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Abstract

We study algorithmic questions concerning a basic microeco-
nomic congestion game in which there is a single provider that
offers a service to a set of potential customers. Each cus-
tomer has a particular demand of service and the behavior of
the customers is determined by utility functions that are non-
increasing in the congestion. Customers decide whether to join
or leave the service based on the experienced congestion and
the offered prices. Following standard game theory, we assume
each customer behaves in the most rational way. If the pricesof
service are fixed, then such a customer behavior leads to a pure,
not necessarily unique Nash equilibrium among the customers.
In order to evaluate marketing strategies, the service provider
is interested in estimating its revenue under the best and worst
customer equilibria. We study the complexity of this problem
under different models of information available to the provider.

• We first consider the classical model in which the provider
has perfect knowledge of the behavior of all customers.
We present a complete characterization of thecomplexity
of computing optimal pricing strategiesand ofcomputing
best and worst equilibria. Basically, we show that most of
these problems are inapproximable in the worst case but
admit an “average-case FPAS.” Our average case analysis
covers general distributions for customer demands and
utility thresholds. We generalize our analysis to robust
equilibria in which players change their strategies only
when this promises a significant utility improvement.

• We extend our analysis to a more realistic model in which
the provider hasincomplete information. Following the
game theoretic framework of Bayesian games introduced
by Harsanyi, we assume that the provider is aware of prob-
ability distributions describing the behavior of the cus-
tomers and aims at estimating its expected revenue under
best and worst equilibria. Somewhat counterintuitive, we
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obtain an FPRAS for the equilibria problem in the model
with imperfect information although the problem with per-
fect information is inapproximable under the worst case
measures. In particular, the worst case complexity of the
considered stochastic equilibria problems increases with
the precision of the available knowledge.

1 Introduction

We investigate computational aspects of a classical economic
game in a market in which a single provider offers a service
to a set of potential customers. We consider a selfish provider
whose goal is to maximize its revenue. Each customer is as-
sumed to have a particular demand of service and the quality
of service decreases with thecongestion, i.e., the sum of the
served demands. We consider a model in which the customers
do not cooperate with each other and the customer behavior is
determined byutility functions. The utility functions are as-
sumed to be non-increasing in the congestion and they specify
whether a customer joins or leaves the service based on the of-
fered prices and the experienced congestion. If all prices are
fixed then such a customers behavior leads to an equilibrium
among the customers, commonly known as aNash equilibrium.
Therefore, from the perspective of the provider it is important
to understand the behavior of the customers in Nash equilib-
ria. In general, the provider may be interested in many possible
scenarios. For example, if she is optimistic then she might aim
at setting up prices such that the revenue under thebest cus-
tomer equilibria is maximized. A more pessimistic provider
could be interested in maximizing the profit underworst equi-
libria or minimizing thegap between best and worst equilibria
to minimize economic risk.
The model. In this paper we consider the following game
that corresponds to the scenario described above. Suppose a
provider wants to sell an on-line service to a set ofn potential
customers. Every customeri is assumed to have ademand of
servicewi. For the time being let us assume that the provider
committed to a particularprice vector. Let pi denote theprice
offered to customeri ∈ [n] = {1, . . . , n}. Furthermore, let
xi denote an indicator variable that is1 if customeri joins
the service and0 otherwise. Then, theprofit (revenue)of the
provider is defined as

∑

i pixi. Due to congestion effects, the
quality of service is assumed to be non-increasing with theload,
which is the allocated demand

∑

i wixi. Therefore, the utility
of a customer is a non-increasing function of the load. For
i ∈ [n], let ui : R+ −→ R+ denote theutility function of



customeri mapping a load value to the maximum price that the
customer is willing to pay for a service under this load. In this
way, thepayoffof a customeri is ui(

∑

j wjxj)− pi in case he
joins the service (i.e.xi = 1), and is zero otherwise.

We assume a classical game theoretic setting in which a
customer is willing to join the service if the payoff is non-
negative, and he refuses the service otherwise. If the payoff
is zero then the customer is ambivalent. An allocation of
customers in which it is impossible for any single customer
to improve his payoff is called acustomer Nash equilibrium.
In this paper we investigate two critical properties of customer
Nash equilibria: which customers join the service and what is
the profit obtained by the provider.

Let us observe that the region of allocations in an equilib-
rium is described by the following constraints:

xi = 0 ⇒ pi ≥ ui(wi +
∑

j wjxj)

xi = 1 ⇒ pi ≤ ui(
∑

j wjxj)

xi ∈ {0, 1}
More specifically, the equilibria defined by these con-

straints are calledpure equilibria. If we relax the integrality
and assumexi ∈ [0, 1] then we obtain so-calledmixed equilib-
ria. In this study, we will focus on pure equilibria.

Assuming that the prices are fixed, we can simplify the
description of pure customer equilibria as follows. Sinceui

are non-increasing functions, we can define(utility) thresholds1

bi = u−1
i (pi), i ∈ [n], and obtain

xi = 0 ⇒ wi +
∑

j wjxj ≥ bi(1.1)

xi = 1 ⇒ ∑

j wjxj ≤ bi(1.2)

xi ∈ {0, 1}.(1.3)

Condition (1.1) is called amaximality constraintand (1.2) – a
threshold constraint. Observe, that the problem of maximizing
∑

i pixi subject to the constraints above (thebest equilibria
problem) generalizes the maximum knapsack problem. The
only difference is that in the knapsack problem all utility
thresholdsbi are identical. Of course, in the typical knapsack
formulation the maximality constraint is not specified explicitly
as it is fulfilled implicitly by profit maximization. However,
if customers have different thresholds then the maximality
constraint is crucial. The problem of minimizing

∑

i pixi

subject to (1.1)-(1.3), is called theworst equilibriaproblem.
Congestion games. Assuming fixed prices, our game is called
a congestion gamein the literature. This class of games
has been introduced by Rosenthal [27] and since then studied
extensively (see, e.g., [14, 21, 22, 23, 31]). In Rosenthal’s
model players choose a subset of available facilities, and each
facility has an associated utility function. A payoff to a
player from a facility is a function depending on the number
of all players that choose this facility. Rosenthal shows that
there always exists a pure strategy Nash equilibrium in his
model. A model that is closer to our has been studied by

1If function ui is not strictly decreasing, we extend the definition ofu
−1

i
in

the natural, obvious way.

