,Theory

Keywords
Clustering,k-median,streaming algorithm

1. INTRODUCTION
In recent years, there has been a dramatic growth of in-

terest in developing algorithms for massive data sets. In

∗Email: moses@cs.princeton.edu. Research supported by
NSF ITR grant CCR-0205594 and DOE Early Career Prin-
cipal Investigator award DE-FG02-02ER25540.
†Email: loc@cs.stanford.edu. Research supported by
NSF Grant IIS-0118173 and an ARCS scholarship.
‡Email: rinap@cisco.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

particular, the streaming model has received a lot of atten-
tion [3, 27, 18, 13, 22, 16, 15, 14, 1]. Here, an algorithm
must process its input by making one pass (or a small num-
ber of passes) over it, using a limited amount of memory.
This is a common model used for settings where the size of
the input far exceeds the size of the main memory available
and the only feasible access to the data is by making one or
more passes over it.
In this paper, we examine clustering problems in the data-

stream model. Clustering problems have been studied ex-
tensively across several disciplines. They are typically for-
mulated as optimization problems, where the input is a set
of points with a distance function defined on them and the
goal is to find a clustering solution (a partion into clusters)
that optimizes a certain objective function. Unless other-
wise specified, for most of our discussion, we will assume
that the distance function is a metric, i.e. is symmetric and
satisfies triangle inequality.
A common clustering objective function for is k–Median

[17]: find k centers (medians) in a set of n points so as
to minimize the sum of distances of points to their closest
centers. Recent research has led to the development of very
good approximation algorithms for this problem [4, 9, 23, 8,
5]. Another classical clustering objective is k–Center, where
the goal is to find k centers that minimize the maximum
distance of a point to its closest center. It is well known
that this can be approximated to within a factor of 2 [19,
12].
Guha et al. [16] gave an nε-space algorithm guaranteeing

an O(2O(1/ε))-approximation to the k–Median problem on
streaming data. Earlier, Charikar et al. [7] gave a streaming
algorithm for the k–Center problem that gives a constant
factor approximation using O(k) space. In fact, the algo-
rithm in [7] maintains at most k clusters at all times and
modifies the clustering solution using a very restricted set of
operations that do not allow an existing cluster to be broken
up and its points distributed to different clusters. Recently,
Charikar and Panigrahy [11] gave a streaming algorithm for
the objective of finding k clusters so as to minimize the sum
of cluster diameters. Their streaming algorithm requires
O(k) space and achieves a constant factor approximation
but also increases the number of centers by a constant fac-
tor; it works under the same set of restricted cluster update
operations as in [7].
Intuitively, a streaming algorithm for clustering that main-

tains a small amount of state must maintain a succinct rep-
resentation of the clustering solution (usually just the set of
cluster centers plus some additional information). Addition-

30

ally, it must maintain an implicit lower bound on the optimal
solution for the sequence seen so far. Thus it appears that
any clustering objective function that admits such a cluster-
ing algorithm must have succinct lower bound certificates on
the cost of the optimal solution. For the k–Center objective
(minimize maximum cluster radius), such a succinct certifi-
cate follows directly from the analysis of the offline k–Center
problem. The existence of such a certificate was the basis
for the streaming algorithm for clustering with the k–Center
objective in [7]. In the case of the sum of diameters objec-
tive [11], the succinct lower bound certificate is non-trivial;
however, a lower bound certificate consisting of O(k) care-
fully chosen points can be obtained from a careful analysis
of the primal and dual LP formulations for this problem.
While the streaming algorithms for k–Center and sum of

cluster diameters use only O(k) space and yield constant
factor approximations, the currently best known streaming
algorithm for k–Median requires O(nε) space and produces

a 2O(1/ε) approximation [16]. Our research was motivated
by the following question, left open by the work of Guha
et al. : Is it possible to devise a streaming algorithm for
the k–Median problem that uses only O(k poly log(n)) space
and produces a constant (or even logarithmic) approximation
factor ?
Our Results: Our main result solves this open problem
from [16]. We give a streaming algorithm for the k–Median
problem that uses O(k poly log(n)) space and produces a
constant factor approximation; the algorithm is randomized
and works with high probability. Roughly speaking, the al-
gorithm of Guha et al. performs the clustering at several
levels: at level 1, blocks of the input of size nε are clus-
tered. These cluster centers from level i form the input to
level i + 1. Since nε points can be processed simultane-
ously, the algorithm needs 1/ε levels to process the entire
input. The analysis in [16] shows that the approximation
factor increases by a constant factor in going from level i
to i + 1; therefore the algorithm gives an approximation
guarantee of 2O(1/ε). Our algorithm can be summarized as
follows: We obtain a clustering solution with k log n medi-
ans which is only a constant factor worse than the optimal
(with k medians). The final medians are obtained by solving
a k–Median problem on these O(k log n) medians (appropri-
ately weighted). The crux of our approach is maintaining a
constant-factor-approximate solution using k log n medians
and using O(k poly log n) space in the streaming model. In
this respect, our approach has some parallels with the recent
work of Gilbert et al. [14] on approximate histogram main-
tenance in the streaming model. In order to obtain a good
approximation to the best B-bucket histogram, they instead
maintain a solution with a much larger number of buckets;
this solution is then used to obtain a good B-bucket solution
in the end.
Our algorithm operates in phases; we also have a lower

bound on the optimal cost, which is updated from phase to
phase. Each phase uses the recent online facility location
algorithm by Meyerson [30]. (Facility location algorithms
have been used to solve k–Median by several previous works,
e.g. the work of Jain and Vazirani [23]). Though Meyerson’s
algorithm only guarantees an O(log n) approximation for
online facility location1 , we are able to exploit it to maintain
a constant-factor approximation for k–Median by increasing

1The algorithm gives an expected O(log n)-approximation,
and, if inputs arrive in random rather than possibly adver-

the number of centers by an O(log n) factor. Analysis similar
to that used in [16] shows that in updating our solution from
phase to phase, we face a potential multiplicative increase in
the approximation ratio, but we show how to overcome this
problem and guarantee a constant-factor approximation.
Next, we study the asymmetric k–Median problem. Given

an upper bound ∆ on the ratio of the maximum distance to
the minimum distance, we give a streaming algorithm which
makes O(log∆+ log n) passes and uses space O(k2(log∆+
log n)/ε2) to produce a (1+ε)-approximate solution that uses
O(k(log ∆+ log n)/ε) centers. We note that an O(log n) in-
crease in the number of centers is inevitable for this problem
[26].
We also study outlier formulations of clustering problems

