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Abstract obtain an FPRAS for the equilibria problem in the model
We study algorithmic questions concerning a basic micreeco With imperfectinformation although the problem with per-
nomic congestion game in which there is a single provider tha ~fect information is inapproximable under the worst case
offers a service to a set of potential customers. Each cus- Measures. In particular, the worst case complexity of the
tomer has a particular demand of service and the behavior of considered stochastic equilibria problems increases with
the customers is determined by utility functions that ara-no  the precision of the available knowledge.
increasing in the congestion. Customers decide whetheirio | ]
or leave the service based on the experienced congestion andntroduction
the offered prices. Following standard game theory, weraes\Ve investigate computational aspects of a classical eciamom
each customer behaves in the most rational way. If the poicegame in a market in which a single provider offers a service
service are fixed, then such a customer behavior leads t@a piar a set of potential customers. We consider a selfish provide
not necessarily uniqgue Nash equilibrium among the custemevhose goal is to maximize its revenue. Each customer is as-
In order to evaluate marketing strategies, the serviceigeov sumed to have a particular demand of service and the quality
is interested in estimating its revenue under the best amstwof service decreases with tloengestioni.e., the sum of the
customer equilibria. We study the complexity of this praobleserved demands. We consider a model in which the customers
under different models of information available to the pdev. do not cooperate with each other and the customer behavior is
] . ) ) . _ determined byutility functions The utility functions are as-
e We first consider the classical model in which the providgf;med to be non-increasing in the congestion and they specif
has perfect knowledge of the behavior of all custome(§nether a customer joins or leaves the service based on-the of
We present a complete characterization of¢benplexity fered prices and the experienced congestion. If all prices a
of computing optimal pricing strategi@sd ofcomputing fixeq then such a customers behavior leads to an equilibrium
best and worst eqwh_bnaBaspally, we.show that most Ofamong the customers, commonly known aesh equilibrium
these problems are inapproximable in the worst case Bykrefore, from the perspective of the provider it is impatt
admit an “average-case FPAS.” Our average case analysignderstand the behavior of the customers in Nash equilib-
covers general distributions for customer demands a9 | general, the provider may be interested in many ptessi
utility thresholds. We generalize our analysis to robustenarios. For example, if she is optimistic then she might a
equilibria in which players change their strategies onlyt setting up prices such that the revenue undebtist cus-
when this promises a significant utility improvement.  {ymer equilibriais maximized. A more pessimistic provider

e We extend our analysis to a more realistic model in Whiﬁ?}qld be "?t_er?s_teo' in maximizing the profit undesrst eq_gi- .
the provider hasncomplete information Following the foria or minimizing thegap between best and worst equilibria
game theoretic framework of Bayesian games introducgg iNiMIz€ economic risk. . .
by Harsanyi, we assume that the provider is aware of prg le model. In this paper we g:on3|der_ the following game
ability distributions describing the behavior of the cué— at _corresponds to the scenario de;cnbed above. Su_ppose a
tomers and aims at estimating its expected revenue un'i’iré)rv'der wants 1o sell an on-line service to a sehgfotential

best and worst equilibria. Somewhat counterintuitive, Vgéjstpmers. Every c_ustomgls assumed to havedemand Of.
servicew;. For the time being let us assume that the provider

_ committed to a particulgorice vector Let p; denote theorice
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customer mapping a load value to the maximum price that thdilchtaich [21, 22]. In a so-calledinweighted crowding
customer is willing to pay for a service under this load. listh(congestion) gameevery player has a player-specific payoff
way, thepayoff of a customet is ui(zj w;x;j) — p; in case he function that depends on the strategy he plays and on the
joins the service (i.ex; = 1), and is zero otherwise. number of players that choose the same strategywaighted

We assume a classical game theoretic setting in whiclerawding (congestion) gameach player has a weightw;,
customer is willing to join the service if the payoff is nonand the payoff function of a player depends on the sum of
negative, and he refuses the service otherwise. If the paybé weights of all players choosing the same strategy. b thi
is zero then the customer is ambivalent. An allocation t#rminology, our game is a weighted congestion game with
customers in which it is impossible for any single customplayer-specific payoff functions in which each player has tw
to improve his payoff is called austomer Nash equilibrium strategies. Milchtaich [21] shows that such games alwagstad
In this paper we investigate two critical properties of onser pure Nash equilibria, i.e., there exists a vectore {0,1}"
Nash equilibria: which customers join the service and what(usually many such vectors) that fulfills the maximality ahe

the profit obtained by the provider. threshold constraints defined above.
Let us observe that the region of allocations in an equililb-1  Summary of new results The main theme of this paper
rium is described by the following constraints: is to understand the complexity of determining three imguatrt

properties of the game described above: what is the best
pricing scheme for the provider, which customers will jdie t
=1 = pi<ui(};wz) service in customer best/worst Nash equilibria, and whthtes
i € {0,1} provider’s profit in best/worst Nash equilibria.