Milchtaich [21, 22]. In a so-calledunweighted crowding
(congestion) game, every player has a player-specific payoff
function that depends on the strategy he plays and on the
number of players that choose the same strategy. In aweighted
crowding (congestion) gameeach playeri has a weightwi,
and the payoff function of a player depends on the sum of
the weights of all players choosing the same strategy. In this
terminology, our game is a weighted congestion game with
player-specific payoff functions in which each player has two
strategies. Milchtaich [21] shows that such games always admit
pure Nash equilibria, i.e., there exists a vectorx ∈ {0, 1}n

(usually many such vectors) that fulfills the maximality andthe
threshold constraints defined above.
1.1 Summary of new results The main theme of this paper
is to understand the complexity of determining three important
properties of the game described above: what is the best
pricing scheme for the provider, which customers will join the
service in customer best/worst Nash equilibria, and what isthe
provider’s profit in best/worst Nash equilibria.
Basic model. We begin with the classical model in which
the provider has perfect knowledge about the behavior of all
customers. We provide a complete characterization of the
complexity of computing best and worst equilibria, and of
computing optimal pricing strategies in this model.

• We give anFPAS2 to compute revenue maximizing prices
assuming that the provider can offer an individual price to
every customer independent of the customers demand.

• Individual pricing is often considered unrealistic. Eco-
nomic literature usually assumes that prices are functions
of the demands. Under this assumption, we show the ex-
istence of apseudopolynomial time algorithm.

• We show that the pseudopolynomial time algorithm can-
not be transformed into an FPAS. In fact, we prove that
even under uniform pricing functions (i.e., prices are equal
to demands) the problem isinapproximable3. Even for flat
rate pricing (i.e., fixed price, same for all customers) the
best possible approximation ratio isΩ(

√
n).

In addition, we study morerobust equilibriaconcepts that
avoid thrashing effects. We show that even under these robust
equilibria, most of the considered problems remain inapprox-
imable. Only some special, somewhat restrictive cases, e.g.,
if all customers have the same utility threshold, admit efficient
approximation algorithms.
Average case analysis. Despite the pseudopolynomial algo-
rithm, most of the problems are inapproximable under the worst
case measures. In economic literature one typically does not
consider the worst case scenarios (which almost never appear

2FPAS or FPTAS stands for afully polynomial time approximation scheme.
FPRAS means afully polynomial time randomized approximation scheme.

3Throughout this paper, the term“inapproximable” means that for any
polynomial time computable functionα(n), the considered problem cannot
be approximated within a factor ofα(n) in polynomial time, unlessP = NP.



in real life applications) but rather makes some stochasticas-
sumptions about the input. Therefore, we turn our attentionto
average case analysisand our goal is to consider input distri-
butions that are as general as possible.

The pseudopolynomial algorithms for the equilibria prob-
lems are based on a reduction to the interval knapsack prob-
lem, i.e., the standard 0/1 knapsack problem with an additional
lower bound on the weight of knapsack packing. This prob-
lem cannot be approximated in its general form as setting the
interval length to some small number allows to decide theNP-
hard subset-sum problem based on approximate solutions for
the interval knapsack problem. We can prove, however, that
there is anadaptive approximation schemewhose running time
depends linearly on the reciprocal of the length of the interval.
This adaptive algorithm is the basis for our average case analy-
sis of the equilibria problem.

In our average case analysis, we consider a very general
model, where thedemands and utility thresholds may have
arbitrary, continuous probability distributions4 with bounded
mean and density. Different demands and different thresholds
can have different distributions. Our main contribution here
is the design and analysis of an approximation scheme whose
expected running time depends on the maximum density and
the maximum expectation over all probability distributions. To
give a simple example of the performance of this scheme, if
all demands are uniformly sampled from[0, 1] and all utility
thresholds are sampled from[0, n], then we obtain an “average-
case FPAS.” Observe, that under such a distribution, the ratio
between the smallest and largest input numbers is only polyno-
mial. This, however, by no means implies that the pseudopoly-
nomial time algorithm can be used to obtain an approximate
solution. The crucial property to obtain the average-case FPAS
is that there are no small intervals in the interval knapsackprob-
lem to which we reduce the equilibria problems.
Models with incomplete information. Finally, following eco-
nomic literature, we turn our attention to a more realistic model
in which the provider hasincomplete information about the
customer behavior. Following the game theoretic framework
of Harsanyi [12, 13], we assume that the provider is aware of
probability distributions describing the customer behavior and
aims at estimating its expected revenue under best and worst
equilibria. On a first view, this Bayesian variant of the equi-
libria problem might seem even harder than the problem under
perfect information. However, we can prove the existence of
an FPRAS(fully polynomial time randomized approximation
scheme) under some mild assumptions about the imperfect in-
formation. (Notice that the running time bound does not refer
to the random input anymore but to the coin flips made by the
algorithm.) In principle, our analysis covers general probabil-
ity distributions with bounded domain. If the distributions are
“well dispersing” then we achieve polynomial running time.
The more “concentrated” the distributions are, the larger the
running time becomes. Thus, somewhat surprisingly, the com-
plexity of the equilibria problems increases with the precision

4All our results can easily be generalized to discrete distributions as well.

of the available knowledge.

1.2 Previous and related work Previous work in (eco-
nomic) game theory that considered the same or similar to our
models has already been discussed in the introduction under
“congestion games.” From the computational viewpoint there
are results on the complexity of computing equilibria in a paral-
lel link game [6, 7], in normal form games and Bayesian games
[3] (see also the references therein). These papers mostly prove
that computing equilibria with some properties is hard. Com-
plexity of equilibria in a market exchange game was studied in
[4, 5]. For example, Feldmann et al. [7] have given an FPAS
for computing the best equilibria in a simple parallel link game.

We now briefly discuss some previous work on algorithmic
aspects of games with incomplete information. A classical
model of auction design is given a seller who wants to sell
a single (or multiple) item(s) to potential customers. Each
customer has a private valuation of the item. The seller only
knows a probability distribution over possible values of the
valuations and her goal is to design a strategy (auction) of
which customer gets the item and for what price in order
to maximize her expected revenue. This simple model does
not consider congestion issues. Ronen [25] has given a2-
approximate auction in this model. These results also hold in a
Bayesian context. No deterministic polynomial time auction
from a natural class of auctions can do better than a4/3-
approximation, see Ronen and Saberi [26].

Several studies, e.g., [1, 2, 10], deal with average case
analysis for the knapsack problem. In contrast to our work,
these studies assume that profits are independent of the weights
(i.e., demands in our terminology5), and they study exact algo-
rithms. In our analysis, profits are functions of weights. Inthis
case, one cannot hope to get exact algorithms, which is related
to breaking so-called knapsack crypto-systems whose hardness
is based on the hardness of random subset-sum instances (i.e.,
knapsack with profits equal to weights) [15].