in the streaming model: For a given parameter δ, find a so-
lution that clusters at least (1−δ) fraction of the points and
optimizes the objective function on these chosen points. (In
other words, we are allowed to exclude at most δ fraction
of the points, called outliers, from the clustering). Charikar
et al. [10] recently introduced these outlier formulations and
gave constant-factor algorithms for the outlier versions of
the k–Center and k–Median problems. We obtain O(1)-
approximations for these problems in the streaming model
using O(k log n) space while increasing the fraction of out-
liers slightly (a bicriterion guarantee). We note that for
the k–Median problem with outliers, even in the offline set-
ting, it is not known how to obtain a solution with a con-
stant factor approximation while maintaining the same frac-
tion of outliers as the optimal solution. Our algorithms for
these problems are extremely simple and very efficient when
viewed as offline algorithms. We show that for both of these
problems, solving an outlier clustering problem on a random
sample of size O(k log n) gives a good solution for the entire
data set. In either case, we obtain an implicit representa-
tion for the solution in the form of k cluster centers and a
distance threshold; the points that have no cluster center
within the distance threshold are considered outliers, and
the rest are assigned to their closest centers.
Related Work: Mettu and Plaxton [28] considered a ver-
sion of the k–Median problem they called the “Online Me-
dian Problem;” here the goal was to order the set of points
in such a way that for any k, the first k points when treated
as a k–Median solution were a good approximation to the
best k–Median solution.
Several previous papers have developed time-efficient al-

gorithms for the k–Median problem. For example, Indyk
[20, 21] and Thorup [33] gave efficient algorithms for k–
Median based on sampling. Meyerson et al. [31] devised
sampling-based algorithms for k–Median that run in time
O(k2 log(k)/ε) (independent of n), assuming each cluster is
of size at least εn/k, or that some fraction of the points
can be treated as outliers. Their results are related to those
presented here but use different algorithmic techniques and
assume a different input model. In particular, they assume
random access to the data points, which is not available
in a stream, and the goal is to avoid all running time de-
pendence on n. Mishra et al. [32] gave a sampling-based
algorithm that, with probability at least 1 − δ, produces
a k–Median clustering of cost at most βopt + ε, where
opt is the optimum k–Median cost, β is O(1), and ε is an
input parameter. The running time depends on (M/ε)2,

sarial order, it gives an expected constant-factor approxima-
tion.

31

where M is the diameter of the data set, and, in the case
of a general metric space, on log(n/δ). Mettu and Plax-
ton [29] gave an algorithm based on repeated sampling that,
with high probability, produces an O(1)-approximate so-
lution to k–Median, as long as the range of distances is
bounded above by 2O(n/ log (n/k)). The algorithm runs in
O(n(k + log n) + k2 log2 n) time, which is O(nk) when k is
Ω(log n) and O(n/log2n). They also showed that when the
range of distances is large enough, no o(nk)-time, random-
ized algorithm can guarantee a constant approximation to
k–Median with nonnegligible (e.g., above 0.01) probability.
Our results on outlier versions of clustering problems are

closely related to the work of Alon et al. [2] on testing clus-
tering. They considered the problem of distinguishing be-
tween the case that a set of points can be divided into k
clusters with maximum radius b, and the case that an ε
fraction of the points must be removed before the set can be
clustered into k clusters of maximum radius b′, where b′ > b.
They showed how to distinguish between the cases using a
small random sample, and present a detailed analysis of the
case when the points are in �d.
Lin and Vitter [26] gave LP-based algorithms for the k–

Median problem with arbitrary distances. Their filtering
technique gets a (1+ε) approximation by using (1+ 1

ε
)(lnn+

1)k centers. Young [34] improved these results by giving a
greedy algorithm which produces a (1 + ε) approximation
using k ln(n+ n/ε) centers.

2. K–MEDIAN ON STREAMS
Given a set X of n points from some metric space, an

integer k, and k members c1, . . . , ck of the metric space, we
will say that the k–Median cost of using c1, . . . , ck as me-
dians for X (or, simply, the k–Median cost of c1, . . . , ck on
X) is

P
x∈X min1≤i≤k {dist(x, ci)}. That is, the cost of a set

of medians is the value of the k–Median objective function
when these medians are used.
In this section we will introduce PLS, a k–Median algo-

rithm for streams which runs in polylogarithmic space. If
X is the input stream of n points, k is the desired num-
ber of medians, and C is the cost of the lowest-cost k–
Median solution for X, PLS finds k medians from X whose
cost is at most O(1) times C. PLS requires a subroutine
ONLINE-FL (to be described shortly) that, given a point
stream, finds a set of medians for an initial segment of that
stream. As mentioned before, PLS operates in phases, dur-
ing each of which a further segment of the input stream is
consumed. In each phase i, PLS invokes ONLINE-FL on
a modified version Xi of the original input stream X, and
calculates, for each median m found by ONLINE-FL for
Xi, the number of points w(m) (called the “weight” of me-
dian m) from Xi assigned to m. Each median found during
phase i is then associated with its weight, and the weighted
set of medians is stored as the “solution from phase i.” For
every i, the stream Xi+1 input to phase i + 1 is the solu-
tion from phase i, concatenated with the remaining unread
points from X; in other words, Xi+1 is just X, with the
medians found in phase i replacing the initial segment of X
that has been read before phase i + 1. The first segment
of Xi+1 (the solution from phase i) consists of points with
possibly non-unit weights; the second part has unit weights.
The subroutine ONLINE-FL that is invoked in each

phase of PLS is Meyerson’s online facility location algo-
rithm [30]. We give a brief review of Meyerson’s algorithm

and then recast the guarantee in a form that will be conve-
nient for the proofs in the rest of this section.

ONLINE-FL (data stream X, facility cost f)

1. Make one pass over X performing the following steps
for each x ∈ X:

2. Let δ be the distance of the current point x to the
closest already-open facility.

3. With probability δ/f (or probability 1 if δ/f > 1),
open a new facility at x. Otherwise, the new point is
assigned to the closest already-open facility.

Recall that we will applyONLINE-FL during each phase
to a weighted point set. In processing a point x of weight
w, the probability of building a facility at x in Step 3 of the
algorithm is min(wδ/f, 1).
Consider an instance of k–Median and let OPT be the

cost of the optimal solution for this instance. Let L be
a lower bound on OPT . (We will later explain how this
lower bound is obtained). We will run the facility location
algorithm with facility costs f = L

k(1+log n)
. The proof of the

following lemma follows from the proof technique in [30].

Lemma 1. The expected number of medians in the solu-
tion produced by ONLINE-FL, is at most k(1 + log n)(1 +
4OPT/L). The expected cost is at most L+ 4OPT .