More specifically, the equilibria defined by these cofasic model. We begin with the classical model in which
straints are calleghure equilibria If we relax the integrality the provider has perfect knowledge about the behavior of all
and assume; € [0, 1] then we obtain so-callesiixed equilib- customers. We provide a complete characterization of the
ria. In this study, we will focus on pure equilibria. complexity of computing best and worst equilibria, and of

Assuming that the prices are fixed, we can simplify tf@mputing optimal pricing strategies in this model.
description of pure customer equilibria as follows. Singe
are non-increasing functions, we can defuidity) thresholds
bi = u; (p;), i € [n], and obtain

e We give anFPAS to compute revenue maximizing prices
assuming that the provider can offer an individual price to
every customer independent of the customers demand.

(1.2) z; =0 = w; + Y wixz; > b; .. L . _

12 _ J < b. e Individual pricing is often considered unrealistic. Eco-
12) 2= = 25 wity < bi nomic literature usually assumes that prices are functions
(1.3) z; € {0,1}. of the demands. Under this assumption, we show the ex-

” . _ . istence of gpseudopolynomial time algorithm
Condition (1.1) is called anaximality constrainand (1.2) — a P poly g

threshold constraintObserve, that the problem of maximizing 4 \we show that the pseudopolynomial time algorithm can-
> piz; subject to the constraints above (thest equilibria not be transformed into an FPAS. In fact, we prove that
problem) generalizes the maximum knapsack problem. The eyen under uniform pricing functions (i.e., prices are équa
only difference is that in the knapsack problem all utility g demands) the problemiisapproximabl@. Even for flat

thresholds; are identical. Of course, in the typical knapsack (ate pricing (i.e., fixed price, same for all customers) the

formulation the maximality constraintis not specified esiflly best possible approximation ratiof /n).
as it is fulfilled implicitly by profit maximization. However

if customers have different thresholds then the maximality In addition, we study mormbust equilibriaconcepts that
constraint is crucial. The problem of minimizing, p;z; avoid thrashing effects. We show that even under these robus
subject to (1.1)-(1.3), is called tlweorst equilibriaproblem. equilibria, most of the considered problems remain inappro
Congestion games. Assuming fixed prices, our game is called@mable. Only some special, somewhat restrictive cases, e.g
a congestion gamen the literature. This class of game# all customers have the same utility threshold, admit effic
has been introduced by Rosenthal [27] and since then studipgroximation algorithms.

extensively (see, e.g., [14, 21, 22, 23, 31]). In Roserghafiverage case analysis. Despite the pseudopolynomial algo-
model players choose a subset of available facilities, aett erithm, most of the problems are inapproximable under thestvor
facility has an associated utility function. A payoff to @ase measures. In economic literature one typically does no
player from a facility is a function depending on the numbeonsider the worst case scenarios (which almost never appea
of all players that choose this facility. Rosenthal showe th

there always exists a pure strategy Nash equilibrium in

- - FPAS or FPTAS stands forfally polynomial time approximation scheme
model. A model that is closer to our has been studied Pé(RAS means fully polynomial time randomized approximation scheme

3Throughout this paper, the terfinapproximable” means that for any
L|f function u; is not strictly decreasing, we extend the definitiomgf1 in  polynomial time computable function(rn), the considered problem cannot
the natural, obvious way. be approximated within a factor af(n) in polynomial time, unles® = NP.



in real life applications) but rather makes some stochastic of the available knowledge.
sumptions about the input. Therefore, we turn our attertion] »  pravious and related work Previous work in (eco-