In the stochastic knapsack problem there are givenn items
with random weights with associated profits and the knapsack
capacity. The objective is to find a knapsack packing that
maximizes the expected profit or maximizes the profit under
an additionally given overflow probability. Kleinberg et al.
[16] have given aO (1)-approximation algorithm for general
independent distributions. Goel and Indyk [9] improve on
this result by giving approximation schemes for particular
distributions, e.g., exponential or Bernoulli. Translating our
result into this setting, we do not compute a particular knapsack
packing but the expected profit of optimal knapsack packings.
Other differences are that we assume that profits depend on
weights (demands), and we consider harder problems which
in contrast to the standard knapsack cannot be approximated
within any factor if the weights are adversarial.

More detailed references especially to the related work in
economics and game theory were either discussed before in the
introduction or will appear further in the text.

5In our considerations related to knapsacks we will rather use the term
weight instead of demand.



Outline. Sections 2 through 7 describe our results in more
detail, and Section 8 contains the most interesting proofs.

2 An FPAS for individual pricing

We first consider the simplest (but also the least realistic)
model in which the provider can offer an individual price
to every customer. Prices need not depend on the demand
of the customer, that is, the provider is allowed to use an
arbitrary price vectorp1, . . . , pn. Under such assumptions,
the maximality constraint in the description of the customer
equilibria can be avoided by assigning very high prices to
those customers that are unwanted. As a consequence, for the
optimal individual price vector there is only one equilibria and
the provider does not have to distinguish between the best and
worst equilibria. We assume that the utility functionsui(·) are
known andui(·) as well asu−1

i (·) can be evaluated in constant
time. In such a model we can provide a strong algorithmic
result whose proof is omitted in this extended abstract.

THEOREM 2.1. Under individual pricing there is a price vec-
tor that maximizes the provider’s profit and uniquely determines
the behavior of each customer. Furthermore, there is an FPAS
for approximating such an optimal price vector and for approx-
imating the optimal equilibrium.

Individual pricing, however, is usually considered to be un-
realistic for an on-line service provider. Most studies in eco-
nomics deal withpricing schemes, where prices are monotone
functions of the demand, see, e.g., [11, 18, 24, 28, 29, 30].

3 Pseudopolynomial algorithms for more realistic pricing

Economic literature focuses mostly on the following classes
of pricing schemes:uniform pricing: a function of the form
p(w) = aw, with a > 0 andw being the demand of a customer;
linear pricing: p(w) = aw + b with a > 0, b > 0; block
pricing: p is a positive, piece-wise linear function; andflat rate:
some constant function. In the context of an on-line service
provider, block pricing seems to be the most relevant pricing
scheme. In practice, customers are offered a small collection of
so-calledpricing plans(i.e., linear price functions) from which
each customer can choose the best offer w.r.t. his demand.

Previous work in economics (see, e.g., [11, 17, 18, 20, 24,
28, 29, 30]) focuses mostly on explicit analytical descriptions of
equilibria. With this knowledge, pricing schemes are then com-
puted basically by enumerating all possible pricing schemes
from a given class of pricing schemes. However, the computa-
tion of the equilibria values of our congestion game isNP-hard
and hence does not have such a closed form representation.
Consequently, the provider needs more advanced algorithmic
solutions in order to compute the value of worst and best equi-
libria. In fact, we can prove that there is a pseudo-polynomial
time algorithm for computing best and worst customer equi-
libria under arbitrary price vectors. Recall that prices trans-
late into thresholds, that is, the input consists of the thresholds
b1, . . . , bn, demandsw1, . . . , wn, and pricesp1, . . . , pn. All
these values are assumed to be positive integers.

THEOREM 3.1. There is a pseudopolynomial time algorithm
for computing the best (worst) customer equilibria for any
given price vector.

This algorithm is based on a similarity of the equilibria
problem and the knapsack problem. In fact, we reduce the equi-
libria problem to a variant of the knapsack problem that we call
interval knapsack, and we then show that the pseudopolyno-
mial time algorithm for knapsack also works for the interval
knapsack problem. This theorem is proved in Section 8.2.

The theorem has immediate consequences for the calcu-
lation of optimal pricing schemesfor best or worst customer
equilibria. For example, consider block pricing with a constant
number of pricing plans. There is only a pseudopolynomial
number of ways to choose a constant number of different piece-
wise linear functions. Thus, all block pricing schemes can be
checked in pseudopolynomial time to determine the best one.

4 Inapproximability of equilibria and of pricing

Having a pseudopolynomial time algorithm for a problem, it
is often possible to transform it into an FPAS. Unfortunately,
this does not work for computing best and worst equilibria. We
show that these problems are essentially inapproximable, even
under uniform pricing, which basically means that prices are
equal to demands. The proof of Theorem 4.1 can be found in
Section 8.1.

THEOREM 4.1. The best and worst customer equilibria prob-
lems are inapproximable under uniform pricing.

This negative result implies that not only the best (worst)
equilibria problem for an arbitrary uniform pricing function is
inapproximable but so is the problem of computing best (worst)
equilibria problem when theoptimal uniform pricing function
is given. To see this, suppose the input of the uniform pricing
problem are integersb1, . . . , bn and demandsw1, . . . , wn. A
uniform pricing is a pricing functionpi = awi for some
a > 0. Let the utility functions be of the formui(x) = wi

if x ≤ bi and 0 otherwise. Then, the optimal uniform pricing
scheme ispi = wi for all i ∈ [n]. An approximation of the
revenue that can be obtained by these prices under best (worst)
equilibria, however, gives also an approximation of the value of
the underlying best (worst) equilibria itself and, hence, is not
possible.

COROLLARY 4.1. The best and worst customer equilibria
problems are inapproximable even when the optimal uniform
pricing function is given.

Still, this inapproximability result leaves a hope that one
might manage to compute the optimal pricing function without
being able to approximate the revenue it yields. In fact, in
the above example the computation of the best pricing scheme
itself was trivial. The following theorem, whose proof is
omitted, shows that not only computing the optimal revenue but
also computing the prices that lead to this revenue is difficult by
itself. We restrict our attention to the simplest possible pricing
scheme: flat rates and the best equilibria problem.