Proof. Let c∗1, c
∗
2, . . . , c

∗
k be the medians in the opti-

mal solution. Let d∗p denote the distance from point p to
the nearest median in the optimum solution. Let C∗

i de-
note the set of points assigned to median c∗i , and let A∗

i =P
p∈C∗

i
dist(p, c∗i). Define a

∗
i to be A∗

i /|C∗
i |. Focus on some

optimum cluster C∗
i . For j = 1, 2, . . . , log n, let Sj be the

set of points p in C∗
i for which 2j−1a∗i < d∗p ≤ 2ja∗i from

the median c∗i . (Note that Sj is empty for j > log n). Now,
consider the points in Sj . The expected service cost (sum of
distances of points to their medians) paid before a median
is opened at some point in Sj is at most f . Any subsequent
point p ∈ Sj has distance at most 3d∗p to this median. The
service cost paid for this subsequent point is bounded by
3d∗p. On the other hand, the probability that a median is

opened at p is at most
3d∗

p

f
.

Now consider the set of points within a∗i of the optimum
median c∗i . The expected (service) cost paid before a median
is opened in this set is at most f . After a median is opened
within this set, the distance of a subsequent point p from
its nearest median is at most a∗i + d

∗
p. The service cost paid

for this subsequent point is bounded by a∗i + d∗p. On the
other hand, the probability that a median is opened at p is
at most (a∗i + d

∗
p)/f .

We will bound separately the expected number of medians
opened by the algorithm, and the expected (service) cost
paid by the algorithm. The expected number of medians
opened by the algorithm (amongst points in C∗

i) is bounded

by 1 + log n + 1
f

�P
p∈C∗

i
(a∗i + 3d∗p)

�
≤ 1 + log n +

4A∗
i

f
.

Summing this over all clusters C∗
i , i = 1, . . . , k, the total

number of medians opened by the algorithm is bounded by
k(1 + log n)(1 + 4OPT/L).
Now let us bound the expected service cost paid by the

algorithm. The expected service cost paid for points in Ci∗
is bounded by f(1 + log n) + 3

P
p∈C∗

i
(d∗p + a

∗
i) ≤ L

k
+4A∗

i .

Summing up over all clusters, the expected service cost paid
by the algorithm is at most L+ 4OPT .

32

The following corollary of Lemma 1 follows by a simple
application of the Markov inequality and the union bound.

Corollary 1. With probability at least 1/2, algorithm
ONLINE-FL produces a solution of cost at most 4(L +
4OPT) and using at most 4k(1+ log n)(1+ 4OPT

L
) medians.

2.1 Phases and phase transitions
We now present the details of the algorithm for k–Median

on streams. The algorithm and other subroutines invoked
by it mark points in the stream “read” as they are pro-
cessed. When we change phases, the algorithm might see
a point, but not mark it as “read”. We use the notion of
“read” points to obtain a bound on the number of phases
by ensuring that every phase makes progress, i.e. marks at
least one new point as “read”. Let p denote the number of
phases. For ease of exposition, we initially describe a sim-
pler (although slightly incorrect) algorithm and analyze it
assuming that p ≤ n. In the next section, we will modify the
algorithm to ensure that the number of phases is at most n.
The algorithm PLS is as follows, where β is a constant to
be explained later, and k is assumed to be less than n = |X|.

PLS(point stream X, integers k and n)

1. L1 ← SET-LB(X)/β;
2. i← 1; X1 ← X;
3. while there are unread points in X:

(a) Mi ← PARA-CLUSTER(Li, Xi, k, n);
(b) Xi+1 ←Mi||(X −Ri);
(c) Li+1 = βLi;
(d) i← i+ 1;

4. Return Mi−1, the medians given by the most recent
invocation of PARA-CLUSTER.

The first call made by PLS sets a lower bound using the
following procedure SET-LB:

SET-LB(point stream X, integer k)

1. Without marking any points ofX as “read,” let d equal
the distance between the closest pair of the first k + 1
members of X in order;

2. return d;

In step 3a of PLS, PARA-CLUSTER returns Mi, a
set of (weighted) medians found for the part of Xi that it
read. In step 3b, X−Ri (to be defined more formally later)
is the portion of X that is still unread at the end of phase
i, and Mi||(X − Ri) is the concatenation of Mi and (X −
Ri). The description of PARA-CLUSTER follows. In
this description, β and γ are constants that will be chosen
to satisfy the following condition:

γ + 4(1 + 4(β + γ)) ≤ γβ (1)

PARA-CLUSTER(point stream S, lower bound Li, in-
tegers k and n)

1. Run 2 log n parallel invocations of ONLINE-FL with
f = Li/(k(1 + log n)) on the input S.

2. Each invocation is run as long as the number of medi-
ans does not exceed 4k(1+log n)(1+4(γ+β)) and the
cost of the solution (on the modified input) does not
exceed 4Li(1 + 4(γ + β)). If either of these conditions
is violated by a particular invocation, we stop running
this invocation.

3. Continue until all invocations have been stopped.
4. When the last invocation finishes, mark as “read” all

points seen by this invocation, except for the last (i.e.,
the point that would cause the median limit or the
cost limit to be exceeded); return the medians found
by this invocation.

The ith phase of PLS consists of the ith call to the routine
PARA-CLUSTER, which consumes an initial segment of
the modified stream Xi passed to it as a parameter. The
result of this phase is that the members of Xi that are seen
during this ith call to PARA-CLUSTER (except for the
last point to be seen) are marked as “read” so that the un-
read points can be appended untouched to the set of medians
found by PARA-CLUSTER for Xi.
We will next prove that the cost of the medians returned

by PLS is at most a constant times the cost of the best k–
Median solution for X, and that there are at most n phases.
The following notation will be useful in these proofs.

Definition 1. If k is a positive integer, and S1 and S2

are subsets of a common metric space with |S1| ≥ k and
|S2| ≥ k, let D(S1, S2, k) be the minimum, over all T ⊆ S2

with |T | = k, of
P

x∈S1
mint∈T dist(x, t). D(S1, S2, k) is the

cost of the best k medians for S1, if the medians are allowed
to be chosen from S2.

Definition 2. For 1 ≤ i ≤ p, let Ri denote the subset
of X that is marked as “read” during phases 1 through i.
Let Si denote the subset of X that is seen by the algorithm
during phases 1 through i. Note that Ri ⊆ Si, that in phases
1 through p − 1, Si contains only one more point than Ri

(the point seen, but returned unread, by the latest-finishing
invocation of ONLINE-FL), and that in phase p Ri = Si.

Definition 3. If 1 ≤ i < p let OPTi = D(Si,X, k).
(Recall that Si is the subset of X that is seen in phases 1
through i.) Note that the solution that attains the cost OPTi

on Si may include medians not in Si.

Definition 4. Define A1 = 0, and let Ai denote the cost
of the medians Mi−1 on Ri−1, the points read (i.e., marked
as “read”) before phase i.

Fact 1. Each new point marked “read” by PLS adds at
most f (the current value of facility cost when the point is
read) to the solution cost.

Fact 2. The value returned by SET-LB to PLS is a
lower bound on D(X,X, k).

Proof. Note that Fact 1 implies that the first k + 1
points are guaranteed to be read in the first phase.

