Query Strategies for Priced Information

(Extended Abstract)

Moses Charikat Ronald Fagirl

Venkatesan Guruswarhi

Jon Kleinberg Prabhakar Raghavdn

Amit Sahait

Abstract

We consider a class of problems in which an algorithm seeks to
compute a functiorf over a set ofi inputs, where each input has an
associategbrice. The algorithm queries inputs sequentially, trying
to learn the value of the function for the minimum cost. Welapp
the competitive analysis of algorithms to this frameworsidning
algorithms that incur large cost only when the cost of theaplest
“proof” for the value of f is also large. We provide algorithms
that achieve the optimal competitive ratio for functionattimclude
arbitrary Boolean AND/OR trees, and for the problem of skiaig

in a sorted array. We also investigate a model for pricinghia t
framework, constructing a set of prices for any AND/OR trieat t
satisfies a very strong type of equilibrium property.

1 Introduction

The potential ofpriced information source§l2, 13] that charge
for usage is being discussed in a number of domains — software
research papers, legal information, proprietary corjosat finan-
cial information — and it forms a basic component of the large
area of electronic commerce [4, 6, 16, 17]. In a networkedeco
omy, we envision software agents that autonomously puecheas
formation from various sources, and use the informatiorufpert

*Computer Science Department, Stanford University, CA 84&nail:
noses@s. st anf ord. edu. Research supported by the Pierre and
Christine Lamond Fellowship, NSF Grant 11S-9811904 and N®Frd
CCR-9357849, with matching funds from IBM, Mitsubishi, 8ehberger
Foundation, Shell Foundation, and Xerox Corporation. Mdghis work
was done while the author was visiting IBM Almaden Researehté€r.

TIBM Almaden Reseach Center, 650 Harry Road, San Jose, CA09512
Email: {f agi n, pragh}@l naden. i bm com

fLaboratory for Computer Science, MIT, Cambridge, MA 02139.
Email: {venkat,am ts}@heory.lcs.mt.edu. Research sup-
ported by an IBM Graduate Fellowship and DOD Fellowshippeesively.
Most of this work was done while the authors were visiting IBinaden
Research Center.

§Department of Computer Science, Cornell University, lghddY
14853. Email: kleinber@cs.cornell.edu. Supported in ppr David and
Lucile Packard Foundation Fellowship, an Alfred P. Sloasd@ech Fel-
lowship, an ONR Young Investigator Award, and NSF Faculty\EGareer
Development Award CCR-9701399.

decisions. How should one query data in the presence of a give
price structure?

Previous theoretical analysis has posited settings intwthiere
is atargetpiece of information, and the goal is to locate it as rapidly
as possible; see for example the work of Etzioni et al. [5] kout-
soupias et al. [9]. Here we take an alternate perspectiveyated
by the following type of consideration. Suppose we haveveeli
through some pre-processing based on data mining or othiés-st
tical means, alecision rulethat we wish to apply. To take a toy
example, such a rule might look like

If Analyst A values Microsoft at $X

or Analyst B values Netscape at $Y;
and if Analyst C values Oracle at $Z

or Analyst D values IBM at $W;
then we should sell our shares of eBay.

The decision rule in this example depends on four availatfta-i
mation sources, which we could lab&| B, C, andD; each has a
Boolean value. It is possible to evaluate the rule, underesoim
cumstances, without querying all the information sourdésach
of these pieces of information has an associated price, islhé
best strategy for evaluating the decision rule?

Note the following features of this toy example. There is an
underlying set of information sources, but our goal is not®y
to gatherall the information; rather it is to collect (as cheaply as
possible) a subset of the information sufficient to computiea
sired functionf. Thus, a crucial component of our approach is
the view that disparate information sources contain raw tabe
combinedo reach a decision, and itis the structure of this combina-
tion that determines the optimal strategy for querying therces.
Our setting may be further generalized to allow inputs thetesm-
tire databases, rather than bits (say, a demographic iattom
database from a vendor such as Lexis-Nexis), and the gaatlis-t
till valuable information from a combination of such dataés; this
generalization suggests an interesting direction fohkmrtvork.

An lllustrative Example. In Figure 1 we depict the above toy
example, with the decision rule represented by a treeisired
Boolean circuit, and with the price$, 3, 1,4) attached to the in-
puts. An algorithm is presented with this circuit and thetoeof
prices; the hidden information is the settimgf the four Boolean
variables. It must query the variables, one by one, untidirths
the value of the circuit; with each variable it queries, iypdhe
associated cost. We could ask for an algoritdnthat incurs the
minimum worst-case cost over all settings of the variaddesthis
is too simplistic: many of the natural functions we wish tacdst
(including all Boolean AND/OR trees) amvasive[3], so any al-
gorithm can be made to pay for all the variables, and all élyois
perform equally poorly under this measure.

/@\

) &
NV
A B C D

Figure 1: A Boolean function with priced inputs

The competitive analysis of algorithms [2] fits naturallythin
our framework; we define the performance of an algoritdnon
a given settings of the variables to be the ratio of the cost in-
curred by.A to the cost of the cheapest “proof” for the value of the
function. Thecompetitive raticof A is then the maximum of this
performance ratio over all settingsof the variables.

In the example above, consider the algoritdfithat first queries
C. If C is true, it then queriesB and A (if necessary); ifC is
false, it then queriedD, thenB and A (if necessary). The perfor-
mance ratio ofA’ when the setting i¢true, false, false, true)
is 7/5: A’ queries all the variables and pays, while querying
only A and D would prove the value of the function txue. In-
deed, this is the competitive ratio of , and.A’ achieves the opti-
mal competitive ratio of any algorithm on this function, wihis
cost vector. Two aspects of’ are noteworthy: (i) it isadaptive—
its behavior depends on the values of the inputs it has realdji
it does not always read the inputs in increasing order ofpric

A Framework. We now describe a general framework that cap-
tures the issues and example discussed above. We have iarfunct
f overaseV = {zi,...,z,} of n variables. Each variable;
has a non-negativeostc;; the vectorc = {ci,...,cn) Will be
called thecost vector A settinge of the variables is a choice of a
value for each variable; the partial setting restricted sulaset/

of the variables will be denoteg|U. A subsetU C V is sufficient
with respect to setting if the value of f is determined by the par-
tial settinge|U. Such aU is a proof of the value of under the
settinge|U; the cheapest proof of the value pfunders is thus
the cheapest sufficient set with respecttdNe denote its cost by
c(o).

An evaluation algorithmA is a deterministic rule that queries
variables sequentially, basing its decisions on the costoveand
the values of variables already queried. When an evalualigo
rithm A is run under a setting:, it incurs a cost that we denote
ca(o). We seek algorithmsgi that optimize thecompetitive ratio

YA () < max, c4(o)/c(o). The best possible competitive ratio
for any algorithm, then, is

7e(f) < minyZ ().

The model above is general enough to include almost any prob-

lem in which an algorithm adaptively queries its input. Opr a
proach will be to focus on simple functions that have beer-wel
studied in the case of unit prices. We find that the inclusibn o
arbitrary prices on the inputs gives the problem a much mone-c
plex character, and leads to query algorithms that are ravel
non-obvious.

