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Abstract Finding telecommunications fraud in masses of call records is more difficult
than finding a needle in a haystack. In the haystack problem, there is only one
needle that does not look like hay, the pieces of hay all look similar, and neither
the needle nor the hay changes much over time. Fraudulent calls may be rare
like needles in haystacks, but they are much more challenging to find. Callers
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are dissimilar, so calls that look like fraud for one account look like expected
behavior for another, while all needles look the same. Moreover, fraud has to be
found repeatedly, as fast as fraud calls are placed, the nature of fraud changes
over time, the extent of fraud is unknown in advance, and fraud may be spread
over more than one type of service. For example, calls placed on a stolen wireless
telephone may be charged to a stolen credit card. Finding fraud is like finding a
needle in a haystack only in the sense of sifting through masses of data to find
something rare. This paper describes some issues involved in creating tools for
building fraud systems that are accurate, able to adapt to changing legitimate and
fraudulent behavior, and easy to use.

Keywords: Customer Profiles, Customer Relationship Management, Dynamic Databases,
Incremental Maintenance, Massive Data, Sequential Updating, Transaction Data,
Thresholding.

1. BACKGROUND

Fraud is a big business. Calls, credit card numbers, and stolen accounts
can be sold on the street for substantial profit. Fraudsters may subscribe to
services without intending to pay, perhaps with the intention of re-selling the
services, or even the account itself, at a low cost until shut down. Call sell
operations may extend their lives by subverting regulatory restrictions that are
in place to protect debtors. Gaining access to a telephone or telephone line by
physical intrusion still accounts for some fraud. Fraudsters also focus on the
people who use and operate the network by applying “social engineering” to
instruct an unsuspecting subscriber or operator to unknowingly agree to carry
fraudulent traffic. Large profits have justified the growth of a well-organized
and well-informed community of fraudsters who are clever and mobile. Fraud
is also important to shady organizations that want to communicate without
leaving records of their calls that can be traced back to them. Domestically,
Telecom and Network Security Review(Vol. 4(5), April 1997) estimates that
fraud losses in the U.S. telecommunications industry amount to between 4%
and 6% of revenue. Internationally, the figures are generally worse, with several
new service providers reporting losses over 20%.

Many service providers respond by building fraud control centers. They
acquire multimillion dollar network and operations systems, hire and train staff
for 24-by-7 operations, educate customers, require the use of Personal Iden-
tification Numbers, partner with competitors and law enforcement agencies,
perform internal audits, and constantly tune their operations. Automated fraud
detection systems may detect calls to certain “hot numbers”, simultaneous use
of calling cards in distant locations, which is unlikely except in the case of
fraud, or other patterns of usage that are known to be associated with fraud.
Such efforts have helped to reduce fraud, but the set of fraudsters is continually
replenished and fraudsters have been able to continue to operate.
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Detecting fraud is hard, so it is not surprising that many fraud systems have
serious limitations. Different systems may be needed for different kinds of
fraud (calling card fraud, wireless fraud, wireline fraud, subscription fraud),
each system having different procedures, different parameters to tune, different
database interfaces, different case management tools and different quirks and
features. Fraud systems may be awkward to use. If they are not integrated
with billing and other databases, then the fraud analyst may waste time on
simple tasks, such as pulling relevant data from several disparate databases.
Many systems have high false alarm rates, especially when fraud is only a
small percentage of all traffic, so the chance of annoying a legitimate customer
with a false alarm may be much higher than the chance of detecting fraud.
More elaborate systems, such as those based on hidden Markov models, may
promise more accuracy, but be useless for realtime detection for all but the
smallest service provider. Finally, fraud and legitimate behavior constantly
change, so systems that cannot evolve or “learn” soon become outdated. Thus,
there is a need for tools for designing accurate and user-friendly systems that
can be applied to detecting fraud on different kinds of telecommunications
services, that can scale up or down, and that can adapt to the changing behavior
of both legitimate customers and fraudsters.