Lemma 2. Let P (i) denote the event that Ai ≤ γLi, and
let Q(i) denote the event that Li+1 = βLi ≤ OPTi. For
appropriate choice of β and γ, with probability 1 − 1

poly(n)
,

for all 1 ≤ i < p, P (i) and Q(i) hold.

Proof. First we will show P (1), P (2), and Q(1). We will
then show that if P (i′) holds for all i′ ≤ i and Q(i′) holds for
all i′ < i, then P (i+ 1) holds, and with probability at least
1−1/(n2) Q(i) holds as well. Since p, the number of phases
of PLS, is at most n, it will follow that with probability at
least 1− 1/n P (p− 1) and Q(p− 1) both hold.

33

P (1) holds trivially as long as γ ≥ 0, because A1 = 0.
P (2) holds since 4(1 + 4(γ + β)) ≤ γβ (this follows from
the condition (1)), because A2 is guaranteed not to exceed
4(1+4(γ +β))L1, and L2 = βL1. Finally, Q(1) is also true,
because L1 is set to 1/β times a lower bound on D(S1,X, k).
We will next prove that, with high probability, P and Q

hold for all phases except the last. Let i < p be such that
∀i′ ≤ i, P (i′), and ∀i′ < i, Q(i′). We will show that with
high probability Q(i) holds, and that, if i+1 ≤ p−1, P (i+1)
holds. Suppose for contradiction that OPTi < βLi. Let
OPT ′

i = D(Mi−1∪(Si−Si−1),X, k), that is, the cost of the k
members of X whose cost on the modified input seen during
phase i is optimal. Note also that the solution that attains a
cost of OPTi onMi−1∪(Si−Si−1) could use medians outside
the set of points seen in phases 1 through i. Then OPT ′

i ≤
Ai +OPTi (the proof is similar to the proof of Theorem 2.3
in [16], and so OPT ′

i ≤ (β + γ)Li. Therefore, the modified
instance seen in phase i must have a feasible solution costing
(β + γ)Li, and so, by Corollary 1, each invocation has a
probability of at least 1/2 of reading the last member of Si

before overrunning the limits on cost or number of medians.
However, since all invocations stop without reading this last
point, either we have a contradiction (and so OPTi ≥ βLi)
or else a probability-1/n2 event has occurred.
We also need to ensure that Ai+1 ≤ γLi+1 if i+1 ≤ p−1.

Let Ci denote the cost of Mi on Mi−1 ∪ (Ri − Ri−1), the
modified input read during phase i. By definition of the
algorithm, Ci ≤ 4(1 + 4(β + γ))Li. Note that the cost of
Mi−1 with respect to Ri−1, the points marked as read before
phase i, is Ai ≤ γLi. Then Ai+1, the cost of the solution
that the algorithm has at the end of phase i (measured with
respect to the original input points Ri), is at most Ai +Ci.
However, since γ + 4(1 + 4(β + γ)) ≤ γβ (condition (1)), it
follows that Ai + Ci ≤ γLi+1, i.e., , P (i+ 1) holds.
Q(p − 1) holds unless for some phase i < p Q(i) fails.

We have seen that for each phase i before the last, if Q(i−
1) holds, this failure has probability at most 1/n2. In the
next section, we will show there are at most n phases (by
modifying the algorithm slightly). Since there are at most n
phases, the probability that Q(p−1) fails is at most 1/n.

If Q(p − 1) holds, then Lp−1 ≤ OPTp−1/β. OPTp−1 is
certainly no more than OPTp, and so Lp = βLp−1 ≤ OPTp.
Since the last phase finds a solution costing at most 4(1 +
4(γ + β))Lp, the medians produced by phase p cost at most
4(1 + 4(γ + β))OPTp.

2.2 Bounding the number of phases
The analysis in the previous section assumes that there

are at most n phases, but as the algorithm is presented,
several phase changes may occur without the consumption
of new input, and the number of phases could therefore be
much higher than n. Next, we will see how to ensure that
each phase marks at least one new point “read.”
Let x denote the point in the data stream that is seen, but

not marked “read,” in phase i. We want to ensure that x is
marked read in phase i+1. Recall that OPTi = D(Si,X, k)
is the cost of the optimal solution on Si = Ri ∪ {x}. We
will compute an improved lower bound Li+1 for OPTi so as
to ensure that OPTi ≤ βLi+1. It will follow that, at the
termination of phase i + 1, with very high probability the
cost of the optimal solution on the points seen so far exceeds
βLi+1, and phase i+1 marks x as “read” before terminating.
We compute an approximate k–Median solution to the

modified instance consisting of Mi (the weighted medians
from phase i) and x. In order to do this, we use a c-
approximation algorithm for k–Median. Let APXi denote
the value of the c-approximate solution obtained. We set
Li+1 as follows:

L′
i+1 =

APXi

2c(1 + γ)

Li+1 = max(βLi, L
′
i+1)

In the previous section, we proved that the invariant Ai+1

≤ γLi+1 is maintained by the algorithm. Note that the new
procedure for setting Li+1 does not violate this invariant.
Furthermore, examining the proof in the previous section,
it is easy to see that the algorithm maintains the stronger
invariant Ai+1 ≤ βγLi. We will also need the following
condition on β and γ:

β ≥ 2c(1 + γ) + γ (2)

Note that this does not contradict the condition (1) we have
already imposed on β and γ. We first prove that Li+1 is a
valid lower bound on the optimal cost.

Lemma 3. Li+1 ≤ OPTi.

Proof. We know that OPTi ≥ βLi. We need to prove
that OPTi ≥ L′

i+1. Recall that OPTi is the value of the
optimal k–Median solution on Ri ∪ {x}. (This could use
medians outside Ri ∪ {x}). Also recall that Ai+1 is the cost
of assigning the points in Ri to the medians in Mi. This
implies that there is a k–Median solution for the weighted
points in Mi together with x, with cost at most OPTi +
Ai+1 ≤ OPTi + βγLi. (Again, this could use medians out-
side Mi ∪ {x}). Further, we can transform this solution to
a solution that uses medians only in Mi ∪ {x}, with cost
at most 2(OPTi + βγLi). Since we use a c-approximation
algorithm to compute a k–Median solution on this instance,
APXi ≤ 2c(OPTi + βγLi).

L′
i+1 =

APXi

2c(1 + γ)
≤ 2c(OPTi + βγLi)

2c(1 + γ)

=
1

1 + γ
OPTi +

γ

1 + γ
βLi

≤ OPTi

The last inequality follows since βLi ≤ OPTi.

Next, we prove that thatOPTi is upper bounded by βLi+1

(which ensures progress in each phase). First, we state and
prove a bound we will need in the proof.

Claim 1. APXi ≥ OPTi − Ai+1.