THEOREM 4.2. For a flat ratea > 0, let P (a) be the profit of
the best equilibria under this flat rate. Letopt = maxa P (a).
A flat ratea > 0 with P (a) ≥ opt/

√
n cannot be calculated in

polynomial time, unlessP = NP.

5 (In)Approximability of robust equilibria

All inapproximability results above rely on a very careful and
adversarial choice of the utility thresholds s.t. even a slight
change of thresholds leads to thrashing effects. This raises the
questions of how the complexity of the problem will change
if we consider more “robust” equilibria. It is very reasonable
to assume that customers move to a different strategy only if
this promises a significant improvement in the congestion. This
leads toδ-robust equilibriadefined as follows. For someδ > 0,

xi = 0 ⇒ wi +
∑

j wjxj ≥ (1 − δ)bi

xi = 1 ⇒ ∑

j wjxj ≤ (1 + δ)bi

xi ∈ {0, 1}.

What are the effects of such a relaxation on the approxima-
bility of the equilibria problems? It turns out that the problems
basically remain inapproximable even under robust equilibria.
Only some special, somewhat artificial cases in which all cus-
tomers have the same threshold become approximable now.

THEOREM 5.1. For any0 ≤ δ < 1
8 , best and worstδ-robust

equilibria are inapproximable (even under uniform pricing).

THEOREM 5.2. If b1 = b2 = · · · = bn then the worstδ-
robust equilibria problem admits an FPAS ifδ > 0 and is
inapproximable ifδ = 0 (assuming arbitrary choices of prices
and demands).

The proof of Theorem 5.1 (omitted here) can be seen
as a “robust” variant of the proof of Theorem 4.1. The
proof of Theorem 5.2 relies on an analysis of themin-max
knapsackproblem, i.e., the problem of packing a knapsack with
minimum profit such that the weight is maximal, i.e., no item
can be added to the knapsack without exceeding its capacity.
We give a complete characterization of the complexity of this
problem that might be of independent interest. Before it was
only known that the min max knapsack problem isNP-hard
[19]. Despite the similarity of the min-max knapsack problem
to the standard knapsack problem, we prove that themin-
max knapsack problem is inapproximablealthough the latter
problem admits an FPAS. More precisely our results are the
following.

THEOREM 5.3. Consider the min-max knapsack problem.

(a) If weights and profits are arbitrary then the problem is
inapproximable. If weights and profits are equal then the
problem admits an FPAS.

(b) Theδ-robust min-max knapsack problem (δ ≥ 0) defined
by min{

∑

j pjxj |
∑

j wjxj ≤ B(1 + δ) ∧ (xi = 0) ⇒
wi +

∑

j wjxj ≥ B(1−δ)} admits an FPAS with running

time poly(n, 1
ε
, 1

δ
).

6 Adaptive algorithms and average case analysis

We continue our analysis of the interval knapsack problem.
In its general form the interval knapsack problem cannot be
approximated because any algorithm that for arbitrarily small
interval length approximates profits in polynomial time could
be used to decide subset-sum instances. If the specified interval
is large, however, then there is no direct relation to the hardness
of subset-sum. In fact, we can give an approximation algorithm
for interval knapsack whose running time adapts to the length
of the interval. The proof of the next theorem is in Section 8.3.

THEOREM 6.1. For any ε ∈ [0, 1], there is an(1 − ε)-
approximation algorithm for the interval knapsack problem
with interval boundariesL and R having running time

O
(

n3R
(R−L)ε log

(
∑

i
pi

Pmin

))

, wherePmin = mini(pi).

This result is a key to our average case analysis of the
equilibrium problem for general probability distributions. We
consider the scenario in which demands and thresholds have
independent continuous probability distributions with density
function fi andgi and distribution functionsFi andGi (i ∈
[n]), respectively. Prices are assumed to be a function of the
demands. We assume that the pricing function is non-negative,
non-decreasing and concave. This is a very natural assumption
since rational customers can always achieve concave pricing
functions by splitting their demands. For this reason, basically
all pricing schemes considered in the economic literature (see
Section 3) are concave. Furthermore, we assume that the
pricing function can be evaluated in constant time.

The running time of any efficient average case algorithm
for the equilibrium problem must depend on the input prob-
ability distributions. Otherwise, one could bypass the inap-
proximability results presented in the previous sections by en-
coding worst case instances into distributions with very high
density. In fact, the running of our algorithm increases with
the maximum density of the underlying probability distribu-
tions. Letφ denote the maximum density over all distribu-
tions, i.e., φ = maxi supx>0{fi(x), gi(x)}. Let µ be the
maximum expectation over all these distributions, that is,µ =
maxi{

∫∞

0 xfi(x)dx,
∫∞

0 xgi(x)dx}. The proof of the next re-
sult can be found in Section 8.4.

THEOREM 6.2. Assume that the pricing function is a non-
negative, non-decreasing, and concave function of demands,
andφ andµ are as defined above. For anyε ∈ [0, 1], there is an
(1− ε)-approximation algorithm for the best (worst) equilibria
problem with expected running time poly(n, 1

ε
, φµ).

The term 1
φµ

can be seen as a measure of the amount of
randomness available. (Observe that one can always scale the
distributions so thatµ = 1; this scaling does not change the
value of φµ.) If all input variables have identical uniform
distribution thenφµ = 1

2 , which is the smallest possible
value. Next, suppose an adversary specifies possibly different
Gaussian distributions (conditioned on positive values) for
the utility thresholds and demands. Thenµ (by definition)



corresponds to the maximum expectation of any of these values
and φ = Θ( 1

σ
), with σ denoting the minimum standard

deviation over all these distributions. Thus the running time
is poly(n, 1

ε
, µ

σ
). Hence, the more dispersed the distributions

are, the smaller the running time is.
We notice that these results are not directly related to the

average case analysis of the knapsack problem in [1, 2, 10]. For
details, see our discussion in Section 1.2.

7 Algorithms for imperfect information

Let us briefly summarize the results discussed so far. On one
hand, our analyses show complete inapproximability for the
worst case instances. On the other hand, we have a very general
average case analysis that yields efficient algorithms for various
input distributions. In this section, we show that the latter result
is the key to obtain efficient algorithms for estimating equilibria
with imperfect information.

We follow the framework of Harsanyi [12, 13], who de-
scribed an elegant model to study games in which the players
have incomplete information. The so-calledHarsanyi trans-
formation, one of the ideas for which he was awarded the No-
bel Prize together with Nash and Selten, converts games with
incomplete information into games with complete but imper-
fect information. Harsanyi considers players who have differ-
ent utilities as being of differenttypes. He proposed that such
games be modeled by having Nature move first and choose each
player type according to a probability distribution. Players ini-
tially know only their own type and the distributions for the
other players, but not the outcome of the random choices by
Nature. The players aim at maximizing the expected payoff.