Our primary focus will be on Boolean AND/OR trees (briefly,
Boolean trees— these are tree circuits rooted (w.l.0.g.) at an AND
gate, with each leaf corresponding to a distinct varialhel, with
each root-to-leaf path strictly alternating AND and OR gadethe

internal nodes. One can easily build examples in which air opt
mal algorithm cannot follow a “depth-first search” style lexion

of variables and subtrees. Indeed, the criteria for opttgndad
quickly to issues similar to those in tlsearch ratio problerrand
minimum latency probleifior weighted trees [1, 9] — problems for
which polynomial-time algorithms are not known. It is notadit
obvious that the optimal evaluation algorithm for a Booldae
can be found efficiently, or even have a succinct descripgean

in the case of complete binary trees.

We also consider functions that generalize Boolean trees, i
cluding MIN/MAX game trees. Finally, we investigate analeg
of searching, sorting, and selection within our model; he®
problems that are well-understood in traditional settibgsome
highly non-trivial when prices are introduced.

Results

We provide a fairly complete characterization of the bouscigev-
able by optimal algorithms on Boolean trees, and focus oeethr
related sets of issues.

(1) Tractability of optimal algorithms. We show that for ev-
ery Boolean tree, and every cost vector, the optimal corineti
ratio can be achieved by an efficient algorithm. Specificalig
algorithm has a running time that is polynomial in the sizehef
tree and the magnitudes of the costs. At a high level, theigthgo
is based on the following naturBlalance Principle in each step,
we try to balance the amount spent in each subtree as evenly as
possible. However, to achieve the optimal ratio, this pplecmust
be modified so that in fact we are balancing certain estimates
the lower bound for the cost of the cheapest proof in eachregibt
These results are described in Section 2.

(2) Dependence of competitive ratio on the structure of f.
Much of the complexity of the Boolean tree evaluation probis
already contained in the case of complete binary trees dhdeh
with n = 2% inputs. When the cost vector isiiform (all input
prices ardl) the situation has a very simple analysis: any algorithm
can be forced to pay, and the cheapest proof always has value
exactly2? = \/n. A natural question is therefore the following:
is there is a/n-competitive algorithm foeverycost vector on the
complete binary tree? More generally, for a given Booleart,
we could consider the largest competitive ratio that canoboeetd
by any assignment of prices to the inputs:

AT) < sup 7o (T). 6\

This definition naturally suggests the following questioitow
does the above competitive ratio depend on the topologyeotfitia
derlying tree? Can we characterize the structure of theveator
c that achieves(T') = v(T')?

We prove a general characterization theorem~f¢(F’); as a
corollary, we find that the uniform cost vector is in fact extal
for the complete binary tree. We say that a Boolean Trean n
inputs carsimulatean AND gate of sizé if by fixing the values of
some(n—k) inputs, the function induced on the remainfagputs
is equivalent to a simple AND d# variables. (We define the simu-
lation of an OR gate analogously.) We show(T') is equal to the
maximumk for whichT can simulate an AND gate or an OR gate
of sizek (this also shows tha{(T') is always an integer). The proof
is obtained using information from the lower bound estirndtat
form a component of our optimal balance-based algorithnesg&h
results are described in Section 2.

We give extensions of some of these results to more general
types of functions. All of these functions are defined overes t
structure, and for each we can give an efficient algorithmsgho
competitive ratio is within a factor df of optimal.

(@) Threshold trees. Each internal node is a threshold gjage;
output istrue iff at least a certain number of the inputs are
true. The threshold values for different gates could be dif-
ferent.

cost vector only by lower order terms. Whether the uniformatco
vector is in fact extremal remains an interesting open duest
These results are described in Section 4.

Further Directions. Our approach raises a number of other direc-

(b) Game trees. The inputs are real numbers, and nodes are MINtions for further work. We now mention some preliminary fesu

or MAX functions.

(c) A common generalization of (a) and (b). The inputs aré rea
numbers and the nodes are gates that returrt*théargest
of their input values. This threshotdcould be different for
different nodes.

In all of this, we have been considering deterministic algo-
rithms only. Understanding how much better one can do with a
randomized algorithm is a major open direction; this would i
volve a generalization of earlier results on randomized treal-
uation [7, 11, 14, 15] to the setting in which inputs have gsic

(3) Equilibrium pricesfor afunction f. Finally, we consider
a “dual” issue, motivated by the following general questi®up-
pose many individuals are all interested in computing ationcf
on variableqzi,...,z,}, and each is employing an algorithm that
adaptively buys information from the vendors that own the val-
ues ofzy, ..., z,. Whatis a “natural” set of market prices arising
from this process?

and open questions. Sorting items when each comparison has a
distinct cost appears to be highly non-trivial. Suppose ef@am-
ple, we construct an instance of this problem by partitigrtime
items into setsd and B, giving eachA-to-B comparison a very
low cost, and giving eachi-to-A and B-to-B comparison a very
high cost. We then obtain a very simple non-uniform costcstme
in the spirit of the notoriously difficult problem of “sorgmuts and
bolts.” [8]

Binary search can be viewed as a one-dimensional version of
the problem of searching for a linear separator betweer ‘aad
“blue” points ind dimensions. Determining cheap, query-efficient
strategies for this problem becomes much more challengihggh
dimensions; we have developed one approach that is based on a
VC-dimension analysis, and identified a number of intengstipen
questions. This raises the general issue of learning hgpethfrom
priced information. We can also generalize the binary $eprob-
lem to partially ordered sets. Here it is natural to ask wiaat loe
said about good “splitters” and “central elements” in a posben

There are, of course, many possible answers to this questiong;ch item has a cost.

— just as there are many models for the behavior of prices in a

competitive market [10]. Intuitively, one would believeatheach
vendor would try to charge a high price for its input, but not s
high as to price itself out of competition. If we further leslé that
the individuals performing the queries will be using onlytiogal
on-line algorithms, then the vendorof will not want to be “priced
out” of optimal on-line algorithms.

Here we describe one set of prices motivated by this intuitio
it exhibits an interesting behavior with a concrete forriola Let
us say that a cost vecteris ultra-uniformwith respect to a tre®
if, with input prices set according @ every evaluation algorithm
achieves the optimal competitive ratitn other words, the prices
are in a state such that there is no reason, from the pointeof vi
of competitive analysis, to prefer one algorithm over artyeot—
whether an input; is queried relies purely on the arbitrary choice
of an optimal algorithm by the individual performing the ges.
We prove: for every Boolean trég, there is an ultra-uniform cost
vector. The construction of this vector is quite naturalgd &oi-
lows a direct “balancing” principle of its own. These resudre
described in Section 3.

Sorting, Searching and Selection. We also investigate a problem
of a very different character, to which the same style ofgsigican
be applied: suppose we are given a sorted array wipositions,
and wish to determine whether it contains a particular nurpbin
the unit-price setting, when we simply wish to minimize them
ber of queries to array entries, binary search solves toisi@m in
at most[log, n] queries.

Finally, the problem of selecting tHé" largest element among
n items — when each comparison has a cost — is also a challeng-
ing direction to explore. Finding the median has some of theofl
of the sorting problem discussed above; but even finding trd-m
mum is surprisingly non-trivial. We will report our proggesn this
problem in the full version of the paper.