Overwhelming data complicates each step of the design and implementation
of a fraud management system, where overwhelming is defined not in terms of
an absolute standard but relative to the available computing resources. There
can be hundreds of millions of call records available for designing the detection
algorithms, but there is no need for real-time performance during the design
stage and researchers and developers often have access to powerful computing.
In production, there may be only millions of calls per day, but each call has
to be screened for signs of fraud quickly, faster than calls are being placed,
or else the system may fall behind the traffic flow. Moreover, the computing
environment may be designed for processing bills rather than for complicated
numerical processing, limiting the kinds of algorithms and models that can
be used to detect fraud. Once an account is flagged for fraud, all the calls
for the case may need to be re-analyzed to prioritize the cases that require
human intervention or analysis. There may not be a huge number of calls in an
account with suspicious activity, but specialized algorithms for fitting complex
models that take call history and account information into account may be
needed to pinpoint fraud accurately. If the case is opened for investigation,
then thousands of historical and current call records and other kinds of business
and account history may need to be considered to determine the best response.
Case management tools are needed to help the analyst sift through that data. All
these stages are important, all involve data that can overwhelm the resources
available, but the data requirements of each are very different.
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This paper begins by considering the heart of a fraud management system:
the fraud detection algorithm. Simply stated, a fraud detection algorithm has
two components: (1) a summary of the activity on an account that can be kept
current and (2) rules that are applied to account summaries to identify accounts
with fraudulent activity. Section 2 describes these components for threshold
based fraud detection. Section 3 describes our approach, which is based on
tracking each account’s behavior in realtime.

Identifying possible cases of fraud automatically is usually not the last step
in fraud detection. Often, the fraud cases need to be prioritized to help a
supervisor determine which possible case of fraud should be investigated next.
The performance of a fraud management system then depends on both the
detection step and the prioritization step. The latter step tends to be ignored by
fraud system designers, which can lead to unrealistic estimates of performance.
Realistic performance analysis is discussed in Section 4. Final thoughts on
fraud detection are given in Section 5.

2. FRAUD DETECTION BASED ON THRESHOLDING

Summarizing account activity is a major step in designing a fraud detection
system because it is rarely practical to access or analyze all the call records
for an account every time it is evaluated for fraud. A common approach is to
reduce the call records for an account to several statistics that are computed
each period. For example, average call duration, longest call duration, and
numbers of calls to particular countries might be computed over the past hour,
several hours, day, or several days. Account summaries can be compared to
thresholds each period, and an account whose summary exceeds a threshold
can be queued to be analyzed for fraud. Summaries over fixed periods resemble
the aggregations of calls used in billing, so software for threshold based fraud
detection is not difficult to write or manage. The summaries that are monitored
for fraud may be defined by subject matter experts, and thresholds may be
chosen by trial and error. Or, decision trees or machine learning algorithms
may be applied to a training set of summarized account data to determine good
thresholding rules.

Systems based on thresholding account summaries are popular, perhaps
because they are easy to program and their logic is easily understood. Thresh-
olding has several serious disadvantages, however. First, thresholds may need
to vary with time of day, type of account, and type of call to be sensitive to fraud
without setting off too many false alarms for legitimate traffic. Consequently,
multivariate rather than univariate statistics must be thresholded. The need for
sensitivity and specificity can easily lead to thousands of thresholds that inter-
act with each other and need to be initialized, tuned, and periodically reviewed
by an expert to accommodate changing traffic patterns. Accounts with high
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calling rates or unusual, but legitimate, calling patterns may regularly exceed
the thresholds, setting off false alarms. Raising the thresholds reduces the
false alarm rate but increases the chances of missing fraud cases. Classifying
accounts into segments and applying thresholds to each segment separately
may improve performance, but at the expense of multiplying the number of
thresholds that have to be managed. Additionally, rules applied to summaries
over fixed periods cannot react to fraud until the period is over nor consider
calls from previous periods. Such arbitrary discontinuities in account sum-
maries can impair the performance of the system. Perhaps most importantly,
sophisticated fraudsters expect thresholds to apply and restrict their activity on
any one account to levels that cannot be detected by most thresholding systems.
Thus, there are both too many false alarms for legitimate calling and too many
missed cases of fraud.

Thresholding can be improved, though. For example, Fawcett and Provost,
1997 develop an innovative method for choosingaccount-specific thresholds
rather than universal thresholds that apply to all accounts or all accounts in a
segment. Their procedure takes daily traffic summaries for a set of accounts
that experienced at least 30 days of fraud-free traffic before being hit by fraud
and applies a machine learning algorithm to each account separately to develop
a set of rules that distinguish fraud from non-fraud for the account. Thus,
each account has its own set of rules at this point. The superset of the rules
for all accounts is then pruned by keeping only those that apply to orcover
many accounts, with possibly different thresholds for different accounts. For
example, the rule may specify that long international calls indicate fraud, where
long might be interpreted as more than three standard deviations above the mean
duration for the account during its period of fraud-free traffic. Pruning then
proceeds sequentially: a candidate rule is added to the current set of rules if it
applies to a minimum number of accounts that have not already been covered
by a specified number of rules. The final set of rules, therefore, covers “most”
accounts, with the understanding that most of the final rules may be irrelevant
for most accounts, but all the final rules are relevant for at least some accounts.