Proof. The statement of the claim is equivalent to APXi

+ Ai+1 ≥ OPTi. Note that APXi is the cost of a k–Median
solution on the weighted medians in Mi and the point x.
Ai+1 is the cost of assigning the points in Ri to the medians
inMi. By combining these two solutions, we get a feasible k–
Median solution for the points in Ri∪{x} with cost at most
APXi+Ai+1. Since OPTi is the cost of the optimal solution
for this instance, it follows that APXi + Ai+1 ≥ OPTi.

Lemma 4. OPTi ≤ βLi+1.

34

Proof.

L′
i+1 =

APXi

2c(1 + γ)
≥ OPTi − Ai+1

2c(1 + γ)

2c(1 + γ)L′
i+1 + Ai+1 ≥ OPTi

(2c(1 + γ) + γ)Li+1 ≥ OPTi

βLi+1 ≥ OPTi

The last step follows because β and γ are chosen so that (2)
holds.

2.3 The final medians
In order to produce the final medians, we simply solve

a k–Median problem on the final set of O(k log n) medi-
ans, treating the medians as points weighted by the number
of points assigned to them. Let OPT be the value of the
optimal solution. Suppose we end up with a solution with
k log n centers S with cost at most αOPT . (α is a constant).
Then there exists a solution for the weighted instance on S
with k medians amongst the points of S with cost at most
2(1+α)OPT . (The proof follows from Theorem 2.3 in [16]).
If we use a c-approximation algorithm for this k–Median in-
stance, we get a solution of cost at most 2c(1 + α)OPT for
the weighted instance on S. In going from the points in S
to the original points, we must pay an additional αOPT ,
yielding a solution of cost at most (α+ 2c(1 + α))OPT for
the original set of points.

Theorem 1. The streaming algorithm for k–Median pro-
duces an O(1) approximation, in one pass, with probability
1− 1

poly(n)
; the space required is at most the space to repre-

sent O(k log2 n) points from the stream.

3. ALGORITHMS FOR ASYMMETRIC K–
MEDIAN

Next we present algorithms for solving k–Median on sets
with asymmetric distance functions. Here, distances are di-
rected, so that dist(x, y) may not equal dist(y, x). However,
if X is the point set, ∀ x, y, z ∈ X dist(x, x) = 0, and
dist(x, z) ≤ dist(x, y)+dist(y, z) (that is, the distances obey
a directed triangle inequality). Initially, we will assume that
all inter-point distances are finite and positive; later we will
show how to modify the algorithm in case some inter-point
distances are zero. The algorithms are based on the idea of
growing ever-larger clusters around medians until all points
have been assigned. Initially, a small coverage radius r1 will
be set, and all points will be regarded as unassigned. If
for some point x at least some minimum fraction of still-
unassigned points can be assigned to x for a cost of at most
r1 apiece, x will be made a median, and its neighbors within
r1 will be marked as assigned, or “covered.” We will use
the terms “assigned” and “covered” interchangeably. Once
there are no points with enough neighbors within r1, the ra-
dius will be increased (doubled, say) to r2, and we repeat the
same procedure. We can show that every time we increase
the radius, the number of points assigned by our algorithm
is almost as many as the number assigned within the old
coverage radius by the optimum k–Median solution.

Non-streaming Algorithm. Given n points with a possibly
asymmetric distance function such that the ratio ∆ of the
largest distance dmax to the smallest inter-point (i.e., posi-
tive) distance dmin is known, and input parameters ε and k,

the algorithm will produce a solution of at most 2k log∆/ε
medians, whose cost is at most a constant times the op-
timum cost. The algorithm proceeds in at most 2 log∆
phases, with radius ri for phase i, where ri = (1 + ε)ri−1.
We will discuss later how to find a good value for r1, but for
now we will assume we have an r1 > 0.

Definition 5. A point x is said to i–cover a point y if
dist(x, y) ≤ ri.

Initially, all points will be unassigned, and in each phase
we will “cover” more points, that is, assign them to new
medians. For every phase i (call the first phase 1), let Ui

denote the number of points that are still unassigned after
this phase; define U0 = n. In phase i we will consider each
x ∈ X in turn; if a point x i-covers at least εUi−1/k of the
unassigned points, we will mark them as “covered” and make
x a median. 2 After phase i, we will set ri+1 = (1 + ε)ri,
and then begin phase i+1. We will continue until all points
are assigned.

Lemma 5. For every point x in the data set, let C∗(x)
denote the median to which x is assigned under the opti-
mal solution. Let U∗

i = |{x|dist(x,C∗(x)) > ri}|, that is,
the number of points that cost more than ri in the optimal
solution. For every phase i, Ui ≤ U∗

i + εUi−1.

The proof follows from the fact that if no point i-covers
an ε/k fraction of what remained unassigned after the last
phase, then in particular none of the optimum medians does.
Set r1 = d/∆ for an arbitrary inter-point distance d. Ob-

serve that r1 ≤ dmin, and so nr1 ≤ ndmin. Suppose that
k ≤ n/2. (In fact k ≤ min {n/ log n, n/ log∆} ≤ n/2, or
else the trivial solution with n medians is feasible in our
framework.)

Theorem 2. The above algorithm finds O(k log∆) me-
dians, whose cost is at most a constant times the optimum
k–Median cost.

Proof. Let opt denote the cost of the optimum medi-
ans, and cost the cost of the medians found by the algo-
rithm described above. Then

Pm−1
i=1 (ri − ri−1)Ui ≤ cost

≤ Pm−1
i=0 (ri+1 − ri)Ui, and opt ≥ Pm−1

i=1 (ri − ri−1)U
∗
i ≥

1
1+ε

Pm−1
i=1 (ri+1 − ri)Ui − ε

1+ε

Pm−1
i=1 (ri+1 − ri)Ui−1. It fol-

lows that opt ≥ cost(1 − ε(1 + ε)2)/(1 + ε) − 1+ε2

1+ε
r1n.

Note that because opt ≥ (n− k)dmin ≥ ndmin/2, we have

r1n ≤ 2opt. Then cost ≤ 3+ε+2ε2

1−ε(1+ε)2
opt, so the algorithm

gives an O(1)-approximation.
As r1 is a lower bound on the smallest inter-point distance

in X, the algorithm will terminate in at most 2 log1+ε ∆
rounds, since if ri reaches d∆ it need not be expanded fur-
ther. Therefore, O(k log∆) medians are produced.

Streaming Algorithm. Next we will describe how to apply
the above algorithm using less memory, in a small number
(O(log∆)) of passes. The new algorithm uses O(k2 log∆)
space. If memory is scarce, counting the number of new
points i-covered by some x ∈ X requires a pass over X.
Therefore, when deciding whether to make x a median, we

2Note that each point need only be considered once per
phase as a potential median.