2 Tree Functions

We first consider functions computed by Boolean AND/OR trees
each gate may have arbitrary fan-in, but only one outputhvit
loss of generality, we may assume that levels of the treenalte
between AID gates and @ gates. Let such a Boolean tr&ehave

n leaves labeled by variables, z», ..., z,. Variablex; has an
associated non-negative caestor reading the value of;. We say

a 0-witness(resp. 1-witnes$ for T' is aminimal setW of leaves
which when set td (resp. 1) will causeT to evaluate td) (resp.

1). The cheapest proof which allows one to prove tRavaluates

to 0 (resp.1) is always som@-witness (respl-witness).

2.1 Efficient algorithm achieving v(T')

We first investigate the competitive ratj¢7’) for any Boolean tree
T (recall the definition of Equation (1)), where the structof& is
fixed, but leaf prices vary. We propose the following simpleér
bound omy(T'). For any Boolean tre&, let k be the largest value
for which one can simulate an¥d gate of fan-ink usingT by

Now suppose each array entry has a price, and we seek an al-hardwiring an appropriate sé4 of (n — k) leaves ofl’ to 0. (Such

gorithm of optimum competitive ratio. Here the cheapesbott

of membership ofy is simply a single query to an entry contain-
ing q; the cheapest proof of non-membership is a pair of queries
to adjacent entries containing humbers less than and griate

q, respectively. It is possible to formalize this problem émnbs

of a functionf of the type described above, imposing certain con-
straints on the sets of inputs that are allowed; we omit thailde
here.

We provide an efficient algorithm for this problem that aghie
the optimal competitive ratio with respect to any given casttor.
We then consider the associadremal problemwhich cost vec-
tor forces the largest competitive ratio? We also give aoritlym
achieving a competitive ratio dég, n + O(/log nloglogn) for
any cost vector; this exceeds the competitive ratio for thiéorm

ak is also the size of the largest minterm in boolean functian-co
puted byT'. One can computg by giving all leaves ofl" a value
of 1, replacing the AD and Cr gates ofT’ by Sum and Max
functions respectively, and then evaluating the resubirithmetic
circuit.) Consider the following cost vecter ¢; = 0 whenever
x; € So, elsec; = 1. Clearly, a0-witness forT would now have
cost exactlyl, as it would only need to contain one non-zero cost
leaf whose value i§. On the other hand, any deterministic algo-
rithm could easily be made to pay simply by setting all but the
last non-zero cost leaf queried to have valuélence k is a lower
bound ony(T).

One can similarly show that the largest vallier which T can
simulate an @ gate of fan-in¢ (or, equivalently/ is the size of the
largest maxterm in the function computed BY is also a lower

bound ony(T). Thus, max{k, £} is a lower bound ony(T).!
Somewhat surprisingly this simple lower bound turns out ¢o b
tight, as we show by presenting an algorithm with competitatio
max{k, ¢} for anysetting of leaf costs. The idea behind the algo-
rithm, which we call WEAKBALANCE, is the following: At each
node in the tree, wbalancethe investment on leaves in each of the
subtrees — scaling this balancing act using the lower bodedsi
above. This ensures that we do not leave a cheap proof umegplo
in any subtree.

Algorithm WEAKBALANCE: Each noder in the tree keeps track
of the total cosCost,, that the algorithm has incurred in the sub-
tree rooted at. At each step, the algorithm decides which leaf
to read next by a process of passing recommendations upetie tr
Each (remaining) leal. passes on (to its parent) a recommenda-
tion (L, cr) to readL at costcr. For an internal node, we will
consider two cases: (a) Supposés an AND node with children
z1,...,x¢ and itreceives recommendatiofis,, cr,), . . . , (L, cLy)-
Letk., ..., k: be the sizes of the largestv gates that can be in-
duced in the subtrees rootedat, . . . , z+, respectively. Them
passes upward the recommendat{@s, cz,) such thaf Cost,; +
cr;)/ks is minimized; (b) Ifz is an Gr node, then the same pro-
cess occurs witlky, . . ., k; replaced with the sizes of the largest
inducible CGr gate</s, ..., ¢, and the recommendation passed up-
ward is the one minimizingCost.; + cz,)/¢;. Finally, the root of
the treeT’ decides on some recommendatidi cz.). This leafL

is read at costr,, and all local total cost€ost,'s are updated, and
the tree is partially evaluated as much as possible fromahe\of

L. When the tree is fully evaluated, the algorithm terminates

Lemma2.1 For any Boolean tre€l’, let k and ¢ be defined (as
above) as the sizes of the largest indudesld and OR, respec-
tively. If there exists ®&-witness (resp.1-witness) of cost, then

WEAKBALANCE will spend at moskc (resp. £c) before finding
this witness.

Proof Sketch: We proceed by induction on the size of the tree
T. Clearly this holds for trees of siZe Consider the case where
the root of the tree is an ¥D node with childrency, ..., z;. Let
ki,...,k: be the sizes of the largest inducedi® gates rooted at
each child node, and Iét, . .., ¢; be the sizes of the largestrRO
gates. Observe that= Y k; while { = max;{¢;}.

Any 0-witness forT' of coste consists of a singl®-witness
(of costc) for a subtree rooted at somg. Now suppose that
WEAKBALANCE has spent more thakc, and yet WEAKBAL -
ANCE has spent less thadnc on nodex;. This means that for some
x; # x;, the algorithm has spent more thajr on z;. Consider
the last recommendatiofl;, cr.;) accepted fromx; — it must be
that (Costz; + cz;) > kjc; on the other hand, since there is a
0-witness of cost rooted atz; that has not been found, by in-
duction, the recommendatidiL;, cz.;) from z; must be such that
(Costs; + cr;) < kic. Thisis a contradiction, since the balancing
rule would require the recommendation framito take precedence
over the one fronz;. Hence, if WEAKBALANCE spends at leagic
onT, itwill uncover any0-witness of cost. Now consider the case
of al-witness forT" of coste, which must consist of-withesses of
coste; rooted ateverychild nodez;, with Zi ¢; = c. By induc-
tion, we know that as soon asBMk BALANCE spends at leagtc;
on the subtree rooted at, it will uncover thel-witness atc;, upon
which the rest of the subtree rootedagtwill be pruned. Thus,
regardless of the balancing, as soon asARBALANCE spends
Ei Lic; onT, the entirel-witness will be uncovered. Recall that

¢ = max; ¢;, and thuszi lic; < £ Zl ¢; = {c, as desired.

Litis easy to see thahax{k, £} /2 is also a lower bound on the expected
competitive ratio of any randomized algorithm.

An analogous argument holds for the case of anrode, ex-
cept in this case, balancing is important for findintraitness, but
not for finding a0-witness. |

Theorem 2.2 Let k£ and £ be as in Lemma 2.1. Then(T') =
max{k, £}, andWEAKBALANCE runs in polynomial time and achieves
a competitive ratio ofy(T').

Corollary 2.3 Let L1, ..., Ly (M1,..., M) be the leaves corre-
sponding to a largest inducediND (resp. OR) in T'. Letco (resp.
c1) be the cost vector that assigns cdsto leavesLy, ..., L
(resp. M1, ..., M;) and cost0 to all other leaves. Ik > ¢, then
co is extremal forT’; otherwisec; is extremal forl’. That is, either
Yeo (T') OF e, (T') equalsy(T).

Corollary 2.4 If T is a complete binary tree with = 2%¢ leaves,
theny(T') = y/n. Hence, for such trees, the all-ones cost vector is
extremal.