A fraud detection system based on account-specific thresholds is straight-
forward to implement for established accounts. The calls for the period of
interest are separated by account, account summaries are computed, and then
account summaries are compared to account-specific thresholds that were pre-
viously computed from training data. This process is similar to billing, which
also requires account aggregation and access to account information. The
account-specific thresholds can be updated periodically by re-fitting trees and
sequentially selecting the account summaries to threshold. Re-training requires
more resources than running the detection algorithm does, but re-training may
be needed infrequently. Fawcett and Provost, 1997 describe an application of
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their methods to a set of fewer than 1,000 accounts, each of which had at least
30 days of fraud-free activity followed by a period of wireless cloning fraud.

Account-specific thresholding has limitations, though. Perhaps most impor-
tantly, a procedure that requires a fixed period, such as 30 days, of uncontami-
nated traffic for training does not apply to accounts that experience fraud before
the training period is over. In subscription fraud, for example, all the calls for
an account are fraudulent, so there is no fraud-free period. Moreover, rules
that are good for one time period may not be relevant for future time periods
because account calling behavior, both fraudulent and legitimate, changes over
time. And the basic limitations of thresholding—looking for fraud only at the
end of a period and basing fraud detection on calls in only the current period—
still apply. Nonetheless, a method that automatically derives account specific
thresholds is clearly an important advance in threshold-based fraud detection.

3. FRAUD DETECTION BASED ON
TRACKING ACCOUNT BEHAVIOR

3.1 ACCOUNT SIGNATURES

Like Fawcett and Provost, 1997, we believe that fraud detection must be
tailored to each account’s own activity. Our goals for fraud detection are more
ambitious, though. First, fraud detection should beevent-driven, not time-
driven, so that fraud can be detected as it is happening, not at fixed points in
time that are unrelated to account activity. Second, fraud detection methods
should havememoryand use all past calls on an account, weighting recent calls
more heavily but not ignoring earlier calls. Third, fraud detection must be able
to learn the calling pattern on an account andadapt to legitimate changes in
calling behavior. Fourth, and perhaps most importantly, fraud detection must
be self-initializingso that it can be applied to new accounts that do not have
enough data for training.

The basis of our approach to fraud detection is an account summary, which
we call anaccount signature, that is designed to track legitimate calling behavior
for an account. An account signature might describe which call durations,
times-between-calls, days-of-week and times-of-day, terminating numbers, and
payment methods are likely for the account and which are unlikely for the
account, for example. That is, given a vector ofM call variablesXn =
(Xn,1, Xn,2, . . . , Xn,M ) for each calln, the likely (and unlikely) values of
Xn are described by a multivariate probability distributionPn, and anaccount
signatureis an estimate ofPn for the account. Because fraud typically results
in unusual account activity,Pn is the right background to judge fraud against.

Estimating the full multivariate distributionPn is often impractical, both in
terms of statistical efficiency and storage space, so a major task in signature
design is to reduce the complexity ofPn. To do that, we rely on the law of
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iterated probability (Devore, 2000), which states thatPn(Xn) can be expressed
as the product

Pn(Xn,1 = x1)Pn(Xn,2 = x2|Xn,1 = x1) · · · (1.1)

Pn(Xn,M = xM |Xn,1 = x1, . . . , Xn,M−1 = xM−1).

The first term in the product represents the marginal distribution ofXn,1, and
each successive term is conditional on all the variables that were entered before
it. (The order of the variables is arbitrary.) The last term, for example, implies
that the distribution ofXn,M depends on the outcomes of the otherM − 1
variables. Thus, there is a different conditional distribution ofXn,M for each
possible combination of outcomes of all the other variables.

For example, supposeXn,1 represents call duration discretized into 10 dif-
ferent intervals,Xn,2 represents the period of day (peak or off-peak), andXn,3

represents direction (incoming or outgoing). Then equation (1.1) requires 31
terms: one for the marginal distribution of duration, 10 for the conditional
distributions of time of day given duration, and 20 for the conditional distri-
bution of direction given each possible combination of duration and time of
day. Some of these terms might be redundant, however. For example, if the
probability that a call is incoming rather than outgoing is different for peak and
off-peak hours but independent of call duration, then there are only 2 condi-
tional distributions for call direction, not 20. Then the account signatureAn,
which is an estimate ofPn, would be the product of 13 estimated distributions,
rather than 31 estimated distributions. Each term in the productAn is called
a signature component. Each signature component has asignature variable
Xm and, possibly, a set ofconditioning variables. The set of all signature
components summarizes our knowledge about calling behavior, ignoring only
those relationships among variables that are unimportant.