The Harsanyi framework in our setting means that there
is only one player that needs to compute its strategy based
on imperfect information. Indeed, in realistic scenarios it is
reasonable to assume that the provider does not know exactly
how the customers will behave under a given price vector. In
contrast, customers can be assumed to converge to a Nash
equilibrium by best response strategies without knowing other
players utilities (this follows from [21, 22]). If prices are fixed,
then the customer behavior is determined by demands and
utility thresholds; these parameters define the Harsanyi types.
The online provider does not know the types of the customers
but she knows probability distributions on these types. In order
to maximize her expected profit, she is interested in estimating
the expected revenue under best and worst equilibria.

Somewhat counter-intuitively, we prove that, if the infor-
mation available to the provider is not too “precise,” then the
stochastic equilibria problems obtained by the Harsanyi trans-
formation have smaller worst case complexity than their deter-
ministic counterparts. Let the demands and utility thresholds
have independent continuous probability distributions with dis-
tribution functionsFi andGi (i ∈ [n]), respectively. Prices are
defined by a non-negative, non-decreasing, concave function of
the demands. We need some further technical assumptions:

(1) there existsM such thatFi(M) = 1 andGi(M) = 1, and

(2) Pr [∃i : wi ≤ bi] ≥ 1
2 .

The first assumption means that the domain of the probability
distributions of the demands and utility thresholds are bounded.
This property holds for uniform distributions. For other distri-
butions, one might need to cut the tails at some position where
the probability becomes negligibly small. The second assump-
tion is mild and seems natural as well. It says that the market
for the offered service is non-empty with probability at least 1

2 .
Now, to obtain an estimation of a random variable, we sam-

ple from the distribution and use the adaptive algorithm from
Theorem 6.2 to calculate the value of the best (worst) equilibria.
Applying assumptions (1) and (2) in a Hoeffding bound, yields

that, for everyβ, ε > 0, one needs onlyO
(

(

n
ε

)2
log
(

1
β

))

samples to get a(1± ε)-approximation of the expected revenue
with probability at least1 − β. Now, the key argument is that
sampling generates average case but not worst case instances.
This way, we obtain an efficient randomized approximation al-
gorithm with running time poly(n, 1

ε
, φµ, log( 1

β
)).

In this scenario, the term1
φµ

should not be interpreted as an
indicator of how much randomization is available, but rather φµ
should be interpreted as a measure for the degree of precision
of the information available to the provider. Ifφµ is constant
then the provider essentially knows nothing. Full knowledge
corresponds toφµ = ∞. If the degree of precision is bounded
by a polynomial, e.g., if all variables have possibly different
uniform distributions, each of which covering a polynomial
fraction of the domain[0, M ], then we obtain an FPRAS (fully
polynomial time randomized approximation scheme).

THEOREM 7.1. Suppose assumptions (1) and (2) are satisfied
andµφ is bounded polynomially. Then there is an FPRAS for
the best (worst) equilibria problem with imperfect information.

Observe, that by standard techniques we can achieve determin-
istic polynomial time instead of time bounds that only hold on
expectation. Then, only the approximation guarantee depends
on the random coin flips made by the algorithm.

8 Algorithms and proofs

8.1 Inapproximability We prove here Theorem 4.1. As-
sume uniform pricing withpi = awi. We show, that for every
choice ofa ∈ R+ there exist demandswi and utility func-
tionsui such that the value of the maximum (minimum) profit
customer equilibria cannot be approximated. Instead of utility
functionsui we directly specify thresholdsbi. The ui’s can
then be chosen accordingly to satisfybi = u−1

i (awi).
We use a reduction from anNP-hard subset-sum problem

[8]. Given a set{c1, . . . , cn}, 0 < ci ∈ N and some number
B ∈ N, decide whether∃I ⊆ {1, . . . , n} with

∑

i∈I ci =
B. W.l.o.g., we assume that allci’s are even (otherwise we
multiply all ci’s andB by 2.)
Maximization: Consider the following max profit customer
equilibria problem with profit equal to demand. There are
n regular customers1, . . . , n and two special customers: a
“large” customerL and a “giant” customerG. The demands
and thresholds are given in Table 1. The parametersl andg can
be chosen to satisfyB < l ≤ C � g with C =

∑

1≤i≤n ci.



We use customerG as an indicator for deciding the subset-sum
problem. If there exists a solutionI to the subset-sum problem,
thenx∗ (as given in Table 1) is a feasible solution to the best
equilibria problem with loadg + B. If there is no solution
I, then no feasible equilibriumx can contain customerG.
First notice, that there is no feasible solution containingboth
customersL and G, because their cumulative demand is
strictly larger than the threshold ofG. Now assume some
solution x containsG but not L. Since the demand of the
regular customers cannot sum up to exactlyB and moreover
all wi’s are even,x has load at mostg + B − 2, which violates
the maximality condition of customerL. Hence any feasible
equilibrium excludesG and has load at mostC + l. Sinceg and
therefore also(g + B)/(C + l) can be chosen arbitrarily large,
any approximation algorithm for the best equilibria problem
can be used to decide the subset-sum problem.

customer demands thresholds x∗

1, . . . , n wi = ci bi = g + B x∗
i = 1 iff i ∈ I

G wG = g bG = g + B x∗
G = 1

L wL = l bL = bG + l − 1 x∗
L = 0

Table 1: Best equilibria instance and solutionx∗.

Minimization: We construct a worst equilibria instance with
n regular customers(1, . . . , n) with demandswi = ci and
thresholdsbi = B. There is only one special customer with
demandg and thresholdB+g−1. If there exists a solutionI to
the subset-sum problem, then there is a solutionx to the worst
equilibria problem with loadB. If there is no such solution
I, then any solutionx containing only regular customers has
load at mostB − 2, violating the maximality constraint of
customerG. Thus any feasible solution must contain the
special customer and has load at leastg. Sinceg and alsog/B
can be chosen arbitrarily large, any approximation algorithm
for the worst equilibria problem can be used to decide the
subset-sum problem.