Remark: For any monotone boolean functigifzi, z2, ..., »),
one can prove that the following simple algorithm achievesma-
petitive ratio of(2 max{k, [}) for any cost vector. Pick the cheap-
est minterm and maxterm ¢gf and read all variables in the cheaper
of the two; if this proves thaf evaluates t® or 1 stop, else replace
f by the functionf’ obtained by setting the variables just read to
their values, and continue witf{. The key to proving the claimed
bound is that any minterm-maxterm pair ffmust share a vari-
able, and hence the algorithm never reads more thamterms

or kK maxterms. How do we compute the cheapest minterm and
maxterm? For boolean trees this computation is actually, easl
this gives a simple polynomial-tim@ max{k, {})-competitive al-
gorithm for boolean tree evaluation, for any cost vectore Ak-
BALANCE does not lose a factd in the competitive ratio, and
more importantly, generalizing its approach enables ugtisd an
algorithm BaLANCE that is optimal for any given cost vector, as is
described in the next Section.

2.2 Optimal Algorithm for given cost vector

For a particular vector of costs, the optimal competitive ratio
~<(T') can be much less thay(T’), the ratio guaranteed by PMK-
BALANCE. These observations lead us to more exact lower bounds
and our algorithm BLANCE which, for any tre€l” and cost vector

¢, achieves the optimal competitive ratje(7'). The key to devel-
oping this algorithm is to define certdiower bound functionghat

are more refined than the minterm-maxterm based lower bounds
of WEAKBALANCE. For any Boolean tre& and cost vectoe,

we define functiongd () and f{ (z) representing lower bounds
on the cost that any deterministic algorithm must incur inlifig

a 0-witness (orl-witness, respectively) of of cost at mosiz.>
These functions imply that for any tr&& every deterministic al-
gorithm must have a competitive ratio of at least the maxinofim
max, {fg (¢)/2} andmax, {f{’ (z)/x}.

Lower Bound Functions. For a Boolean tred’, the functions

fI and fI are computed in a bottom-up manner moving from the
leaves to the root of the tree.

e For aleafL with coste, we have

0 ifz<ec

foL(w)=f1L($)={ c ifz>ec

2These functions are actually functions ®fis well; we omit this de-
pendence for notational convenience.

e Forasubtred, letrs denote the root of, and letS1, Sa, ..., St
be the subtrees rooted at the childrerrgf Suppose we al-
ready know the functiongy* andf;’*, our goal is to compute
fs and f from these functions. There are two cases which
arise now depending upon whetheris an AND node or an
OR node.

(1) rs is an AND node: Now, a minimal-witness forS
consists of exactly on@-witness for some subtree. The
adversary can thus choose to “hide” this witness in any
of the subtrees, suggesting the bound we define below.
On the other hand, a minimatwitness forS consists
of 1-witnesses from each of the subtrees. Thus, the ad-
versary’s only choice is to pick suchwitnesses in a
manner that maximizes any deterministic algorithm’s
expenditure, suggesting the other bound we define be-
low. Formally, we defing

@)= f'@) 2)
1<i<t
o= mx (3 @) ©
-z 1<i<t

LTy =T
i

)

rg is an QR node: Here the situation is exactly reversed
from that of an AD node. Thus, we defiffe

@)=Y fi@). @)
1<i<t
0(e) = max (> foS"(wi))- ©)
- 1<i<t

;=
i

Remark: Itis easy to see that the definitions above imffy(c) =
0 (resp.ff (¢) = 0) if T has na0-witness (respl-witness) of cost
corless.

Complexity of computing f& and fI: The functionsf{ and f&
arestep functionsvhenL is a leaf and therefore it is easy to see that
the functionsf{ and f{ are also step functions for any Boolean
treeT'. Hence all the functions above have@npactof complex-

ity polynomial in the number of leaves and the sum of the gosts
representation as a table of values and this representiote
computed efficiently: Itis clear that the operations of Bapres (2)
and (4) can be performed efficiently. For Equations (3) andi(5

is not difficult to see that by representing all functions aslze

of values, it is possible to calculate them in time polyndritiahe
sum of the costs of the leaves.

Later, in the specification of our algorithm, we will also lee r
ferring to the inverséfd)~ and(f{)~* of these functions. Since
these functions are not injective, this is loose notationfB* (y),
we actually meamin{z : f(z) = y}. In words, f~!(y) is the
minimum element in the inverses imagespfinder f. Also, for
ease of notation, we sometimes referfth and f for a subtree
rooted at a node also asfy and fi’ respectively.

We now claim that the above are actually lower bound funstion
which have some additional nice properties.

31n Equation (3), thenax operator is taken only over those such that
there can exist a-witness inS; of cost at mostr;. If no suchz ...z
exist for a particulat, then f (z) = 0.

4In Equation (5), thenax operator is taken only over thosg such that
a0-witness can exist ii¥; of cost at most;. If no suchzy ...z exist for
a particularz, then f§’(z) = 0.

Proposition 2.5 If T is an arbitrary tree, therff (c) (resp. f1 (c))
is a lower bound on the cost any algorithm must incur in theswor
case in order to find &-witness of cost at most(resp. 1-witness
of cost at most). More specifically, there is an adversary strategy
that ensures that, as long as any algorithm has incurred & cos
strictly less thanfZ (c) (resp. fI (¢)):

(1) Itdoes not find &-witness (respl-witness) of cost at most

(2) The partial assignment to the leaves that have been raad c
be extended so that @witness (resp.1-witness) of cost at
mostc exists, and also be extended so that evewyitness
(resp.1-witness), if any at all, has cost strictly more than

Proof: The proof works by inductively moving upward from the
leaves to the root of the entire trde For the leaves, the claim
of the Proposition is clearly satisfied; dfis the cost of the leaf,
then the cost of &-witness andl-witness are botk. Unless an
algorithm incurs a cost af, the adversary can always set the leaf to
be0 when it is queried thereby creatind)awitness of cost, and
can instead set it th in which case there is n@witness at all (and
therefore trivially evenyd-witness has cost more thajp

Supposes is a subtree whose ropg is an AND node with sub-
treesS1, Ss, ..., S; rooted at itg children. We want to prove that,
assumingfosi andflsf' satisfy the conditions of the Proposition, the
definition of f5 andf{ as per the Equations (2) and (3) above also
satisfies the requirement of the Proposition.

We first consider the case when the algorithm is trying to find
a 0-witness of cost at most Note that since's is an AND node,
the 0-witness is simply @-witness of one of the subtreés. The
adversary strategy to “hide” @witness of cost at mostis as fol-
lows: The basic idea is to use, for each sub$eethe strategy for
S; guaranteed by induction. More specifically, for the first sub-
treesS; (excludingS;, for somek) for which the algorithm ends up

spending an amount at Ieaﬁfi (c), ensure (using part (2) of the
inductive hypothesis) that there is Bewitness forS; of cost at
moste. For the “last” subtreeSy, use the inductive strategy fé¥;
to hide a0-witness of cost: till the algorithm spendg‘(;s’c (o).