3.2 SIGNATURE DESIGN

In the applications that we have seen, fast processing has depended on allo-
cating the same, small amount of space to each account signature. Controlling
the size of a signature can also contribute to its accuracy and precision. For
example, suppose the duration of a call is the same for peak and off-peak hours,
but a separate signature component is (needlessly) reserved for each. Then a
peak call will not be used to update the signature component for off-peak dura-
tion, even though it would be statistically appropriate to do so. Consequently,
the signature component for off-peak duration will be estimated from a smaller
sample size than it should be, leading to statistically inefficient estimates. De-
signing a signature amounts to eliminating conditioning variables that do not
matter and controlling the amount of space devoted to each remaining term in
the product (1.1).
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Like most fraud detection systems, we assume that there is a set ofpriming
datathat consists of all calls for a large number of accounts over a fixed period
(say 60 days) that can be used to design signatures. We also assume that we
have call records for a second set of accounts that experienced fraud during the
period. For subscription fraud, all the calls on the account are fraudulent. For
other kinds of fraud, some calls are fraudulent and some are not. Ideally, the
fraudulent calls are labelled; otherwise they have to be labelled “by hand”. In
any case, because one fraudster often affects more than one account and we are
interested in characterizing fraud, not a particular fraud user, we collapse all
the fraud records for any particular kind of fraud into one set oftarget dataand,
ultimately, into onefraud signature. There may be separate fraud signatures
for wireless subscription fraud, calling card fraud, and cloning fraud, but not a
separate signature for each case of subscription fraud, for example. Each fraud
signature has the same structure as an account signature.

The first design step is to choose the type of representation to be used
for each signature variable. A continuous variable, such as call duration or
time between calls, might be described by a parametric distribution, reducing
each signature component for duration to a vector of estimated parameters,
such as a mean and a standard deviation. But often no parametric family is
both flexible enough to fit all accounts well and tractable enough to estimate
quickly (say, during call setup or teardown). Therefore, we generally take all
signature components to be nonparametric. In particular, a continuous variable
or ordered categorical variable with many possible values can be discretized, so
its signature components are vectors of probabilities over a set of fixed intervals.
Alternatively, a continuous variable can be represented as the coefficients of a
fixed set of knots for a spline fit to the log density or as a vector of quantiles. A
signature variable with many possible unordered categories,such as terminating
number or area code, can be represented by the labels and probabilities of the
most likely categories. This kind of representation resembles a histogram, but
one in which the labels of the bins are not fixed. For illustration, all signature
components are assumed to be represented by histograms in this paper.

There are many criteria for defining histogram bins; see Gibbons, Matias
and Poosala, 1997 and Ioannidis and Poosala, 1999, for example. Many of
these criteria are designed to give good performance over all possible values
of the signature variable, but in fraud detection only small probability events
are important because only small probability events are able to indicate fraud.
Since our goal is fraud detection, we choose the bins of the histogram so that,
on average, it is as easy as possible to distinguish legitimate calls from fraud
calls. For a given signature variable, this can be accomplished by maximizing
the average weighted Kullback-Leibler (AWKL) distance from the histogram
for an account in the priming data (pi,k) to the histogram for the fraud data (fk),
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where

AWKL = − 1
N

N∑
i=1

(
w

K∑
k=1

pi,k log
pi,k

fk
+ (1 − w)

K∑
k=1

fk log
fk

pi,k

)

for somew, 0 ≤ w ≤ 1, K is the number of bins in the histogram, andN
is the number of accounts in the priming data (Chen, Lambert, Pinheiro and
Sun, 2000). The weightw controls the balance between more informative
description of legitimate behavior and better separation of fraud and legitimate
behavior. Whenw = 0, the criterion ignores the fraud training data and
emphasizes only the ability to represent the behavior of legitimate accounts
well. Whenw = 1, the criterion considers only the ability to avoid false
alarms. Intermediate values ofw balance these two concerns.

The cutpointsd1, . . . , dk−1 that maximize the AWKL criterion can be found
by numerical search, if feasible. If exhaustive search is not feasible, then
searching can be limited by requiring minimum widths for theK final bins.
For example, call duration might be measured to the nearest second, but each
bin might be required to be at least one minute long and endpoints might be
restricted to integer minutes.

The AWKL distance can also be used when a signature variableX is rep-
resented by something other than a histogram. For example, if the signature
represents a continuous distribution with probability densitypi(x) for accounti
and probability densityf(x) for fraud, then the sum overi in the AWKL distance
is replaced by an integral overx. An appropriate set of parameters maximizes
the integral form of AWKL. IfX is represented by a vector of quantiles, then
a change of variables shows that

∫
x p(x) log(p(x))dx =

∫
q log(p(P−1(u))du,

whereP−1 is the quantile function defined byP−1(u) = q if
∫ q
−∞ p(x)dx = u,

so the AWKL criterion still applies. The quantiles to be used in the signature
are again those that maximize AWKL.