average case analysand our goal is to consider input distriy,omic) game theory that considered the same or similar to our
butions that are as general as possible. o models has already been discussed in the introduction under
The pseudopolynomial algorithms for the equilibria probgongestion games.” From the computational viewpointeher
Iems_are based on a reduction to the mterval_knapsack_ _prg,tb— results on the complexity of computing equilibria in egpa
lem, i.e., the standard 0{1 knapsack problem Wlth an a_dmtlo|e| link game [6, 7], in normal form games and Bayesian games
lower bound on the weight of knapsack packing. This prof (see also the references therein). These papers mosthg p
lem cannot be approximated in its general form as setting {gt computing equilibria with some properties is hard. €om
interval length to some small number allows to demdeNIj’e plexity of equilibria in a market exchange game was studied i
harq subset-sum problem based on approximate solut|ons[jfc’)r5]_ For example, Feldmann et al. [7] have given an FPAS
the interval knapsack problem. We can prove, however, thgtcomputing the best equilibria in a simple paralle! lirdnge.
there is aradaptive approximation schemdose running time  \ye now briefly discuss some previous work on algorithmic
depends linearly on the reciprocal of the length of the rer agpects of games with incomplete information. A classical
This adaptive algorithm is the basis for our average casyangodel of auction design is given a seller who wants to sell
sis of the equilibria problem. . a single (or multiple) item(s) to potential customers. Each
In our average case analysis, we consider a very geng{@omer has a private valuation of the item. The seller only

model, where thelemands and utility thresholds may havgnows a probability distribution over possible values of th
arbitrary, continuous probability distributiofflswith bounded valuations and her goal is to design a strategy (auction) of

mean and densityDifferent demands and different thresholdgnich customer gets the item and for what price in order
can have different distributions. Our main contributiomeney maximize her expected revenue. This simple model does
is the design and analysis of an approximation scheme Whage consider congestion issues. Ronen [25] has given a
expected running time depends on the maximum density aghroximate auction in this model. These results also o i
the maximum expectation over all probability distribugoffo  gayesijan context. No deterministic polynomial time auttio
give a simple example of the performance of this schemeqfim 4 natural class of auctions can do better that/a

all demands are uniformly sampled frojth 1] and all utility approximation, see Ronen and Saberi [26].

thresholds are sampled frdMm n], then we obtain andverage- Several studies, e.g., [1, 2, 10], deal with average case

case FPAS Observe, that under such a distribution, the rat;’&halysis for the knapsack problem. In contrast to our work,
between the smallest and largest input numbers is only pelyfhese studies assume that profits are independent of thatsreig
mial. This, however, by no means implies that the pseudepqlye . demands in our terminologly and they study exact algo-
nomial time algorithm can be used to obtain an approximaims. In our analysis, profits are functions of weightstHis
solution. The crucial property to obtain the average-c&&3~ c4se, one cannot hope to get exact algorithms, which istblat
is that the_re are no small interval_s_ in_the interval knapgaok- o breaking so-called knapsack crypto-systems whose basdn
lem to which we reduce the equilibria problems. is based on the hardness of random subset-sum instances (i.e
Models with incomplete infor mation. Finally, following eco- knapsack with profits equal to weights) [15].

nomic literature, we turn our attention to a more realistaxiel In the stochastic knapsack problem there are givitams

in which the provider hasncomplete information about theyith random weights with associated profits and the knapsack
customer behavior Following the game theoretic framework.,

: e gacity. The objective is to find a knapsack packing that
of Harsanyi [12, 13], we assume that the provider is aware Qfximizes the expected profit or maximizes the profit under

probability distributions describing the customer bebaand 4, additionally given overflow probability. Kleinberg et al

aim.s_at. estimating its gxpectgd revenue uno!er best and W&rg} have given a0 (1)-approximation algorithm for general
ngllbna. On a first view, this Bayesian variant of the edUhdependent distributions. Goel and Indyk [9] improve on
libria problem might seem even harder than the problem ungigk result by giving approximation schemes for particular
perfect information. However, we can prove the existence gtyibutions, e.g., exponential or Bernoulli. Transigtiour

an FPRAS(fully polynomial time randomized approximatioregy|t into this setting, we do not compute a particular lkaag
scheme) under some mild assumptions about the mperfec?gcking but the expected profit of optimal knapsack packings
formation. (Notice that the running time bound does notreigiher differences are that we assume that profits depend on
to the random input anymore but to the coin flips made by thgights (demands), and we consider harder problems which
algorithm.) In principle, our analysis covers general @iib i contrast to the standard knapsack cannot be approximated
ity distributions with bounded domain. If the distribut®are yitnin any factor if the weights are adversarial.

‘well dispersing” then we achieve polynomial running time.  nore detailed references especially to the related work in

The more “concentrated” the distributions are, the larger teconomics and game theory were either discussed before in th
running time becomes. Thus, somewhat surprisingly, the-cqfyroduction or will appear further in the text.
plexity of the equilibria problems increases with the psemi

5In our considerations related to knapsacks we will rather the term
ZAll our results can easily be generalized to discrete distions as well.  weight instead of demand.