Now suppose an algorithm has spent a total €swhich is
less than the “lower bound functiorfs (¢) = > fOS" (c) as per
Equation (2). Hence there existskal < k < ¢, such that the
algorithm has spent less thzfﬁ’“ (¢) on Sk, and hence the above
adversary strategy ensures that the algorithm has not faund
witness forS. It is also clear that the adversary has the option of
either extending the partial assignment so th@iveitness of cost
at moste exists, or so that evefjrwitness forS has cost more than
C.

Now we consider the case when the algorithm is trying to find
a l-witness of cost at most We may assume thgt (¢) > 0 for
otherwise the statement of the Proposition holds vacuoulsbte
that al-witness of cost for S consists ofl-witnesses foiS; of
coste; for1 <4 < twith El ¢; = c. Letus pickey, ea, ..., ¢ for
which the maximum in Equation (3) is attained. By our assummpt
on Equation (3), there exidtwitnesses fotS; of cost at most;
for everyi € [1..t]. The adversary strategy now is as follows:
for the first (¢ — 1) subtreesS; (excluding S, for somek), for

which the algorithm incurs a cost of at Iea'§5tj (¢j), the adversary
causesS; to evaluate td through al-witness of cost at most;
(using the strategy for each subtree guaranteed by thetinduc
hypothesis), and thus it reduces the valu&db the value ofSy.
Meanwhile, forSy, the adversary also uses the strategydprto
hide a witness of cost;, until the algorithm spendg’’* (c;). As
long as any algorithm has incurred a cost (strictly) lesa ffX(c),
this strategy leaves the adversary with the option of eitheating
a 1-witness of cost at mostor ensuring that every-witness ofS
has cost more than This completes the proof for the case wken

is rooted at an AID node; the other case when it is rooted at an O
node is handled similarly. |

The BALANCE Algorithm. We now show how to use the lower
bound functions described above to derive an algorithmghwviie
call BALANCE, that achieves the best possible competitive ratio.
The high level idea behind B ANCE is the same as BAKBAL -
ANCE: At each intermediate node, walancethe amount spent
on reading leaves in each of the subtrees — by “balancing” ave d
not necessarily mean that the exact amounts spent are aly nea
equal, rather we mean that the costs of the possible witad¢kae
can still be found in all the subtrees are of nearly equal, st
that after spending a huge amount, we do not still leave tlssipo
bility of there existing a cheap witness in some unexplorad pf
the tree which in turn will imply a poor competitive ratio.AB-
ANCE actually uses the above lower bound functigigs and f;

for the balancing criterion. The algorithm is formally dgbed in
Figure 2.

We want to prove that BLANCE indeed achieves the optimal
competitive ratioy.(T") for any Boolean tre@ and cost vectoe.
For this we prove below that if there is a withess (foevaluating
to either0 or 1) of cost at most, then BALANCE discovers the wit-
ness by spending a total cost that is at mask{ f§ (c), £ (c)}-

In conjunction with Proposition 2.5, note that this immeeiaim-
plies that BALANCE achieves the optimum competitive ratio possi-
ble for any deterministic algorithm; indeed any deterntinialgo-

rithm has a competitive ratio of at leastax [maxz{ f& (x)/x},

max,{fi (z)/x}|, and BALANCE achieves this competitive ratio.
Theorem 2.6 If BALANCE when running of{T’, ¢) spends an amount
which is greater tharfg (c) (respectivelyf{ (c)), then there exists
no 0-witness (respectively-witness) forT’ which has cost at most

¢. Or, equivalently, if there exists@witness (respl-witness) for

T of cost at most, thenBALANCE proves thatl" evaluates td)
(resp.1) by spending at mogt{ (c) (resp. fT (¢)).

Proof: The proof once again works by inductively moving up the
tree from the leaves to the root. Wh#hjust consists of a leak,

the statement of the theorem clearly holds. Now supposeotite r

of T'is an AND node (the other case can be handled similarly) with
childrenzy, zo, . . ., z; with subtre€T; rooted atr; for1 < i <t.

First, suppose BLANCE spends an amount strictly greater than
fE (c) when evaluating’, and yetT' has al-witnessW of cost at
moste. Sincer is an AND node,W is a collection ofl-witnesses
W; of coste; for Ti, 1 < i < ¢, withec = Yi_ ¢;. By the
definition of f{ (¢) in Equation (3), this implies that there exists a
k, 1 < k < t, such that BLANCE spends more thafi’ * (cx) on
reading leaves if,. By induction, however, this implies thdt,
hasno 1-witness of costy, or less, a contradiction to the existence
of W;. Hence if BALANCE spends more thaﬁlT(c), then it rules
out the possibility off” having anyl-witness of cost or less.

We now consider the case @fwitnesses. SupposeAIBANCE
has spent an amount more th#f (c) E f0 (¢) and yet
there is &)-witnessW of costc; we WI|| then arnve at a contradic-
tion. Using the fact that is an AND node, the witnesB is simply
a0-witnessW; of costc for somei, 1 < ¢ < t, say for definiteness,
it is a0-witnessW; for T;. By induction, we know that BLANCE
never spends more thaff* (c) onT; (or else there could not be a
0-witnessW; of cost at most). Since on the whole BLANCE has
spent more thaEEZ1 fOT" (c), there mustexist g, 1 < j < t, say
for definitenesg = 1, such that BLANCE has spent more than

T1(c) onTi. Now consider the point whenA& ANCE chose the
recommendatioR; = (L1, cr,) from 71 and went above, " (¢)

on its expenditure offy, so thatCoste, + cz, > fo'(c). At

this point, it rejected the recommendati® = (L, cr,) from T;
which we know satisfie€ost., +cr, < f;*(c). But we then have
(fF)"*(Costa, + cr,) < ¢ < (fa*) *(Costy, + cr,). Thus
BAaLANCE would have never chosen the recommendation fiam
over that ofT; (here we are using the fact at levels where the parent
is an AND node, BALANCE uses the functiorf] to decide whose
recommendation to take), a contradiction. Hence thereatdyna
0-witness of cost at mostas we supposed, and we are donel

Corollary 2.7 For any boolean treél’ and cost vectok, BAL-
ANCE achieves a competitive ratio of (T').

2.3 Threshold Trees

Observe that AD and Cr gates are botthreshold gates.e., their
output is1 provided sufficiently many of its inputs are setltolt
turns out the BLANCE algorithm of the previous sections can be
modified to competitively evaluatareshold treess well: a thresh-
old tree is a tree where each internal node is a thregftpjd-gate

for some values of, p, where the output of &, p)-gate isl if and
only if at leastp of its ¢ inputs arel. The values of the threshold
p can vary over the nodes of the tree. The algorithm for evalgat
threshold trees is BLANCE with appropriate lower bound func-
tions defined for threshold gates akin to the functions ddffioe
AND and Qr gates. The structure of witnesses is more general than
for Boolean trees, and as a result we need to run two algosithm
in parallel (balancing the costs they incur) one of whichsue
function f, and the othelf, for the balancing criterion; this incurs
a factor2 loss in the competitive ratio of the algorithm. We next
specify the lower bound functions for general thresholeégal he
details of the proof on how and why modifiedsBANCE works for
threshold trees are similar to those given for Boolean tagelsare
omitted in this version.

Lower Bound Function for Threshold Gates: Suppose a thresh-
old treeT has a(t, p)-gate at its root and letSy, ..., Sk be the
subtrees rooted at the childrensofWe definé

f1 (2) = max

£ (2p)

+ g 7 (maxz;)}]
©)

Observe that this equation is equivalent to:

flT(x)=m;LX[z o £)

.....