8.2 Reduction to the interval knapsack problem In this
section we present a reduction from the customer equilib-
ria problems to the interval knapsack problem. It will
serve as the basis to solve the equilibria problem in pseudo-
polynomial time and to approximate it. We define the inter-
val knapsack problem to be the standard 0/1 knapsack problem
with an additional lower bound for the weight of knapsacks:
max{

∑n
i=1 pixi |L ≤

∑n
i=1 wixi ≤ R, xi ∈ {0, 1}}. (A

knapsack is feasible if its weight
∑n

i=1 wixi falls into the in-
terval[L, R].) The minimization version asks for the minimum
profit knapsack. Notice, that the interval knapsack problemis
inherently inapproximable, because forL = R it requires to
decide the subset-sum problem. On the other hand, the prob-
lem can be solved in pseudopolynomial timeO(n

∑n
i=1 wi) by

a straightforward adaptation of the well known dynamic pro-
gramming approach for the standard knapsack problem. Thus,
the following lemma directly implies Theorem 3.1.

LEMMA 8.1. A solution to the best (worst) customer equilibria
problem can be obtained by solving at most2n − 1 interval

knapsack problems.

Proof. Let us recall the formulation of the equilibria prob-
lem: our goal is to maximize (minimize)

∑n
i=1 pixi under con-

straints (1.1), (1.2), and (1.3). A solutionx with load W =
∑n

i=1 wixi is feasible iff the following two conditions hold for
all 1 ≤ i ≤ n: (i) Maximality condition:if W < bi − wi then
xi = 1, and (ii)Threshold condition:if W > bi thenxi = 0.

The Maximality and Threshold conditions partition the
non-negative numbers for each customeri into 3 disjoint inter-
vals: [0, bi − wi), [bi − wi, bi] and(bi,∞]. Any feasible solu-
tion x with loadW must satisfy eitherxi = 1, or xi ∈ {0, 1},
or xi = 0, depending on the intervalW falls into. We over-
lay these intervals for alln customers to partition[0,∞] into
up to 2n + 1 so-called elementary intervals (each additional
customer can divide at most 2 existing elementary intervals).
Note that elementary intervals can consist of just one num-
ber and they can be opened or closed on both sides indepen-
dently. Each elementary intervalI partitions the customers into
three sets: INI = {i | I ⊆ [0, bi − wi)}, FREEI = {i | I ⊆
[bi − wi, bi]}, OUTI = {i | I ⊆ (bi,∞]}.

If the load of a solution in equilibrium falls into the
elementary intervalI then no customer in OUTI has joined the
service, all customers in INI must have joined the service, and
there are no restrictions for customers in FREEI . Therefore, we
partition the solution space for the equilibria problem according
to the load of potential solutions. For each elementary interval
I we solve the following interval knapsack problem:

max(min)
∑

i∈FREEI

pixi s.t. (
∑

i∈FREEI

wi xi +
∑

i∈INI

wi) ∈ I

xi ∈ {0, 1}.

The optimal solution to the equilibria problem is the maximum
(minimum) over all2n + 1 solutions of the corresponding
interval knapsack problems. For elementary intervals thatare
open we can use the corresponding closed interval, because at
an open end the restriction of a variable having value0 or 1
ends and the variable becomes free. Therefore the solution
stays feasible for the equilibria problem. The first and the
last of the elementary intervals are trivial intervals, since they
correspond to the complete and empty knapsack, which can be
tested separately.

8.3 Adaptive algorithms for the interval knapsack prob-
lem In this section, we present an algorithm for the interval
knapsack problem that adapts to the length of the specified in-
terval. Its running time increases linearly with the reciprocal of
the interval. In particular, we prove Theorem 6.1.

We begin with the algorithmic ideas. We use a two
phase approach. In each phase, we solve a relaxed interval
knapsack problem. The solution to the first problem might
miss solutions close to the right boundaryR, and the solution
to the second problem might miss solutions close to the left
boundaryL. The union of both solutions will cover all feasible
solutions. The two relaxed problems are solved following the
standard dynamic programming algorithm with one additional



nice trick: we expand the dynamic programming table by one
dimension used to represent an additional vector of artificial
profits corresponding to rounded weights. The original weights
allow us to strictly enforce one of the two constraints whilethe
rounded weights (= additional profits) enable us to take care
also for the other constraint.

In more detail, we divide the intervalI = [L, R] equally
into two partsIl andIr . Rounding the weights virtually shifts
knapsack packings along the weight dimension. In phase 1,
we round up, shifting packings fromIl to the right, while in
phase 2 we round down. When calculating with sufficient
accuracy, packings fromIl will not be shifted beyondR,
and packings fromIr will not be shifted beyondL. Thus,
the required accuracy depends on the ratioR/(R − L). Let
M = (L + R)/2. Let OptA,B denote the value of an optimal
solution to the interval knapsack problem with interval[A, B].
An approximate solution to interval knapsack can be found by
solving the following two relaxed subproblems:

• Compute solutionS1 with w(S1) ∈ [L, R] andp(S1) ≥
(1 − ε) · OptL,M .

• Compute solutionS2 with w(S2) ∈ [L, R] andp(S2) ≥
(1 − ε) · OptM,R.

Clearly,max{p(S1), p(S2)} ≥ (1−ε)·OptL,R. We focus on the
first subproblem, the other one can be solved analogously. Let
w̄i := dwi/F e ·F andp̄i := dpi/Ge ·G, for all i ∈ [n], denote
rounded weights and profits, respectively, where the valuesof
F andG will be set momentarily. For anyS ⊆ [n], define
w̄(S) =

∑

i∈S w̄i andp̄(S) =
∑

i∈S p̄i. Let T (i, w, p) denote
the largest weight among all knapsack packingsS ⊆ [i] with
w̄(S) = w and p̄(S) = p. The following formula gives a
recursive definition for all non-trivial values ofT (·).

T (i+ 1, w, p) = max{T (i, w, p), T (i, w− w̄i+1, p− p̄i+1)} .

Rounding weights to multiples ofF introduces an absolute er-
ror strictly less thannF . SettingF := (R − L)/(2n) en-
suresnF ≤ (R − L)/2. Therefore,w(S) ∈ [L, M ] ⇒
w̄(S) ∈ [L, R]. The other scaling factor is defined byG =
εP/(4n), whereP is chosen sufficiently large. Following a
dynamic programming approach, we compute theT (i, w, p)
values for allevaluation points: i ∈ {1, . . . , n} in dimen-
sion 1,w ∈ {F, 2F, . . . , dR/F eF} in dimension 2, andp ∈
{G, 2G, . . . , dP/GeG} in dimension 3, of the three dimen-
sional table. Now, define

α(p) =







1 if there exists an evaluation point(n, w, p)
s.t. w ∈ [L, R] and T (n, w, p) ∈ [L, R],

0 otherwise.