Outline. Sections 2 through 7 describe our results in mofeiEOREM 3.1. There is a pseudopolynomial time algorithm
detail, and Section 8 contains the most interesting proofs. for computing the best (worst) customer equilibria for any
given price vector.

2 An FPASfor individual pricin . . . L I

! _ _ P g _ . . This algorithm is based on a similarity of the equilibria
We first consider the simplest (but also the least realistigh)hjem and the knapsack problem. In fact, we reduce the equi
model in which the provider can offer an individual pricy i problem to a variant of the knapsack problem that wk ca
to every customer. Pr.|ces need not dgpend on the dem val knapsackand we then show that the pseudopolyno-
of the customer, that is, the provider is allowed to use §f)| time algorithm for knapsack also works for the interval
arbitrary price vectop, ..., p,. Under such assumptionsynansack problem. This theorem is proved in Section 8.2.
the maximality constraint in the description of the custome 'thea theorem has immediate consequences for the calcu-
equilibria can be avoided by assigning very high prices [Qiqn of optimal pricing schemefor best or worst customer
those customers that are unwanted. As a consequence, fopihfipria For example, consider block pricing with a cams
optimal |.nd|V|duaI price vector there |s_only one equilend L mber of pricing plans. There is only a pseudopolynomial
the provider does not have to distinguish between the best i mper of ways to choose a constant number of different piece
worst equilibria. We assume that the utility functiang-) are yise finear functions. Thus, all block pricing schemes can b

known andu;(-) as well asu; " (-) can be evaluated in constantpecked in pseudopolynomial time to determine the best one.
time. In such a model we can provide a strong algorithmic

result whose proof is omitted in this extended abstract. 4 Inapproximability of equilibria and of pricing

THEOREM2.1. Under individual pricing there is a price vec-Having a pseudopolynomial time algorithm for a problem, it
tor that maximizes the provider’s profit and uniquely detiees IS Often possible to transform it into an FPAS. Unfortungtel
the behavior of each customer. Furthermore, there is an FPts does not work for computing best and worst equilibria. W

for approximating such an optimal price vector and for appro Show that these problems are essentially inapproximabée, e
imating the optimal equilibrium. under uniform pricing, which basically means that prices ar

equal to demands. The proof of Theorem 4.1 can be found in

Individual pricing, however, is usually considered to be u®ection 8.1.
realistic for an on-line service provider. Most studies ao-€
nomics deal withpricing schemeswhere prices are monoton
functions of the demand, see, e.g., [11, 18, 24, 28, 29, 30].

THEOREM4.1. The best and worst customer equilibria prob-
Sems are inapproximable under uniform pricing.

This negative result implies that not only the best (worst)
3 Pseudopolynomial algorithmsfor morerealistic pricing equilibria problem for an arbitrary uniform pricing funati is

Economic literature focuses mostly on the following classéapproximable but so is the problem of computing best (yors
of pricing schemesuniform pricing a function of the form equilibria problem when theptimal uniform pricing function
p(w) = aw, with a > 0 andw being the demand of a customeris given. To see this, suppose the input of the uniform pgicin
linear pricing: p(w) = aw + b with @ > 0,b > 0; block Problem are integers;, ..., b, and demands, ..., w,. A
pricing: p is a positive, piece-wise linear function; aftat rate  Uniform pricing is a pricing functiorp; = aw; for some
some constant function. In the context of an on-line servige> 0. Let the utility functions be of the form;(z) = w;
provider, block pricing seems to be the most relevant pgiciff # < b; and 0 otherwise. Then, the optimal uniform pricing
scheme. In practice, customers are offered a small callecfi scheme igp; = w; for all i € [n]. An approximation of the
so-calledpricing plans(i.e., linear price functions) from whichrevenue that can be obtained by these prices under bestfwors
each customer can choose the best offer w.r.t. his demand. equilibria, however, gives also an approximation of theieadf
Previous work in economics (see, e.g., [11, 17, 18, 20, 2ae underlying best (worst) equilibria itself and, hencenot
28, 29, 30]) focuses mostly on explicit analytical desdoips of Possible.
equilibria. With this knowledge, pricing schemes are theme
puted basically by enumerating all possible pricing sche
from a given class of pricing schemes. However, the comp
tion of the equilibria values of our congestion gamali-hard
and hence does not have such a closed form representation.Still, this inapproximability result leaves a hope that one
Consequently, the provider needs more advanced algodthmight manage to compute the optimal pricing function withou
solutions in order to compute the value of worst and best-egoeing able to approximate the revenue it yields. In fact, in
libria. In fact, we can prove that there is a pseudo-polyramihe above example the computation of the best pricing scheme
time algorithm for computing best and worst customer eqitiself was trivial. The following theorem, whose proof is
libria under arbitrary price vectors. Recall that priceens- omitted, shows that not only computing the optimal reverute b
late into thresholds, that is, the input consists of thedhoéds also computing the prices that lead to this revenue is diffiu
bi,...,b,, demandswy,...,w,, and pricesps,...,p,. All itself. We restrict our attention to the simplest possibyieipg
these values are assumed to be positive integers. scheme: flat rates and the best equilibria problem.