+Zi¢] fi(e - Ej x])}]
M

The latter equation gives insight into the lower bound argoin
while the former corresponds to the argument for optimatftthe
modified BALANCE algorithm. The equation fofy’ is obtained by

51n Equations (6) and (7), the first max operators are takenah@ces
of I = {i1,42,...,4p} C [t]. In Equation (6), the seconthax op-
erator is taken only over choices of,...,z, such that there can ex-
ist 1-witnesses inS;,, ..., S;, of cost at mostrs,...,zp, respectively.
If no suchzy...xzp exist for a particularz, then the value of thenax
is 0. Similarly, in Equation (7), the seconghax operator is taken only
over choices ofc1,...,zp—1 such that: (A) there can exidtwitnesses
inSi,-. .,Si(P_l) of cost at mosty, . .., zp—1, respectively; (B) there
exists some ¢ I such that al-witness can exist irf; of cost at most
T — xj. Again, if no suchr ...z, 1 exist for a particulae, then

the value of thenax is 0.

Algorithm BALANCE:

Input: A Boolean treel” with a cost vector on itsn leaves.
Output: The value of the tre@.

* For each noder, we keep track of the total co€lost, incurred on the subtree rootedsat*/
Let Cost,, = 0 for all nodesz in the tree.

Compute the lower bound functiorf§ and f{ for all nodesz of T'. (Actually we will only be
referring to the “inverses” of these functions.)

While T is not fully evaluated
1. Moving up the tree from the leaves to the root:

(a) Each leafl. which has not been read or pruned yet passes a recommendation
R = (L,cr) up toits parent.d, is the cost of leaf..)

(b) Each internal node of the tree that receives recommendatidhs Ry, . . ., R:, with
R; = (Ls, cr;), fromitst (not yet pruned) childrem1, z2, . . ., z+ chooses one of its children
as follows:

(i) If z is an AND node, choose the chite, with the minimum value of f;*) " (cz, + Costz,).
(ii) If = is an QR node, choose the chitd, with the minimum value of f{*) " (cz, + Costa,).
(ties are broken arbitrarily)

Nodez then propagates the recommendatiynfrom z, up to its parent
(unlesse is the root in which case goto Step 2)

/* At this point recommendations have passed upward to tbefrom the leaves. */

2. I* Now we are at the roat and say it chose a recommendati®p = (L, cr.). */
The value of the leal is read at a cost afz.

3. For all ancestorg of L in T the total cost incurred on their subtree is increasedly
i.e performCost, = Costy, + cr.

endWhile

Output the value of the treE.

Figure 2: The BLLANCE Algorithm.

writing the above equation withl = ¢ — p + 1 instead ofp since
the complement of &, p)-gate is &t,t — p + 1)-gate®

Theorem 2.8 For any threshold tre& and any cost vectat, there
is a polynomial time algorithm for evaluatiffj with competitive
ratio at most twiceye (7').

2.4 Game Trees

We can in fact generalizeA& ANCE to competitively evaluatgame

trees(also called MIN/MAX trees). A game tree has real values on

its leaves and the internal nodes arexMand Max functions; our
goal is to evaluate the value of the root.
For a MIN/MAX tree T we use a pair of witnesses, dir

witness and &J-witness, that prove matching lower and upper
bounds respectively on the value of the tree. One can then de-

fine appropriate lower bound functiorfg , £~ similar to the func-

tions fi, f& (for Boolean trees) respectively, and run two copies

see that if this property holds for a Boolean t#@ethen it holds for
all subtrees ofl” as well, and this actually shows that such a price
vector is unique up to scaling. This motivates the conswoobf
prices in a bottom-up fashion, appropriately rescalingpthiees as
we move up the tree so that when we reach each intermedia¢e nod
the cost of allD-witnesses and-witnesses of the subtree rooted at
that node have the same cost.

We begin by setting the prices of all leavesltoAs we move
up the tree, we maintain, for each noddhat has been visited,
quantitiesCo[v] andC1 [v] which represent the uniform costs of all
0-witnesses and-witnesses respectively in the subtree rooted at
just afterv was visited(these quantities will change as we move
further up the tree te’s ancestors). Now, suppose we move up the
tree and reach an internal nodgwhich we assume for definite-
ness to be an AD node) with childrenus, us, . . ., ux (which are
OR nodes). Our goal is to construct an ultra-uniform price eect
for T, the subtree of” rooted atu, from the ultra-uniform price

of BALANCE simultaneously (balancing the cost they incur), one VectorsF; of theT,,;'s. Sincew is an AND node, a0-witness of

trying to prove a lower bound (on the valueBf and usingfZ for
balancing, and the other trying to prove a matching uppentdou
(and usingfZ for balancing), till these two bounds match.

Theorem 2.9 For any MIN/MAX tre€l’ and a cost vectoe, there
is an efficient algorithm that evaluat&ds with a competitive ratio
at most2v. (7).

The above theorem also holds for a common generalizatidresi-

T, is simply a0-witness of one of th&,,’s. Hence in order to
make the cost of all-witnesses of, equal, we rescale the prices
of the nodes in th&’,;’s so that the cost di-witnesses of’,; and
Ty, for1 < i < j < k are all the same. We can achieve this,

for instance, by dividing the price vectdt of the leaves iy, by
Colu;]. After this rescaling, al0-witnesses off’, have costl, so
we setCo[u] = 1. A 1-witness ofT, is the union ofl-witnesses
for Ty, , Tu,, - - ., Tu,; after the above rescaling dltwitnesses in

old and MIN/MAX trees where the internal nodes are gates that T, have the same costi[u;]/Co[u;], and hence all-witnesses

return thet*® largest element for some(the value oft could be
different for different nodes).

3 Ultra-uniform Prices

Given a Boolean tre& with n leaves, we ask: how do we “fairly”
price the leaves df’ so that every on-line algorithm achieves the
same competitive ratio? Such a price vector, if one existsalled
an ultra-uniform price vector. Intuitively, it means that the leaves
are so evenly priced that at every stage it does not matteshwhi
leaf is queried next, from the point of view of the compeétiatio.
(Clearly if a leaf is overpriced, an algorithm will defer diag it
unless absolutely necessary; and similarly, if a leaf iseupdced

it will be read right away). It is far from clear why such a pnig,
which appears to be a very strong requirement, should exat a
We show in this section that such a pricing not only exist$chn
also be found efficiently.

Theorem 3.1 Given a Boolean tre& with n leaves, one can find
an ultra-uniform price vector fof” in polynomial (inn) time.

Proof: The idea is to ensure that the cost of(allvitnesses of" is
the same, sayy, and similarly that the cost of allwithesses of”
is the same, say; (the costs:g, c1 need not be equal).

of T, have the same cot [u] £ Ele C1[ui]/Coluil.

When we reach the root of the trdg we have a price vector
with the required property. It is clear that this proceduaa be
implemented to run i®(n?) time, and thus an ultra-uniform price
vector forT exists and can be found in polynomial time. |

4 Searching with Prices

4.1 A near-optimal algorithm

We outline an algorithm for searching arelement array with com-

petitive ratio bounded blog, n + O(log;’® n) for any cost vector
on the elements of the array. Later, we will improve the atpor
to get a competitive ratio bounded g, n+0O(/log nloglog n).
This proves that the unit price vectordssentiallyan extremal price
vector for binary search, and also that our algorithm is astroéf
by lower order terms from the true competitive ratio.