Methods for deciding which conditional distributions to keep in a signa-
ture are discussed in detail in Chen, Lambert, Pinheiro and Sun, 2000. The
basic idea involves computing ap-value for aχ2 test for each account in the
training data and keeping only the conditioning variables that are statistically
significant for a majority of accounts and highly statistically significant for at
least some accounts. The other possible conditioning variables add only noise
rather than predictive power to the signature of most accounts. Conditioning
variables are added sequentially until the incremental benefit from any of the
remaining variables is too small to be statistically significant for a majority of
accounts. Loosely stated, a conditioning variable is kept only if it is important
for describing many accounts, and very important for at least some accounts.
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3.3 KEEPING A SIGNATURE CURRENT

A key feature of a signature is that it can be updated sequentially, so that it
evolves in time (measured in calls) rather than abruptly changing at the end of
an arbitrary period. This enables event-driven fraud detection because there is
always an up-to-date standard against which fraud can be assessed. Sequential
updating is also computationally efficient because it does not require access
to a data warehouse, which is often slow, but only access to a data structure
that is short enough to store in main memory. In the wireline, calling card and
wireless fraud detection systems in which we have applied signatures, each
signature can be stored in about the amount of space required to store one call,
with careful quantization of probabilities.

Most signature components, such as duration or method of payment, can be
considered to be randomly sampled. Thus, they can be updated by exponentially
weighted moving averaging. For example, suppose the signature component
is a vector of probabilities, calln + 1 is represented by a vectorXn+1 of 0’s
except for a 1 in the bin that contains the observed value of the call, andAn is
the account’s signature component after the previous calln. Then the updated
signature component based on calln + 1 is

An+1 = (1 − w)An + wXn+1,

wherew determines the rate at which old calls are “aged out” of the signature
component and the effect of the current call on the component. Ifw = .05,
the probability assigned to the observed bin increases by the constant amount
.05 and the probability of any other bin decreases by a factor of .95. Also, call
n − 10, which was 10 calls earlier than calln, has about 60% the weight of
call n at the time of calln if w = .05, and about 82% the weight of calln if
w = .02. The smallerw, the more stable the signature component. Of course,
some care has to be taken to avoid incorporating fraud into the signature; this
is discussed in Section 3.4 below.

A variant of exponentially weighted stochastic approximation, which is sim-
ilar in computational effort to exponentially weighted moving averaging, can
be used to update signature components that are vectors of quantiles ( Chen,
Lambert and Pinheiro, 2000). Signature components that are represented as
tail probabilities rather than as complete distributions can be updated by using
a move-to-the-front scheme to update the labels of the top categories and a
variant of exponentially weighted moving averaging to update their probabili-
ties. (See Gibbons, Matias and Poosala, 1997 for the details of one possible ap-
proach.) Timing variables, like day-of-week and hour-of-day, are not randomly
observed because they are observed “in order”—all the calls for Tuesday of this
week are observed before all the calls for Wednesday of this week. Nonethe-
less, timing distributions can be updated in a way that is similar in spirit and in
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amount of computation to exponentially weighted moving averaging (Lambert,
Pinheiro and Sun, 1999).

Of course, sequential updating requires a starting point orinitial signature
for a new account. One way to do that is to segment the signatures for the
accounts in the priming data, basing the segmentation criteria on information
in the first one or few calls in an account. Details of one procedure based on
statistical testing are given in Chen, Lambert, Pinheiro and Sun, 2000; details
of another procedure that uses multivariate regression trees are given in Yu
and Lambert, 1999. These procedures initialize each signature component
separately. This gives a huge number of possible initial signatures (products
of initial signature components), expressing a huge number of possible calling
patterns. That is, a newly active account is assigned to a different segment of
customers for each signature component, and each assignment depends only
on the first few calls on the account. Finally, note that it is the initialization of
signatures from the calls for a set of legitimate accounts, rather than from the
calls on the account alone, that enables us to detect subscription fraud, in which
every call on an account is fraudulent. Moreover, call-by-call updating ensures
that an account with many calls soon evolves to its own “segment”, allowing
for personalized customer relationship management.

3.4 USING SIGNATURES TO DETECT FRAUD

Scoring a call for fraud is a matter of comparing its probability under the
account signature to its probability under a fraud signature. Suppose the account
signature after calln is An, the fraud signature isF , which is independent of
the number of calls on the account, and calln + 1 with signature variables
xn+1 is observed. Then thecall scorefor call n + 1 is defined by

Cn+1 = log(F(xn+1)/An+1(xn+1)).

BecauseAn+1 andF are products of signature components, the call score is a
sum of contributions from the signature components. Note that standard statis-
tical theory implies that the log likelihood ratioCn+1 is the best discriminator of
fraud (F ) from legitimate activity on the account (An) whenxn+1 is observed
(Bickel and Doksum, 1976).