COROLLARY 4.1. The best and worst customer equilibria
oblems are inapproximable even when the optimal uniform
Picing function is given.



THEOREM4.2. For a flat ratea > 0, let P(a) be the profit of 6 Adaptivealgorithmsand aver age case analysis

the best equilibria under this flat rate. Lepi = max, P(a). e continue our analysis of the interval knapsack problem.
Aflat ratea > 0 with P(a) > opt//n cannot be calculated in | jts general form the interval knapsack problem cannot be

polynomial time, unlesB = NP. approximated because any algorithm that for arbitrarilam
. N o interval length approximates profits in polynomial time kebu
5 (In)Approximability of robust equilibria be used to decide subset-sum instances. If the specifigddhte

All inapproximability results above rely on a very carefuica is large, however, then there is no direct relation to thehess
adversarial choice of the utility thresholds s.t. even ghdli of subset-sum. In fact, we can give an approximation allgorit
change of thresholds leads to thrashing effects. Thisgdlise for interval knapsack whose running time adapts to the kengt
guestions of how the complexity of the problem will changef the interval. The proof of the next theorem is in Sectidh 8.
if we consider more “robust” equilibria. It is very reasofab

to assume that customers move to a different strategy onlyf HEEOREM6.1. For any ¢ € [0,1], there is an(1 — ¢)-
this promises a significant improvement in the congestidris Tapproximation algorithm for the interval knapsack problem
leads tay-robust equilibriadefined as follows. For sonde> 0, With interval boundariesZ. and R having running time

0] ((é‘jf)i log (%p)) whereP,i, = min;(p;).

z; =0 = w; + Zj W;T; > (1=29)b; min
T =1 = Zj wiz; < (1+6)b; This result is a key to our average case analysis of the
z; € {0,1}. equilibrium problem for general probability distributianWe

consider the scenario in which demands and thresholds have

. Whatare the effects of such a relaxation on the approximigqe nendent continuous probability distributions witmsiey
bility of the equilibria problems? It turns out that the pleins function f; and g; and distribution functions”, andG; (i <

basically remaln_lnapproxmable even under r_obust_ equalib n|), respectively. Prices are assumed to be a function of the
Only some special, somewhat artificial cases in WhICh altc mands. We assume that the pricing function is non-negativ
tomers have the same threshold become approximable nOV\’non-decreasing and concave. This is a very natural assoimpti

THEOREM5.1. For any0 < § < &, best and worst-robust since rational customers can always achieve concave gricin
equilibria are inapproximable (even under uniform pricjng ~ functions by splitting their demands. For this reason, dzli
all pricing schemes considered in the economic literatsee (

THEOREMS5.2. If by = by = --- = b, then the worsty- Section 3) are concave. Furthermore, we assume that the
robust equilibria problem admits an FPAS df > 0 and is pricing function can be evaluated in constant time.
inapproximable i = 0 (assuming arbitrary choices of prices  The running time of any efficient average case algorithm
and demands). for the equilibrium problem must depend on the input prob-
ability distributions. Otherwise, one could bypass thepina

The proof of Theorem 5.1 (omitted here) can be se Poximability results presented in the previous sectionet-

as a “robust” variant of the proof of Theorem 4.1. The . - : P : -
. . . d t t to distribut th h
proof of Theorem 5.2 relies on an analysis of tmin-max cho Ing worst case instances into distributions with veghhi

K bl e th bl f backi K Wi ensity. In fact, the running of our algorithm increaseshwit
qapsaclpro em, 1.€., In€ problem otpacking aknapsack Wi 1y ayimum density of the underlying probability distribu
minimum profit such that the weight is maximal, i.e., no ite

. S Tons. Let¢ denote the maximum density over all distribu-
can be added to the knapsack without exceeding its capagiy,c e ¢ — max;sup,_o{fi(x), gi(x)}. Let u be the
3 by - 1 x>0 (2 » J .