35

will estimate the true i-coverage of x using a pre-drawn sam-
ple. We cannot guarantee that the condition from Lemma 5
holds, but we show that with high probability each round
covers a large enough proportion of the points covered by
the optimal algorithm.
We will set r1 and U0 as before, and choose medians in

phases. Every phase i will use three passes over X. First,
we will in one pass choose k/ε independent random sam-
ples from the set of points that are still not covered. We
will make a second pass over the data set, examining each
point and making it a median if its estimated coverage is
high enough. Finally, in the third pass, we will find Ui, the
number of points still not covered.3 (In phase i+1, the k/ε
samples will be taken from these Ui.) The algorithm follows
(the linear passes over X are noted):

STREAM-AKM(data set X, integer k, 0 ≤ ε ≤ 1)

1. Set r1.
2. i← 1.
3. While i ≤ 2 log∆, do:

(a) Set p← 1.
(b) (First pass): Draw k/ε independent samples Si,1,

. . . , Si,k/ε, each of 8k log (nk log ∆)
ε

points drawn
uniformly at random (with replacement) from the
Ui−1 unassigned points.

(c) (Second pass): Exit this pass and go to Step 3d
when the last x ∈ X is examined, or p > k/ε.
For each x, if x i-covers at least log n (remaining)
points in the pth sample (Si,p), do:

i. Make x the next median from the current ith
phase. Call this median mi,p.

ii. p← p+ 1.
iii. Remove from Si,p all points that are covered

by medians mi,1, . . . , mi,p. If Si,p becomes
empty after this removal, continue increasing
p by 1 and removing covered points from Si,p

until an Si,p is found that is non-empty after
the removal step, or until p > k/ε.

(d) (Third pass): Either the point stream or the set
of samples was exhausted. Perform another pass
to identify points in X that are not covered by
the medians mi,1, . . . , mi,k/ε.

(e) ri+1 ← (1 + ε)ri; i← i+ 1.

The sample size and the condition for becoming a median
are chosen so that Lemma 5 above holds with high proba-
bility. The condition for becoming a median is that a point
have high enough coverage on the still-unassigned points
from the current (pth) sample. Because of the size of the
samples and the fact that they are drawn independently (so
that earlier medians are not picked on the basis of how many
points they cover from later samples), a large coverage on a
sample implies (with high probability) a large coverage on
the set of all unassigned points. Chernoff bounds guarantee
that if, during a phase i, a point x covers many points left
unassigned after the (i− 1)th phase, it will with probability
greater than k(nk log∆)−1 cover at least log n points on the
current sample, and will therefore become a median. There-
fore when phase i terminates, the probability is less than

3This counting can be done in a single pass, but note that,
later, determining whether a specific point is covered can
only be accomplished by a computation of the distance to
each existing median.

(n log∆)−1 that there will be more than εUi−1 unassigned
points whose assignment distances under the optimum solu-
tion are ri or less. As there are at most log∆ phases, with
probability at least 1− 1/n Lemma 5 holds throughout the
execution of the algorithm. At most k

ε
log∆/ medians are

produced.

Zero Distances. If many points have zero assignment cost
under the optimal solution, the above algorithm may make
assignments costing as much as r1 > 0 even if there is a
zero-cost solution. Running ZP, a preprocessing algorithm
amounting to an execution of STREAM-AKM with a
few modifications, solves the problem. ZP adds another
O(log n) passes over X, and finds O(log n) additional medi-
ans.
The changes are as follows. Instead of setting an initial

radius r1 and then having O(log ∆) phases, each with a new
radius ri = (1 + ε)i−1r1, we will use the same coverage ra-
dius r0 = 0 in each phase, and we will have log1/ε n phases.
The sample size will change to 8k log (nk log1/ε n)/ε, and
i-covering will be changed to “0-covering”: x 0-covers y if
dist(x, y) = 0. We can dispense with Step 3e. ZP will con-
clude with the following clean-up step: if there is exactly one
member of X that is still unassigned after all phases, make
this point a median. ZP will make at most (k/ε)(log1/ε n)+1
medians.
Suppose that in the optimal solution with k medians, ex-

actly αn members of X have an assignment distance of 0;
call these the “cheap” points, and the rest “expensive.” Let
U0 = αn (a quantity not known to ZP). We will start
off with all members of X unassigned, and Ui will denote
the number of cheap points that are still unassigned after
phase i of ZP. For each phase i, the probablility is at
least 1 − 1/(n log1/ε n) that Ui ≤ εUi−1. Therefore, after
all log1/ε n phases, with probability at least 1 − 1/n, the
number of unassigned cheap points is at most α. Note that
if α is 1 (the optimal solution has zero cost), a single unas-
signed point may remain, but the clean-up step removes it.
Hence, no cheap points remain after ZP finishes.
Let n′ denote the number of members of X that remain

unassigned after ZP. Note that all these points are ex-
pensive (i.e., have positive assignment distance under the
optimal solution). If n′ = δn, then α ≤ 1 − δ. If δ = 1,
we have found a zero-cost solution (albeit with O(k log n)
medians), and we can return this solution without running
the rest of the algorithm. Otherwise, we run the algorithm
STREAM-AKM using all n members of X as feasible me-
dians, but only trying to cover the n′ unassigned points.
We will return the O(k log n) medians found by ZP and
the O(k log∆) medians found by STREAM-AKM. If
δ ≥ 1/2, then at least half the points in the optimal solution
have assignment cost at least dmin, and so r1n ≤ 2opt. In
this case, the analysis, and the cost approximation factor,
from the previous section still hold. Suppose instead that
δ < 1/2. Let opt′ denote the sum of assignment distances of
the remaining n′ points, under the optimal solution. Then
opt ≥ opt′ ≥ n′dmin ≥ r1n′. In this case, the analysis from
the previous section shows that the cost of the solution we

find is at most 2+ε+ε2

1−ε(1+ε)2
opt.

4. K–CENTER WITH OUTLIERS
In this section, we will present an algorithm for the k–

36

Center problem given a metric distance function. In general,
the object of the k–Center problem is to find cluster centers,
and associate points with these centers, so as to minimize
the largest cluster radius. The radius of the jth cluster Cj

is the distance from the center cj to the farthest member of
Cj . If the problem requirements are relaxed so that a small
fraction of the points can be excluded, that is, not assigned
to clusters, much cheaper solutions may become available.
Clearly, as the number that may be excluded increases, the
lowest-achievable cost cannot rise.
Suppose that for some set X, r is the smallest maximum

radius that can be achieved if at most δ fraction of X can
be excluded. We present a one-pass algorithm with space
complexity O(k log n) that will (with high probability) find
a solution that excludes only a bit more than a δ fraction
and achieves a maximum radius that is at most a constant
times r. The algorithm is based on the principle that a
random sample taken from X is roughly as “clusterable”
as X itself. That is, if a particular set of centers covers a
(1 − δ) fraction of X within radius r, these same centers
should cover approximately the same fraction of a sample of
X within the same radius. We now describe the model and
algorithm more formally.
Let a solution to k–Center be denoted by a set {c1, . . .