The higher the call score, the more suspicious the call. For a call to obtain
a high score, it has to be unexpected for the account, soAn+1(xn+1) must
be small. Calls that are not only unexpected under the account signature
but also expected under the fraud signature score higher, and are considered
more suspicious, than calls that are unexpected for both the account and fraud.
Thus, some departures from the signature are more interesting than others
from the perspective of fraud management. As constructed, each signature
component contributes equally to the fraud score because the multivariate
distribution that predicts calln+1 is a product of the marginal and conditional
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distributions represented by the signature components. As a result, some
signature components can counteract others. This is not unreasonable. An
hour long wireless call may be less suspicious if it originates from a region
that is often used by the account. It is, however, possible to weight different
signature components differently. Weights might depend on the reliability of
the estimated distribution, some subjective information about the value of the
signature component for fraud detection, or tuning that optimizes performance
on training data. Note that the choice of the fraud distribution also affects the
call score. In particular, a uniform fraud distribution implies that all unexpected
call characteristics are equally good indicators of fraud.

Call scores serve two purposes. One is to give information that can be used
to identifyaccountsthat may have fraudulent activity. The other is to identify
calls that may be suspicious and so should not be used to update the signature.
For example, negative scores suggest that the call is not fraudulent so it should
be used to update the signature. Calls with high positive scores raise concerns
about fraud and, to be safe, should not be used to update the signature. Small
positive scores are ambiguous. They might suggest a slight change in calling
pattern that resembles fraud, or they might suggest that there is a subtle case of
fraud. This ambiguity suggests the following procedure: update the signature
if the call score is negative, do not update the signature if the call score is high,
and act probabilistically if the call score is positive but small. In the latter
case, a signature is updated with a probability that depends on the call score,
varying from probability one for a call score that is less than or equal to zero
to probability zero for a call score that is sufficiently high.

Egregious cases of fraud may generate calls with scores so high that a service
provider may be willing to declare that fraud has occurred with only one call.
Usually, however, the evidence from one call alone is not sufficient to identify
fraud. If not, it is important to monitor thescore rate, where score rate is
either the average score over the last several calls that have a score above a
pre-determined threshold or the average score of calls above a threshold over
a specified time period. Some minimal information about previous calls needs
to be kept in the signature to calculate the score rates. Accounts with high
score rates can then be examined for fraud. The thresholds are not applied to
all aggregated calls at the end of a period but rather to aggregatedhigh scoring
calls at the time of a possibly fraudulent call. We say that an account that
exceeds the thresholds on score rates isflagged. Flagging filters the set of all
accounts, producing a smaller set of accounts that have some evidence of fraud,
just as standard account thresholding filters.

Both call scoring and account flagging have parameters that can be thought
of as thresholds, but there is a major difference with the kinds of thresholds
discussed in Section 2. In standard account thresholding, an account is marked
as suspicious if it passes any one of several thresholds. In signature-based
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thresholding, different thresholds are not developed for different call charac-
teristics or different kinds of accounts, such as business accounts or residential
accounts. Instead, thresholds are applied to log-likelihood ratios that are a
combination of all call characteristics. In other words, taking log-likelihood
ratios converts all the different call characteristics and types of accounts to a
standard measurement scale with one common set of thresholds.

Nonetheless, there are thresholds that need to be tuned in a signature-based
fraud detection system. These parameters may be chosen to minimize the
chance of flagging a legitimate account as fraudulent, subject to a constraint on
the probability of missing a legitimate case of fraud in a set of training data.
Because there are only a limited number of parameters to tune, the optimal
parameters can be found by searching over a grid.

In summary, signatures are the basis of event-driven,adaptive, self-initializing
fraud detection. It is event-driven in the sense that it is applied at the time of
each call, which is the only time that fraud is active. It is self-learning, in the
sense that the basis for comparison, the signature, is updated with each call that
is not judged to be suspicious. Moderate changes in behavior are learned more
slowly, on average, because the rate at which shifts in behavior are incorporated
into a signature depends on the size of the shift. Signature-based fraud detec-
tion is also self-initializing in the sense that the first call or two on the account
is used to assign signature components to new accounts. Because the signature
components are initialized with calling patterns for previous accounts without
fraud, it is possible to detect subscription fraud for new accounts. In a sense,
the automatic initialization step allows us to start with a procedure for new
accounts that is akin to universal thresholding with a huge number of segments.
The procedure then naturally evolves to a procedure that is akin to customer
specific thresholding for established accounts. Moreover, the threshold limits
are placed on likelihood ratios and hence are the same for all segments, thus
greatly reducing the number of parameters that have to be tuned in advance.