We give a complete chargctenzatlon Of_ the complexity Oé’ trHﬁaximum expectation over all these distributions, thatiis;
problem that might be of independent interest. Before it was

only known that the min max knapsack problemNB-hard maxi{fo Ifi(x)d:.c’fo I.gi(x)dx}' The proof of the next re-

: R . sult can be found in Section 8.4.
[19]. Despite the similarity of the min-max knapsack prable
to the standard knapsack problem, we prove thatrtf® T,corem6.2. Assume that the pricing function is a non-
max knapsack problem is inapproximalalthough the latter hegative, non-decreasing, and concave function of demands
proble_m admits an FPAS. More precisely our results are %debandu are as defined above. For ary [0, 1], there is an
following. (1 — ¢)-approximation algorithm for the best (worst) equilibria

. S A
THEOREMS.3. Consider the min-max knapsack problem. Problem with expected running time p@ly ¢, ¢.).

(a) If weights and profits are arbitrary then the problem is The termLM can be seen as a measure of the amount of
inapproximable. If weights and profits are equal then thrandomness available. (Observe that one can always seale th
problem admits an FPAS. distributions so thaft = 1; this scaling does not change the

value of ¢u.) If all input variables have identical uniform

distribution thengu = % which is the smallest possible

(b) Thed-robust min-max knapsack problem ¥ 0) defined

by min{}_; pjz; | >, wiz; < B(1+0) A (2; = 0) = - . )

: I . . " value. Next, suppose an adversary specifies possibly eliffer
I_UH_ZJ' wjxlj % B(1-0)} admits an FPAS with running . o ian - distributions (conditioned on positive values) f
time polyn, ¢, 5)- the utility thresholds and demands. Then(by definition)



corresponds to the maximum expectation of any of these sallibe first assumption means that the domain of the probability

and ¢ = ©(1), with o denoting the minimum standardiistributions of the demands and utility thresholds arerioteal.

deviation over all these distributions. Thus the runnimgeti This property holds for uniform distributions. For othestuii-

is poly(n, %, £). Hence, the more dispersed the distributiomaitions, one might need to cut the tails at some position &her

are, the smaller the running time is. the probability becomes negligibly small. The second agsum
We notice that these results are not directly related to tien is mild and seems natural as well. It says that the market

average case analysis of the knapsack problemin [1, 2, ©0]. for the offered service is non-empty with probability atth%L

details, see our discussion in Section 1.2. Now, to obtain an estimation of a random variable, we sam-
ple from the distribution and use the adaptive algorithnmfro
7 Algorithmsfor imperfect infor mation Theorem 6.2 to calculate the value of the best (worst) dufiali

Let us briefly summarize the results discussed so far. On ARPlYing assumptions (1) and (2) in a Hoeffdin% bound, yseld
hand, our analyses show complete inapproximability for that, for every3,e > 0, one needs only ((%) log (%))

worst case instances. On the other hand, we have a very gerg,%r@mes to get él + ¢)-approximation of the expected revenue
average case analysis that yields efficient algorithmsddous ith probability at least — 3. Now, the key argument is that
input distributions. In this section, we show that the latésult sampling generates average case but not worst case instance
is the key to obtain efficient algorithms for estimating ditpiia  Thjs way, we obtain an efficient randomized approximatien al
with imperfect information gorithm with running time polfn, £, ¢u, log(%)).

_We follow the framework of Harsanyi .[12’ 1.3]’ who de- In this scenario, the termd- should not be interpreted as an
scrlbe_d an elegan_t model_to study games in Wh'Ch_the playﬁlr(ﬁcator of how much randgmization is available, but rathye
have |r_1complete mfo_rmatlon. The so-callelarsanyi trans- should be interpreted as a measure for the degree of precisio
forma’qon one of the_|deas for which he was awarded the N f the information available to the provider. ¢f. is constant
!oel Prize together W.'th Nash and Selt_en, converts games VYHQn the provider essentially knows nothing. Full knowkedg
incomplete information into games with complete but 'mpe&)rresponds top — oo. If the degree of precision is bounded
fect information. Harsanyi considers players who haveediff by a polynomial, e.g., if all variables have possibly diéfet
ent utilities as being of differertypes He proposed that SUChuni orm distribut’ions ’each of which covering a polynomial
games be modeled by having Nature move first and choose e}?&hion of the domair,{l) M], then we obtain an FPRAS (fully
player type according to a probability distribution. Ples/ii- olynomial time randor7nize,d approximation scheme)
tially know only their own type and the distributions for thg '
other players, but not the outcome of the random choicesTWEOREM 7.1. Suppose assumptions (1) and (2) are satisfied
Nature. The players aim at maximizing the expected payoff.and ¢ is bounded polynomially. Then there is an FPRAS for