The algorithm is motivated by two goalét) We do not exam-
ine costlyelements until we have eliminated the possibility of the
elementyy lying in an array location occupied lmheaperelements;
and (2) to achieve a competitive ratio close lsg, n, we mimic
binary search by attempting to halve the search intervdl exery
comparison. Unfortunately, the two goals could be conttady
because the only way to halve the search interval might be-to e

We first claim that any setting of prices satisfying the above mine an expensive element.

property is in fact an ultra-uniform price vector. To seesthiote

that tree functions are evasive and hence any algorithm ean b

forced to examine all the leaves, and the final value of theden
be set to eithed or 1 after the last leaf is read. @' is the total cost
of all the leaves, any algorithm can thus be forced to haverget-
itive ratio of C'/min(co, ¢1). Moreover, any algorithm has a com-
petitive ratio at mos€C'/min(co, c1), as the most an algorithm can

spend is the total co¢t of all the leaves, and the adversary incurs

a cost at leastnin(co, ¢1) for both 0-witnesses and-witnesses.
Hence these prices are indeed ultra-uniform.

We now describe how to construct prices that ensure the uni-

formity of the costs ofD-witnesses and-witnesses. It is easy to

8For our algorithm, it is important that these functioff§ and T can
be computed in polynomial time; this turns out to be true.

High-level description of the algorithm. Our algorithm uses two
parameters andc. Initially costs are grouped geometrically by
rounding costs up to the nearest multiplerothe algorithm con-
siders groups in increasing order of cost. We normalizessasthat
the lowest cost id. Let groupj consist of all elements with cost
r?. The algorithm maintains a search interdalvhich is the set of
possible (contiguous) locations whereould lie, and splitd into
three (contiguous) intervals, M, R where the left and right inter-
vals L, R do not contain any element of (the current) grguand
the middle intervalM, referred to as theffective intervalwhich
begins and ends with an element of grguplhe algorithm main-
tains the property that does not contain any elements of groups
(4 — 1) or lower. We repeatedly compagewith the groupj ele-
ment that is closest to the middle of the effective inted&l Such

comparisons are calledgularcomparisons and each such compar-

ison is guaranteed to halve the size of the effective interfhis
certainly makes progress as long as the elempéias within the ef-

fective interval. However, iff does not belong to the current group

4, at some pointg could fall outside the effective interval for group

7. In such a case, we do not want to spend too much on querying

group j elements. To handle this possibility, after everyegu-
lar comparisons of with groupj elements, we perform aextra
comparison by querying one of the extreme grggbements. This

checks ifg lies outside the effective interval. If the current search

interval I does not contain any element of the current grgupe
move on to group + 1, and continue the algorithm.
We now give a formal description of the algorithm.

Algorithm Search

1.
2.

9.
10.

I+ [1...n],j« 0, left_cnt « 0, right_cnt < 0.

While I does not contain an element of gropip
<« j+1; left_ent < 0; right_cnt < 0.

endWhile
. left_ent = ¢,
left_cnt < 0.

Let z be the leftmost element of groyn I.
type < EXTRA. Jump to Step 6.

. If right_ent = ¢,

right_cnt < 0.
Let z be the rightmost element of groypn 1.
type <+ EXTRA. Jump to Step 6.

. Decomposd asI = Lo M o R into three intervald,, M, R

such that the left and right intervalsand R do not contain
any element of group, while the middle intervalM starts

and ends with an element from grogpM is thus the current
effective interval

Let z be the element in groupthat is closest to the middle
of M, breaking ties arbitrarily.
type +— REGULAR.

. Letl =IpoxolIg.
. Comparey to x.

. If £ = q, returnPRESENT

elseifq < z,
I+ I,
if type = REGULAR
left_cnt < left_ent + 1; right_cnt < 0.
else ifg > =z,
I+ Ig,
if type = REGULAR
right_cnt < right_cnt + 1; left_ent < 0.

If Iis empty, returifNOT PRESENT
Goto step 2.

Competitive analysis of the algorithm. The algorithm maintains
an intervall of the array in which the elemeagtbeing searched for
must lie. It compareg to some element in the current interval.
Depending on the result of the comparison, the algorithriricts
its search in the subinterval éfto the left ofz (if ¢ < z) or to the
right of z (if ¢ > x). This procedure is thus guaranteed to fjnl
indeed it is present in the array.

Recall that we distinguish between two kinds of comparisons

made by the algorithm. If the elementcompared to is chosen in
Steps 3 or 4, such a comparison is calleceatracomparison. On
the other hand, if the elememtcompared to is chosen in Step 5

such a comparison is calledregular comparison. The following
lemma shows that the algorithm makes progress in perfornaigg
ular comparisons.

Lemma 4.1 For all regular comparisons performed on grogiphe
length of the effective interval goes down by a factor of aste.

Proof: Supposel is the current interval. Lel = Lo M o R
whereL, M and R are the intervals obtained in Step 5. Suppose
z is the element that is chosen to compare with. By chaicis,
the element closest to the middle &f. Let M = My o x o Mg.
Without loss of generality, assume tHat’z| < |Mr|. Hence,
|Mr| < (M| — 1)/2. Further, letMg = L' o M’ where M’
is the smallest interval containing all the elements of grgtn
Mpg. Note thatM = My ox o L' o M'. By the choice ofr,
|M'| < |Mr|+ 1. We claim that|M’| < 3|M|. If |ML| <
(1] ~1)/2,|M'| < |Mp|+1 < M| If [Mp| = (|M]-1)/2,
z is exactly the middle element @ff. Thus|Mr| = (|[M|—1)/2
and|M'| < |Mg| < %|M].

If ¢ < z, the effective interval is a subinterval 8f;,. Suppose
q > z. Inthis case, the effective interval M’. In both cases, the
size of the effective interval drops by a factor of at least [|

Letn; be the length of the search interJaht the first time that
the algorithm considers group If m is the last group examined,
definen.,,4+1 to be 1. Letc; be the total number of comparisons
performed with elements of groyp

1 .
ci < (1—}-2) log, (nnL) +c+2
y

Proof: Let I; be the search interval at the first time that the algo-
rithm considers elements of groyipI;4+1 must have beeoreated

by comparisons to the elements immediately to the left gttt of

I; 41 (sayz; andz, respectively). Suppose that was compared
to beforez,.. We will bound separately, the number of comparisons
of groupj performed up to the comparison with and the number
after the comparison witl; .