ck; r} where the ci are centers and r ≥ 0 is a radius. If T =
{c1, . . . , ck; r} is a k–Center solution for a set X, say that
x ∈ X is assigned under T if ∃ci such that dist(x, ci) ≤ r.
If a point x is not assigned under T , we say T excludes x.
Call T an (r, δ)-solution if at least a (1 − δ) fraction of the
points in X are assigned under T .
If T is an (r, δ)-solution for X, and S is a subset of X,

then T can also be viewed as a solution for S. The radius
will not change when T is reinterpreted as a solution for S,
but, given this radius, T may exclude a different fraction of
S than of X. Note that T can be a valid solution even if it
contains centers that are not in S. A solution T ′ for S can
similarly be interpreted as a solution on X.
Assume the existence of a k–Center algorithm A that

takes a data set X, an integer k, and a 0 ≤ δ ≤ 1, and
returns k centers. Assume that there is a constant α > 1
such that, if r∗ is the smallest radius for which X has an
(r∗, δ)-solution, A returns an (r′, δ)-solution for X, where
r′ ≤ αr∗.4 Then we have the following algorithm:

OKC (data set X, integer k, 0 < ε < 1, 0 < δ < 1)

1. Take a sample S of s points, uniformly at random with
replacement, from X

2. Let T = {c1, . . . , ck; r} be the output of A(S, (1+ε)δ).
3. Return T , interpreted as a solution on X.

T may exclude a different fraction of X than of S. As we
shall see, however, with probability at least 1− 2/n2, T will
not exclude more than (1+ ε)2δ fraction of X, and r will be
at most α times the smallest possible radius for a solution
that excludes at most δ fraction of X.

Lemma 6. Let S be a sample of s ≥ 8 ln n
(δε2)

points taken

uniformly at random from X. Let T be an (r, δ)-solution on
X. Then, with probability at least 1 − 1/n2, T excludes at
most a (1 + ε)δ fraction of S.

Proof. By Chernoff bounds, the chance that more than
a (1 + ε)δ fraction of S is from the δ fraction of X excluded
by T , is at most 1− 1/n2.
4Such an algorithm is given, with α = 3, in [10].

Lemma 7. Let S be a sample of s ≥ 2(1+ε)(4+k) ln n

ε2δs
points

taken uniformly at random with replacement from X. Con-
sider an (r, δs)-solution T on S that is an (r, δ′)-solution on
X. The probability that δ′ ≤ (1 + ε)δs is at least 1− 1/n2.

Proof. There are fewer than n2+k(e/k)k solutions with
radius at most r that exclude more than (1+ ε)δs fraction of
X. Chernoff bounds guarantee that the probability that
a given such solution excludes only δs on S is less than

e−sδsε2/(2(1+ε)). Then regardless of S, there is probability
at most 1/n2 that an (r, δs)-solution for S must exclude
(1 + ε)δs on X.

Theorem 3. Let T = {c1, . . . , ck; r} be the solution pro-
duced by OKC(X, k, ε, δ). Suppose T is an (r′, δ′)-solution
on X. With probability more than 1 − 2/n2, the following
are both true:

• δ′ ≤ (1 + ε)2δ
• If the optimal solution that excludes at most a δ frac-

tion of X has radius r∗, then r′ ≤ αr∗

Proof. Suppose there is an (r, δ)-solution on X. By
Lemma 6, with probability at least 1− 1/n2 there will be a
solution on S with radius r that excludes at most (1+ε)δ. In
this case, the solution returned by A(S, (1 + ε)δ) will be an
(αr, (1 + ε)δ)-solution on S. By Lemma 7, with probability
at least 1− 1/n2 this solution will exclude at most (1+ ε)2δ
on X. The theorem follows.

5. K–MEDIAN WITH OUTLIERS
We give a similar algorithm for “k–Median with Outliers.”

Recall that in k–Median the objective is the sum (or average)
of assignment distances. If a solution is allowed to exclude
some outliers, the cost will be the average cost (distance to
the closest median) of the points that are not excluded. We
present a one-pass, O(k log n)-space, bicriterion algorithm:
if the best solution that excludes at most a δ fraction of the
points has some average assignment distance r, this algo-
rithm finds a solution that excludes only slightly more than
a δ fraction and achieves an average assignment distance
that is O(r).
A solution T to k–Median for a data set X of n points

will consist of a set {c1, . . . , ck} of medians. For all x ∈ X,
let C(x) denote the closest median to x (that is, ci such
that ∀cj �= ci, dist(x, ci) ≤ dist(x, cj)). For all x ∈ X, call
dist(x,C(x)) the radius of x under T . If T can exclude a
δ fraction of X, it will of course exclude the δn members
of highest radii. Every x ∈ X that is not excluded will be
assigned, and the radius of x will be called the assignment
distance of x.5 T will be called an (r, δ)-solution for X if it
has average assignment distance r when it assigns a (1− δ)-
fraction of the points in X.
As before, for S ⊆ X, any solution on X can be inter-

preted as a solution on S, and vice versa. In this case, when
we reinterpret a solution for X as a solution for S (or vice
versa), we will only keep the medians (not necessarily the
radius or fraction excluded) the same. Assume the exis-
tence of a k–Median algorithm B that takes a data set X, an
integer k, and a 0 ≤ δ ≤ 1, and returns k medians. Assume

5The cost of the solution will then be the average assignment
distance, since other radii are not counted.

37

constants γ > 1 and β > 0 such that if r∗ is the small-
est radius for which X has an (r∗, δ)-solution, B returns an
(r′, δ′)-solution for X, where r′ ≤ γr∗ and δ′ ≤ (1 + β)δ.6

OKM (data set X, integer k, 0 < ε < 1, 0 < δ < 1)

1. Take a sample S of s points, uniformly at random with
replacement, from X

2. Let T = {c1, . . . , ck} be the output of B(S, (1 + ε)δ).
3. Return T , interpreted as a solution on X.

Lemma 8. Let S be a sample of s points drawn uniformly
at random with replacement from X.

Let s ≥ max { 4 ln n
(1+ρ) ln(1+ρ)−ρ

× (1−δ)/δε
1−(1+ε/2)δ

, 2 ln n
δ
}. Let T

be an (r, δ)-solution on X. Then, with probability at least
1− 1/n2, there exist r′ ≤ (1 + ρ)r and δ′ ≤ (1 + ε)δ so that
T is an (r′, δ′) solution on S.

Proof. We first use Chernoff bounds to upper-bound
(with high probability) the maximum of the cheapest (1+ε)δ
assignment distances for T on S. Next we apply them again
to limit the average assignment distance for T on S.