The Harsanyi framework in our setting means that thettee best (worst) equilibria problem with imperfect infortioa.

is only one player that needs to compute its strategy based . , ,
on imperfect information. Indeed, in realistic scenarioisi OPServe, that by standard techniques we can achieve datermi

reasonable to assume that the provider does not know exdéfl§ Polynomial time instead of time bounds that only hofd o
how the customers will behave under a given price vector. §§P€ctation. Then, only the approximation guarantee dispen
contrast, customers can be assumed to converge to a NHsHe random coin flips made by the algorithm.
equilibrium by best response strategies without knowirgeot ,
players utilities (this follows from [21, 22]). If pricesafixed, 8 Algorithmsand proofs
then the customer behavior is determined by demands &id |napproximability We prove here Theorem 4.1. As-
utility thresholds; these parameters define the Harsapgsy sume uniform pricing withp; = aw;. We show, that for every
The online provider does not know the types of the custometwice ofa € R, there exist demands; and utility func-
but she knows probability distributions on these types.rtteo tionswu; such that the value of the maximum (minimum) profit
to maximize her expected profit, she is interested in esitimatcustomer equilibria cannot be approximated. Instead tityuti
the expected revenue under best and worst equilibria. functionsu; we directly specify thresholds;. The u;'s can
Somewhat counter-intuitively, we prove that, if the infothen be chosen accordingly to satisfy= u; ' (aw;).
mation available to the provider is not too “precise,” theet  We use a reduction from adP-hard subset-sum problem
stochastic equilibria problems obtained by the Harsamyig+ [8]. Given a set{c;,...,c,}, 0 < ¢; € N and some number
formation have smaller worst case complexity than theiedet3 < N, decide whetheBl C {1,...,n} with >, ¢; =
ministic counterparts. Let the demands and utility thrédhio B. W.l.o.g., we assume that al’'s are even (otherwise we
have independent continuous probability distributionwlis- multiply all ¢;’s and B by 2.)
tribution functionsF; andG; (i € [n]), respectively. Prices areMaximization: Consider the following max profit customer
defined by a non-negative, non-decreasing, concave funatioequilibria problem with profit equal to demand. There are
the demands. We need some further technical assumptionsn regular customers, ..., n and two special customers: a
. _ _ “large” customerL and a “giant” customeé. The demands
(1) there existaf such thatry(M) = 1andG;(M) = 1, and and thresholds are given in Table 1. The paramétenslg can
(2) Prdi:w; <b] >4 be chosento satisfp < | < C < gwithC = Y, .., c;.



We use customér as an indicator for deciding the subset-sukmapsack problems.
problem. If there exists a solutidnto the subset-sum problem ) _

thenx* (as given in Table 1) is a feasible solution to the belngOf' Let us_recall th_e _formu_lafuo_n ofnthe equilibria prob-
equilibria problem with loady + B. If there is no solution Iem; our goal is to maximize (m|n|m|z§E_i:1 Piti under con-
I, then no feasible equilibriur: can contain customeg. Straints (1.1), (1.2), and (1.3). A solutianwith load W' =
First notice, that there is no feasible solution contairtiogh 2-i=1 wii is feasible iff the following two conditions hold for
customersL and G, because their cumulative demand @/ 1 < ¢ < n: (i) Maximality condition:if W < b; —w; then
strictly larger than the threshold @f. Now assume some”i — 1, and (||_)Thr_eshold conditionif W' > bl thenz; - _0'
solution x containsG but not L. Since the demand of the The MaX|maI|ty and Threshold co_nd|t|0n§ _pgmpon the
regular customers cannot sum up to exadlyand moreover non-negative numbers for each custoristo 3 d|SJq|nt inter-
all w;'s are eveny has load at mosf + B — 2, which violates V&!S: [0 0i —wi), [b; — wi, bi] and (b;, oc]. Any feasible solu-
the maximality condition of customelr. Hence any feasible ion ¢ With load W must satisfy eithes; = 1, orz; € {0, 1},
equilibrium excludeg; and has load at moét+ (. Sinceg and orz; = O’_ depending on the intervai falls |_n_to. We over-
therefore alsdg + B)/(C + 1) can be chosen arbitrarily Iarge,lay these intervals for alk customers to partitiof0, co] into

any approximation algorithm for the best equilibria prableUP to 2n + 1 so-called elementary intervals (each additional
can be used to decide the subset-sum problem customer can divide at most 2 existing elementary inteyvals

customer| demands| thresholds | 2* Note that elementary intervals can consist of just one num-