Consider the number of comparison steps performed up to the
point thatz; was compared with. Throughout this timg,y; is
part of the effective interval. Let; be the length of the effec-
tive interval at the first time that groupis considered and- be
the length of the effective interval just befargis compared with.
e1 < |I;| = nj andez > |Ij+1| = mj41. Since each regular
comparison reduces the length of the effective interval e ast
2, the number of regular comparisons befsfas compared is at
mostlog,(e1/e2) < log,(n;/nj+1). Further, the number of ex-
tra comparisons performed during this time is at mb&t times
the number of regular comparisons, since each extra cosgpari
can be charged toregular comparisons. Thus the total number of
comparisons including the comparisoniois at most

1+<1+l)log2< 1)
¢ Nj+1

After the comparison withk;, the search interval is of the form
Ijy1 03, o I'. Sincel;4; does not contain any elements of group
4, itis no longer part of the effective interval. Since thershayets
narrowed down td; 1 later, it follows that for all groug elements
2’ compared to from this point og,< z’. But there can be at most
¢ + 1 such comparisons. If within more comparisons the search
has not already been narrowed dowrg;, then element, will
be picked in the next iteration in Step 3 and compared wiffihat
will narrow down the search interval #1941 in at mostc + 1 steps.
Adding the two bounds, we get the bound in the statement of the
lemma. |

Lemma 4.2

Theorem 4.3 Forr = 1+1/1logL/® n ande = logi/® n, the com-
2/3

petitive ratio of the algorithm is bounded byg, n + O(logy’” n).

Proof: Let groupm be the last group examined by the algorithm.
Then the cost of the algorithm is at most

UL LGN 1 n;
e, < 7 (1+—)lo I) +c+2
orive < 3o (1) (2
Jj=0 Jj=0
1) w— n; “
= 1+—) . lo L) +(c+2 r
(42 o (2)+ ey
Jj=0 j=0
1 rmtl
< (1+-=)r™1 2
< (+C)r og,n+ (c+)r—l

The optimal proof has cost at least~'. Hence the competitive
ratio of the algorithm is bounded by

7”2

1
1 —) ! 2 .
(+c rlog,n+ (c+)r—l

Settingr = 1 + 1/logs’® n ande = logi/® n, we get the desired
bound. |

We can improve the competitive ratio by modifying the algo-
rithm slightly. The idea is to change the way in which extraneo
parisons are performed. Note that in the algorithm desdribeve,
the number of extra comparisons for grogiis of the forme +

n

1iog - . The improvement comes from balancing the two
€ 92\ mj+1

terms in this expression. The modified algorithm does nothese
parameter. We keep track of the total number of regular compar-
isons performed so far for the current group. An extra coispar
is performed every time the total number of regular compass
equals a perfect square. As before,dgtbe the total number of
comparisons performed with elements of grgupWe can prove

that
n; n;
<o L 1 4+0 lo J)
Cj = 108y (nj+1) (82 (nj+1

Settingr = 1 + 2/4/log, n, we can prove that the competitive

ratio of the algorithm is bounded Byg., n+ O(/log nlog log n).
We omit the details in this extended abstract.

4.2 Optimal search for a given cost vector

We now present a dynamic programming algorithm to compuge th
optimal algorithm for searching a sorted array of pricednsets.
Straightforward dynamic programming would entail consiutg
all O(n?) subintervals, and computing the best competitive ratio
possible for each subinterval. This, however, fails, asl=seen
from the following illustration. Suppose on some particidabin-
terval I of interval J, the adversary could force any algorithm to
pay total cost at least to find an element of cost, or pay total
cost at leas60 to find an element of cof0. A strict competitive
ratio analysis would lead us to believe that the adversasyldghal-
ways force the algorithm to pay at leas#l to find an element of
cost20. However, if on the larger interval, it was the case that
the adversary could force any algorithm to pay cost at |2dms-
fore reducing the search problem#>hen clearly when the search
focuses onl, the adversary should force the algorithm to pRay
more and find the element of cdstas this would lead to an overall
competitive ratio oft (as opposed t¢60 + 2)/20).

This suggests the following algorithm, which does work: For
every subintervall, and everyz, we will first compute a lower

bound f(I,z) for the competitive ratio that any deterministic al-
gorithm can achieve oi, given that the algorithm has already
spentz. For any element € I, letc, denote the cost of exam-
ining a. For any singleton interval = {a}, clearly f({a},z) =

(z + ca)/cq is an exact bound on the competitive ratio. Also, for
an empty interval, we lef(Z,z) = 0 for all z. Now for all larger
intervalsI, we define:

#(T =a...b],2) = min [ma.x{ fa...G— 1),z +er),
(z +ci)/ci,
£ +1).. B+ o)}

8
A simple inductive argument shows that this gives the dd$ower
bound, as the algorithm has choice over whidb examine, and
the adversary can choose to either respond that the eleragmt b
searched for is smaller than, equal to, or greater than eleine
Furthermore, we can efficiently pre-compute a table of thaser
bounds for every subinterval and every value foup to the sum
of all costs. This then yields an optimal algorithm for penfiing
the binary search, as the optimal first move for intedvddaving
already spent is determined by the minimizing choice o the
computation off (I, z).

Acknowledgments
We thank Ravi Kumar for useful discussions and for suggestia
generalization to threshold trees.

References

[1] A. Blum, P. Chalasani, D. Coppersmith, W. PulleyblankRBghavan
and M. Sudan, “The minimum latency problerRfoceedings of the 26th
ACM Symposium on the Theory of Computih@94, 163-171.

[2] A.Borodin, R. El-Yaniv,On-Line Computation and Competitive Anal-
ysis Cambridge University Press, 1998.

[3] B. Bollobas,Extremal Graph TheoryAcademic Press, 1978.

[4] Clickshare Service Corp., www.clickshare.com.

[5] O. Etzioni, S. Hanks, T. Jiang, R.M. Karp, O. Madani, O.afta, “Ef-
ficient information gathering on the InterneBtoc. IEEE FOCSL996.

[6] H. Garcia-Molina, S. Ketchpel, N. Shivakumar, “Safegling and
Charging for Information on the Interne®roc. Intl. Conf. on Data En-
gineering 1998.

[7] R. Heiman, A. Wigderson, “Randomized vs. Determinidiiecision
Tree Complexity for Read—Once Boolean Functior@djmplexity The-
ory, to appear.

[8] J. Komlbs, Y. Ma, E. Szemerédi, “Matching nuts and bolh
O(nlogn) time,” Proc. ACM-SIAM SODA996.

[9] E. Koutsoupias, C. Papadimitriou, M. Yannakakis, “Sbang a fixed
graph,” Proc. Intl. Conf. on Automata, Languages, and Programming
1996.

[10] D. Kreps,A Course in Micro-Economic TheqgrPrinceton University
Press, 1990.

[11] R. Motwani, P. RaghavarRandomized Algorithm<ambridge Uni-
versity Press, 1995.

[12] Pricing Economic Access to Knowledge (PEAK) Home Page,
http://www.lib.umich.edu/libhome/peak/papers.html.

[13] S. Sairamesh, C. Nikolaou, D. F. Ferguson and Y. Yenknbnomic
Framework for Pricing and Charging in Digital Libraries.Lib Maga-
zine, February 1996.

[14] M. Saks, A. Wigderson, “Probabilistic Boolean decisitees and the
complexity of evaluating game tree®toc. IEEE FOCS1986.

[15] M. Snir, “Lower bounds on probabilistic linear decisitrees,"Theo-
retical Computer Sciencg8(1985), pp. 69-82.

[16] D. Tygar, “NetBill: An Internet Commerce System Optirad for
Network-Delivered SystemslEEE Personal Communicatior1995),
pp. 20-25.

[17] “What's the Value of Digital Information?”, panel &EE Conf. on
Electronic Commerce: Foundations for the Futui®99.

[18] Y. Zhang, “On the optimality of randomized alpha-be¢arch,’SIAM
Journal on Computin@4(1995), pp. 138-147.