Lemma 9. Let S be a sample of s points taken uniformly
at random with replacement from X. Assume that s ≥
max{ 2(k+4)(2+ε) ln n

εδs
, 16(k+4) ln 2n

Cδsε
, 8(k+4) ln 2n

δsε
(1+α

α
)2}, where

C = 2(1−(1+ε/2)δs

εδs
. Consider an (rs, δs)-solution T on S.

Then, with probability at least 1 − 1/n2, there exist r′ ≤
(1+α)rs and δ′ ≤ (1+ε)δs such that T is an (r′, δ′)-solution
on X.

Proof. We first fix a specific T ′ that is an (r, δ)-solution
on X, where r > (1 + α)rs and δ > (1 + ε)δs. In two
steps, we show that with high probability there do not exist
r′s ≤ rs and δ′s ≤ δs such that T ′ is an (r′s, δ

′
s)-solution

on S. In the first step, we show a (high probability) lower
bound on the highest assignment distance under T ′ on S if
T ′ can only exclude δs of S. In the second step we show a
(high probability) lower bound on the average assignment
cost for T ′ on S when only δs can be excluded. It follows
that with probability at least 1−n−(k+4), T ′ either excludes
more than δs or has an average radius higher than rs. We
conclude the proof by noting that n(2+k)ek/kk is an upper
bound on the number of possible solutions T ′, and that the
probability that a particular T ′ of the type considered can
be an (rs, δs)-solution on S is less than eln(2)−(4+k) ln n. The
product of these numbers is less than n−2, and so, regardless
of S, the probability that an (rs, δs)-solution on S would
have average assignment cost more than (1 + α)rs on X,
even if it could exclude (1 + ε)δs, is at most n−2.

Theorem 4. Let T be the solution found by OKM for
input (X, k, ε, δ). Suppose that, over all solutions for X that
exclude at most a δ fraction of the points, r∗ is the lowest
possible average assignment distance. Then, with probability
more than 1−2/n2, T is a (γ(1+α)(1+ρ)r∗, (1+β)(1+ε)2δ)-
solution for X.

The proof is similar to that for Theorem 3.

6. REFERENCES

[1] M. Ajtai, T. S. Jayram, R. Kumar, and D. Sivakumar
Approximate counting of inversions in a data stream.
Proc. 34th STOC, 2002.

6Such an algorithm is given in [10]. For example, β could
be 2 and γ could be 6.

[2] N. Alon, S. Dar, M. Parnas and D. Ron. Testing of
clustering. Proc. 41st FOCS, 2000.

[3] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
JCSS 58(1): 1999.

[4] S. Arora, P. Raghavan, and S. Rao. Approximation
schemes for Euclidean k–median and related
problems. Proc. STOC, 1998.

[5] V. Arya, N. Garg, R. Khandekar, A. Meyerson,
K. Munagala, and V. Pandit. Local search heuristics
for k–median and facility location problems. Proc.
STOC, 2001.

[6] Z. Bar-Yossef, S. R. Kumar, and D. Sivakumar.
Reductions in streaming algorithms, with an
application to counting triangles in graphs. Proc.
SODA, 2002.

[7] M. Charikar, C. Chekuri, T. Feder, and R. Motwani.
Incremental clustering and dynamic information
retrieval. Proc. STOC, 1997.

[8] M. Charikar and S. Guha. Improved combinatorial
algorithms for the facility location and k–Median
problems. Proc. FOCS, 1999.

[9] M. Charikar, S. Guha, E. Tardos, and D. Shmoys. A
constant factor approximation algorithm for the
k–Median problem. Proc. STOC, 1999.

[10] M. Charikar, S. Khuller, D. M. Mount, and
G. Narasimhan. Algorithms for facility location
problems with outliers. Proc. SODA 2001.

[11] M. Charikar and R. Panigrahy. Clustering to minimize
the sum of cluster diameters. Proc. STOC, 2001.

[12] M. Dyer and A. M. Frieze. A simple heuristic for the
p-center problem. Operations Research Letters, v. 3,
1985.

[13] J. Feigenbaum, S. Kannan, M. Strauss, and
M. Viswanathan. An approximate L1-difference
algorithm for massive data streams. Proc. FOCS,
2000.

[14] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis,
S. Muthukrishnan, and M. J. Strauss. Fast,
small-space algorithms for approximate histogram
maintenance. Proc. STOC, 2002.

[15] S. Guha, N. Koudas, and K. Shim. Data-streams and
histograms. Proc. STOC, 2001.

[16] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. Proc. FOCS, 2000.

[17] O. Kariv and S. L. Hakimi. An algorithmic approach
to network location problems, part ii: p-medians.
SIAM Journal of Appl. Math, v. 37, 1979.

[18] M. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. In DIMACS series in
Discrete Mathematics and Theoretical Computer
Science, v. 50, 1999.

[19] D. S. Hochbaum and D. B. Shmoys. A best possible
approximation algorithm for the k–Center problem.
Mathematics of Operations Research, v. 10, 1985.

[20] P. Indyk. Sublinear time algorithms for metric space
roblems. Proc. STOC, 1999.

[21] P. Indyk. A sublinear time approximation scheme for
clustering in metric spaces. Proc. FOCS, 1999.

[22] P. Indyk. Stable distributions, pseudorandom
generators, embeddings and data stream computation.

38

Proc. FOCS, 2000.

[23] K. Jain and V. Vazirani. Approximation algorithms
for metric facility location and k-median problems
using the primal-dual scheme and Lagrangian
relaxation. Journal of the ACM, v. 48, 2001.

[24] M. Korupolu, C. G. Plaxton, and R. Rajaraman.
Analysis of a local search heuristic for facility location
problems. Proc. SODA, 1998.

[25] J.-H. Lin and J. S. Vitter. Approximation algorithms
for geometric median problems. Information
Processing Letters, v. 44, 1992.

[26] J.-H. Lin and J. S. Vitter. ε-approximations with
minimum packing constraint violation. Proc. STOC,
1992.

[27] G. S. Manku, S. Rajagopalan, B. G. Lindsay. Random
sampling techniques for space efficient online
computation of order statistics of large datasets. Proc.
SIGMOD Conference, 1999.

[28] R. Mettu and C. G. Plaxton. The online median
problem. Proc. FOCS, 2000.

[29] R. Mettu and C. G. Plaxton. Optimal time bounds for
approximate clustering. Proc. UAI, 2002.

[30] A. Meyerson. Online facility location. Proc. FOCS,
2001.

[31] A. Meyerson, L. O’Callaghan and S. Plotkin.
Approximating k–Median: A sampling-based
approach. Unpublished manuscript, 2001.

[32] N. Mishra, D. Oblinger and L. Pitt. Sublinear time
approximate clustering. Proc. SODA, 2001.

[33] M. Thorup. Quick k-median, k-center, and facility
location for sparse graphs. Proc. ICALP, 2001.

[34] N. E. Young. K-medians, facility location, and the
Chernoff-Wald bound. In Proc. SODA, 2000.

39