4. PERFORMANCE METRICS

The performance of a fraud system is ultimately determined by the losses a
service provider is able to prevent, but measuring averted losses, which never
occur, is clearly difficult if not impossible. So, instead, service providers use
metrics like the detection rate, false alarm rate, average time to detection after
fraud starts, and average number of fraud calls or minutes until detection. An
ideal fraud detection system would have 0% false alarms and 100% hits with
instantaneous detection. But, finding all cases of fraud as soon as fraud starts
requires mislabeling many (if not most) legitimate accounts as fraudulent at
least once. A realistic, practical fraud system strikes a satisfactory balance of
the performance criteria.
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First, however, it is important to define the metrics carefully. Traditionally,
the false alarm rate has been defined to be the percentage of legitimate accounts
mislabelled as fraud. (False alarm rates, like type II errors, are usually quoted
as percents, rather than as rates.) If there are 1,000,000 legitimate accounts
in the population and 100 of these accounts are falsely labeled as fraud, then
the false alarm rate is .01%. False alarms are important at the flagging stage
because the goal of that step is to reduce the set of accounts in the population
that have to be considered for fraud to just those that had fraud. False alarms
are also important if account activity is restricted for flagged accounts because
then the goal is to keep the number of legitimate accounts in the population
that are needlessly restricted as small as possible.

If the evidence for fraud is ambiguous or attracting customers is costly, the
service provider may require that a fraud analyst investigate the case before
activity on the account is restricted. In that case, there is at least one queue
of flagged accounts and the highest priority case in the queue is investigated
whenever a fraud analyst becomes available. A queue may prioritize accounts
by the number of fraudulent minutes accumulated to date or by the time of the
most recent high scoring call, for example. Performance can then be evaluated
after flagging or after prioritization. For example, theflagging detection rateis
the fraction of compromised accounts in the population that are flagged. The
system detection rate, which includes the rules used to decide which flagged
accounts to open, is the fraction of compromised accounts in the population
that are investigated by a fraud analyst. The system and flagging detection rates
are equal only when every flagged case of fraud is investigated. Otherwise, the
system detection rate is smaller than the flagging detection rate because both
detection rates are computed relative to the number of accounts with fraud in
the population.

Service providers are also keen to know that their analysts are working on
fraud cases, not investigating legitimate accounts. Thus, a different question
is what fraction of investigated cases have fraud? Theflagging hit rateis the
fraction of flagged accounts that have fraud, and thesystem hit rateis the
fraction of investigated cases that have fraud. One minus the system hit rate
is often a good measure of the service provider’s perception of the “real false
alarm rate,” especially since this is the only error rate that the service provider
can evaluate easily from experience. That is, only the cases that are acted
upon may be of interest to the service provider, not the legitimate cases in the
population that were never judged to be suspicious. If 20 cases of fraud are
investigated and only 8 turn out to be fraud, then a service provider may feel
that the “real false alarm rate” is 60%, even if only .01% of the legitimate
accounts in the population are flagged as fraud.

Typically, the flagging false alarm rate, which is computed relative to all
legitimate accounts, is much smaller than one minus the system hit rate because
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so many of the accounts in the population never experience fraud and so
few accounts are investigated. Note that the hit rate after the flagging step
should be larger than the fraction of accounts in the population that have fraud.
Otherwise, flagging is no better than randomly labeling accounts as fraudulent.
The difference between the fraction of fraud in the population and the fraction
of fraud in flagged accounts is a measure of the efficiency of the fraud detection
algorithm. Similarly, the system hit rate should be larger than the flagging hit
rate, or else the analyst can find as much fraud by randomly selecting one of
the flagged accounts to investigate.

The flagging false alarm rate, detection rate, and hit rate can be estimated
by applying the flagging algorithm to a set of training accounts, some of which
have fraudulent activity. The only subtlety is that these rates vary over time and
should be investigated as a function of time. If there areLt legitimate accounts
on dayt andL1,t of these are flagged, then the flagging false alarm rate for day
t is L1,t/Lt. If there areXt active cases of fraud on dayt andX1,t of these
cases are flagged, then the flagging detection rate for dayt is X1,t/Xt. The
flagging hit rate is thenX1,t/(L1,t + X1,t). Because legitimate and fraudulent
behavior is learned over time in a signature-based fraud detection system, each
of these performance statistics should improve quickly when the system is still
new and then stabilize if the number of new accounts added stabilizes over
time.