Observe that infeasible subsets (i.e.,w(S) /∈ [L, R]) have no
influence onα(p). SetsS with w(S) > R are mapped to an
evaluation point with second coordinatēw(S) > R. SetsS
with w(S) < L might be mapped to evaluation points with
second coordinate in[L, M ] but they are explicitly filtered out
by checkingT (n, w, p) ∈ [L, R]. Let S∗ denote a set with

optimal profit in [L, M ], i.e., S∗ yields profit OptL,M . Then,
we conclude thatmax{p|α(p) = 1} = p̄(S), for some setS
with weight in[L, R] andp̄(S) ≥ p̄(S∗).

The size of the dynamic programming table is

ndR/F edP/Ge = O
(

n3R
(R−L)ε

)

. P needs to be chosen

sufficiently large so that all solutions are covered. W.l.o.g.,
assumeε ≤ 1

2 . Then choosingP ≥ 2 · OptL,M is sufficient.
Furthermore, if the computed solutionS satisfiesp(S) ≥ P/4
then p̄(S) ≥ (1 − ε) · OptL,M , which follows analogously to
the calculation for the approximation factor of the standard
knapsack problem. The problem that remains to be solved is
how to determine the right choice forP . We do this in form of
a binary search. We start by settingP := 2

∑

i pi. If we do not
find any feasible solution then we immediately stop and return
OptL,M = 0. Otherwise, we find a solutionS whose profit
p̄(S) is maximal among all computed solutions. Ifp̄(S) ≥ 1

2P
then

p(S) ≥ (1 − ε) · p̄(S) ≥ 1

2
· p̄(S) ≥ 1

4
· P ,

so thatS is the(1 − ε)-approximation that we are looking for.
If p̄(S) < 1

2P then we increase the accuracy by decreasing
the value ofP by a factor of2 until we find a solutionS with
w̄(S) ∈ [ 12P, P ]. The maximum number of iterations that we

need to execute isO
(

log
(
∑

i
pi

Pmin

))

. Thus the overall running

time isO
(

n3R
(R−L)ε log

(
∑

i
pi

Pmin

))

. This proves Theorem 6.1.

For the average case analysis in the next section, we need
this result in a slightly different form. LetWmax andWmin

denote the maximum and minimum weight, respectively. If
profits are defined by a non-decreasing, non-negative, concave
function thenPmax

Pmin
≤ Wmax

Wmin
. This yields the following.

COROLLARY 8.1. Suppose profits in the interval knapsack
problem are defined by a non-negative, non-decreasing, con-
cave function of weights. Then the algorithm above solves the

interval knapsack problem in timeO
(

n3R
(R−L)ε log

(

nWmax

Wmin

))

.

8.4 Average-case analysis of the equilibria problem We
now prove Theorem 6.2. Letε ∈ [0, 1] be fixed. We first
use a reduction to the interval knapsack problems describedin
Section 8.2. Each interval knapsack problem will be solved
using the algorithm described in Section 8.3. LetS = {0} ∪
{s1, . . . , s2n} denote the set of boundary points of the intervals,
with s1 ≤ . . . ≤ s2n. For analytical purposes, we consider the
intervals for all pairs{L, R} ⊆ S, I = {(L, R) : {L, R} ⊆
S, L < R}.

Consider anyL, R with (L, R) ∈ I. Note that eachL, R
is of the formbi or bi − wi wherewi andbi are non-negative
random variables with density functionsfi andgi respectively,
with µ being an upper bound on all the expectations andφ
– an upper bound on the values of all functionsfi, gi. We
need to modify the algorithm as follows. If for somei, the
sampled valueL = bi − wi is negative, then our algorithm
takes into account only all intervals of the form(0, R) for all



R ∈ S ∩ R+. We assume thus that setI does not contain any
interval (L, R) with L < 0, but (0, R) instead. Moreover, if
we are given an interval(bi − wi, bi) ∈ I, then the algorithm
solves only the interval knapsack problem in intervals(L, bi)
and(bi − wi, R) whereL = max{L′ ∈ S : L′ < bi − wi}
andR = min{R′ ∈ S : R′ > bi}. That is, the algorithm does
not consider interval(bi − wi, bi) itself. Thus, our algorithm
considers only intervals(L, R) ∈ I of the formL = bi − xi,
R = bj − xj , wherei 6= j andxi ∈ {0, wi}, xj ∈ {0, wj}.

Let us fix an interval(L, R) ∈ I. LetT (L, R) be a random
variable denoting the running time of our algorithm for the
interval knapsack problem on interval(L, R). Let ` = µ2−n.
If wi < ` for some i ∈ {1, . . . , n}, then we use a brute
force exact algorithm with running timeO (2n). Note, that
this part contributes anO (φµ) to the expected running time,

sincePr [wi ≤ `] =
∫ `

0
gi(x)dx ≤ φµ/2n. In the same way the

algorithm also checks ifR/(R − L) ≤ 2n.
If R/(R − L) ≤ 2n, andwi ≥ ` for i = 1, . . . , n, then we

call the adaptive algorithm from Section 8.3. The running time

of this algorithm isO
(

n3R
(R−L)ε log

(

nWmax

Wmin

))

by Corollary

8.1, whereWmax = maxi{wi} andWmin = mini{wi}.
Our algorithm only considers intervals(L, R) ∈ I of the

form L = bi − xi, R = bj − xj , wherei 6= j andxi ∈ {0, wi},
xj ∈ {0, wj}. Thus, for the analysis of the expected running

time of the partO
(

n3R
(R−L)ε

)

we can assume that possible

values ofxi = wi that may appear inL, R are worst case fixed
numbers. This can only decrease the expectations ofL, R and
soµ is still an upper bound on these expectations, and this does
not affect theφ upper bound. This means that we can treat the

two partsO
(

n3R
(R−L)ε

)

andO
(

log
(

nWmax

Wmin

))

in the running

time independently. The expected running time over all interval
knapsack problems is by linearity of expectation bounded by:

E





∑

(L,R)∈I

T (L, R)



 ≤ O
(

n2
)

· max
L,R

E [T (R, L)] =

O

(

n5

ε

)

· max
L,R

E
[

R

R − L

]

· E
[

log

(

nWmax

Wmin

)]

.