Some care needs to be taken in counting accounts when estimating system
performance metrics. After an account is flagged and put into a priority queue,
it can either be opened for investigation by a fraud analyst, it can remain in the
queue without exceeding flagging thresholds again, or it can remain in the queue
and continue to cross flagging thresholds. If the case is opened, the account
is removed from the queue and the analyst decides, perhaps after contacting
the account owner, if fraud has been committed. If an account remains in
the queue unopened and it is not flagged again, then eventually it is considered
uninteresting and reaped from the queue. The simplest rule is to reap an account
if it has not been opened and has not been flagged again for a specified a number
of days. If an account that is already queued is flagged again, then its priority
needs to be re-computed to reflect the continuing suspicious activity.

Simulating system performance, then, requires simulating the prioritization
and reaping processes. In practice, re-prioritization may occur whenever an-
other account is flagged, but for simulation purposes it is enough to re-prioritize
accounts once a day, for example. Then, for each day, the number of accounts
opened, the number of accounts with fraud opened, and the number of active
fraud cases can be counted to compute the system hit rate and system detection
rate, which are typically the most important parameters to service providers.

Finally, note that realistic performance assessment requires assuming real-
istic levels of fraud. Performance often appears better for larger fraud rates,
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but if typically 4% to 6% of all accounts are infected by fraud annually, then
assuming that 20% to 30% of all accounts are infected by fraud in three months
is not realistic and overstates system performance.

5. FURTHER THOUGHTS

This paper describes an approach to fraud detection that is based on tracking
calling behavior on an account over time and scoring calls according to the
extent that they deviate from that pattern and resemble fraud. Signatures avoid
the discontinuities inherent in most threshold-based systems that ignore calls
earlier than the current time period. In the applications that we have encoun-
tered, a signature can be designed to fit in about the space needed to store
one call. Consequently, they can be stored in main memory that is quick to
access, rather than in a data warehouse that is slow to access. In one application
to wireless fraud detection, we had 33 gigabytes of raw wireless call records
for about 1.5 million customers. Each signature required 200 bytes, so the
signature database required only about 300 megabytes to store. In an applica-
tion to domestic wireline calling, there were 90 gigabytes of call records for
about 1 million customers. Each signature required only 80 bytes to store, so
the signature database required only about 80 megabytes. Because signatures
are updated call-by-call, there is no need for offline processing or for using
out-of-date customer profiles. Thus, signatures are able to avoid two common
complaints about fraud detection systems that profile customers: they cannot
scale up and they cannot keep up with the volume of data. Moreover, signatures
are initialized from legitimate data from a huge number of possible initializa-
tions, so they can detect subscription fraud. This is in contrast to profiling
systems, which use only the calls on the account itself to profile customers and,
therefore, cannot detect subscription fraud. Finally, the signature evolves with
each new call that is not considered fraudulent, so each established customer
eventually has its own signature, not a signature designed for a segment of
customers. Evolving the customer from an initial segment to a personalized
segment is painless—no additional processing, such as re-clustering a database,
is necessary.

It is possible to put other kinds of fraud detection algorithms in the signature
framework. For example, many service providers keep lists of “hot numbers”
that are associated with fraud. These can also be used in a signature-based
system, by giving each call a high score when a hot number is called. More
importantly, perhaps, it is possible to have scores for warm numbers that are
often but not exclusively associated with fraud. These numbers can be assigned
a contribution to the log-likelihood that is smaller than that for hot numbers, for
example. It is also possible to keep account characteristics that can be derived
from call records and that might be useful for fraud detection in the signature.
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For example, the fact that an account is a coin phone might change the rate at
which it is attacked by fraud or the kind of fraud it is likely to be subjected to.

There is much more to fraud detection than the algorithms that score calls
and label accounts as suspicious, though. For example, the fraud detection
system needs to be able to access calls at the switch, before they are sent to a
data warehouse, in order to be real-time or nearly real-time. Putting hooks into
a telecommunications network to pull call data from a switch can be extremely
difficult. After an account is flagged, investigators need sophisticated tools for
case management. These tools must be integrated with billing systems so that
the investigator can access payment history. The case management tools must
also be integrated with service provisioning systems so that an investigator can
enable service restrictions on the account, if appropriate. Putting hooks into
these systems is non-trivial at best. Supervisors then need case management
tools that allow them to track the performance of the system and to spot new
trends in fraud. Tools are needed to ensure that if one account for a customer
is closed for fraud, then all accounts for that customer are closed for fraud, for
example.

Signatures can be adapted to any kind of fraud in which transactions are
made on accounts. This includes credit card fraud, in which the transaction is a
purchase, and medical fraud, where the account may be a medical practitioner
and the transaction an interaction with a patient or the account may be a
patient and the transaction a visit to a medical practitioner. More generally,
signatures can be used to predict transaction behavior on accounts. For example,
signatures can be used in to track the behavior of visitors at web sites to identify
those who are about to make purchases. While further research is needed
to work out the details for particular applications, the concept of signature-
based predictive tracking is broad and potentially valuable for a wide range of
applications.
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