Lemmas 8.2, 8.3 below prove upper bounds onE
[

R
R−L

]

and onE
[

log
(

nWmax

Wmin

)]

. After applying these lemmas we can

obtain the following upper bound on the expected running time:

O

(

n5

ε
· ((n + 1)φµ + 1) · (log(φµn + 1) + 3 log(n))

)

.

LEMMA 8.2. Let b1, b2 be two given continuous random vari-
ables with density functionsf1(x), f2(y), respectively, and
let w1, w2 ≥ 0 be two fixed worst-case numbers. Letφ =
sup{fi(x) : x ∈ R, i = 1, 2}, µ = max{E [b1] , E [b2]},
n ≥ 2. Define new random variablesX = max{b1 − w1, 0}
and Y = max{b2 − w2, 0} and Z = min

(

max(X,Y )
|X−Y | , 2n

)

.

Then, the expectation of random variableZ can be bounded
as: E [Z] ≤ 2(n + 1)φµ + 2.

Proof. The expectation can be upper-bounded in the

following way: E [Z] = E
[

min
(

max(X,Y )
|X−Y | , 2n

)]

≤

E
[

max
(

min
(

X
X−Y

, 2n
)

, 0
)

+ max
(

min
(

Y
Y −X

, 2n
)

, 0
)]

.

So it suffices to boundE
[

max
(

min
(

X
X−Y

, 2n
)

, 0
)]

.

Let h(x, y) = max
(

min
(

x
x−y

, 2n
)

, 0
)

. Observe that

h(x, y) = h(x/y, 1) andh(x, 0) = 0, and if x = 0, y > 0,
thenh(x, y) = 1. Also if z > 1, thenh(z, 1) = 0.

Observe, that the random variablesX, Y have discontinu-
ity at value0, andE [X ] ≤ µ andE [Y ] ≤ µ. Also, observe that
in the range of values(0,∞] we can usef1 andf2 as density
functions forX andY .

Let y > 0 be fixed, ands = 2n−1
2n . Suppose first that

Pr [X = 0] = 0. We can write:

E [h(X, y)] =

∫ ∞

0

h(x, y)f1(x)dx =

∫ ∞

0

h(x/y, 1)f1(x)dx.

By changing the variable toz = x/y, sincedz/dx = 1/y,
we obtain that: E [h(X, y)] = y

∫∞

0 h(z, 1)f1(zy)dz ≤
φy
∫∞

0
h(z, 1)dz = φy

∫∞

0
max

(

min
(

1
1−z

, 2n
)

, 0
)

dz =

φy
∫ 1

0
max(min( 1

1−z
, 2n), 0)dz =

φy
∫ s

0
max(min( 1

1−z
, 2n), 0)dz +

+ φy
∫ 1

s
max(min( 1

1−z
, 2n), 0)dz =

φy
∫ s

0
max

(

1
1−z

, 0
)

dz + φy
∫ 1

s
2ndz = φy

∫ s

0
1

1−z
dz +

φy2n 1
2n = φy[− ln(1 − z)]z=s

z=0 + φy = (ln(2n) + 1)φy ≤
(n + 1)φy.

Suppose now thatPr [X = 0] = p > 0. Then

E [h(X, y)] = p · E [h(0, y)] + (1 − p) · E [h(X, y)|X > 0] =

p + (1 − p)

∫ ∞

0+

h(x, y)f̄(x)dx,

wheref̄ is a density function of random variableX |X > 0. Let
us observe, that for anyx > 0 we havef̄(x) ≤ f1(x)

1−p
. We can

therefore write that:

E [h(X, y)] ≤ p +

∫ ∞

0+

h(x, y)dx ≤ 1 + (n + 1)φy.

Finally, we observe thath(x, 0) = 0, so we have that:E [Z] =
E [h(X, Y )] =

∫∞

0+ E [h(X, y)] f2(y)dy ≤
∫∞

0+(1 + (n +

1)φy)f2(y)dy =
∫∞

0+ f2(y)dy + (n + 1)φ
∫∞

0+ yf2(y)dy ≤
1 + (n + 1)φE [Y ] ≤ 1 + (n + 1)φµ.

LEMMA 8.3. Let X1, X2, . . . , Xn be n given non-negative,
continuous random variables with density functionsf1(x),
f2(x), . . . , fn(x) respectively. Letφ = sup{fi(x) : x ≥
0; i = 1, . . . , n}, µ = maxi(E [Xi]), n ≥ 2, and` = µ2−n.
Defineh(x1, . . . , xn) = log max(x1,...,xn)

min(x1,...,xn) if x1, . . . , xn ≥ `

andh(x1, . . . , xn) = 0 otherwise. LetZ = h(X1, . . . , Xn),
then we have:E [Z] ≤ log(φµn + 1) + 2 log(n).



Proof. Using the linearity of expectation we can write:

E [Z] = E
[

log
max(X1, . . . , Xn)/µ

min(X1, . . . , Xn)/µ

]

=

E
[

log
max(X1, . . . , Xn)

µ

]

+ E
[

log
µ

min(X1, . . . , Xn)

]

.

Sincelog is a concave function, we can apply the well-known
Jensen’s inequality to the first term:

E
[

log
max(X1, . . . , Xn)

µ

]

≤ log E
[

max(X1, . . . , Xn)

µ

]

.

By using the linearity of expectation we obtain the fol-

lowing: log E
[

max(X1,...,Xn)
µ

]

≤ log E
[

1
µ

∑

i Xi

]

=

log
(

1
µ

∑

i E [Xi]
)

≤ log
(

1
µ
nµ
)

= log(n). Now we apply

Jensen’s inequality to the second term:

E
[

log
µ

mini(Xi)

]

≤ log E
[

µ

mini(Xi)

]

= log E
[

max
i

µ

Xi

]

≤ log E

[

∑

i

µ

Xi

]

= log

(

∑

i

E
[

µ

Xi

]

)

,

and so it suffices to bound:

E
[

µ

Xi

]

=

∫ ∞

`

µ

x
fi(x)dx =

∫ µ

`

µ

x
fi(x)dx +

∫ ∞

µ

µ

x
fi(x)dx

≤ φµ

∫ µ

`

1

x
dx +

∫ ∞

µ

µ

µ
fi(x)dx = φµ[ln(x)]x=µ

x=` +

+

∫ ∞

µ

fi(x)dx = φµ(ln(µ) − ln(µ/2n)) + 1 ≤ φµn + 1,

where we have used the fact that
∫∞

µ
fi(x)dx ≤

∫∞

0
fi(x)dx =

1. Putting the two bounds together, we obtain the claim.
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