L,...on |wi=c |bj=g+B zr =1iff ie 1 berand they can be opened or closed on both sides indepen-
G we=g | bea=g+B rh =1 dently. Each elementary intervApartitions the customers into
I wp, =1 | by=bg+1—1]a} =0 three sets: IN = {i|I C [0,b; —w;)}, FREE = {i|I C
[bi — wi,bi]}, OUT[ = {Z | I g (bl,OO]}
Table 1: Best equilibria instance and solution If the load of a solution in equilibrium falls into the

elementary interval then no customer in OU;Thas joined the
Minimization: We construct a worst equilibria instance witlervice, all customers in INmust have joined the service, and
n regular customergl, ..., n) with demandsw; = ¢; and there are no restrictions for customers in FREEherefore, we
thresholdsh; = B. There is only one special customer witlpartition the solution space for the equilibria problemarding
demand; and threshold + g —1. If there exists a solutiofito  to the load of potential solutions. For each elementaryvale
the subset-sum problem, then there is a solutiéa the worst [ we solve the following interval knapsack problem:
equilibria problem with loadB. If there is no such solution
I, then any solutior: containing only regular customers hagnax(min) Z piri St ( Z w; Ty + Z w;) € 1
load at mostB — 2, violating the maximality constraint of i€FREE i€FREE; ieIN;
customerG. Thus any feasible solution must contain the x; € {0,1}.

special customer and has load at leasbinceg and alsay/ B h imal soluti h iibri blem is th .
can be chosen arbitrarily large, any approximation alparit The optimal solution to the equilibria problem is the maximu

for the worst equilibria problem can be used to decide tH@iNiMum) over all2n + 1 solutions of the corresponding
subset-sum problem. interval knapsack problems. For elementary intervals dhat

open we can use the corresponding closed interval, because a
8.2 Reduction to the interval knapsack problem In this an open end the restriction of a variable having valuer 1

section we present a reduction from the customer equilfﬂldS z:cmd tgle \;arlarl?le bec_f_)l;n_es fregl. Therehfor? the sglu::on
fia problems to the interval knapsack problem. It wifftdys feasible for the equilibria problem. The first and the

serve as the basis to solve the equilibria problem in pseu[ﬁ?—t of the elementary intervals are trivial intervals,cei.mhey
polynomial time and to approximate it. We define the intef0respond to the complete and empty knapsack, which can be
val knapsack problem to be the standard 0/1 knapsack prob‘gﬁlied separately.

with an additional lower bound for the weight of knapsacks: _ ) )

max{S"" piwi|L < Y wiri < R € {0,1}}. (A 8.3 Adaptwe al_gorlthms for the interval _knap&ack pr_ob-
knapsaék is feasible if ité weight!_, w;z; falls into the in- lem In this section, we present an algorithm for the interval

terval[L, R].) The minimization version asks for the minimunlfnapsaCk problem that adapts to the length of the specified in

profit knapsack. Notice, that the interval knapsack prob‘temterval' Its running time increases linearly with the reoial of

inherently inapproximable, because for= R it requires to the interval. _In pqrticular, we p_rove_Theorem 6.1.

decide the subset-sum problem. On the other hand, the prob-We begin with the algorithmic ideas. We use a two
lem can be solved in pseudopolynomial tifin 3>, w;) by phase approach. In each pha_se, we sol\_/e a relaxed m_terval
a straightforward adaptation of the well known dynamic pré@psack problem. The solution to the first problem might

gramming approach for the standard knapsack problem. THJJSS solutions close to the right boundaty and the solution
the following lemma directly implies Theorem 3.1. to the second problem might miss solutions close to the left

boundaryL. The union of both solutions will cover all feasible
LEMMA 8.1. A solution to the best (worst) customer equilibrigolutions. The two relaxed problems are solved following th
problem can be obtained by solving at ma@st — 1 interval standard dynamic programming algorithm with one additiona



nice trick: we expand the dynamic programming table by ooptimal profit in[L, M], i.e., S* yields profit Opt ,,. Then,
dimension used to represent an additional vector of asificive conclude thatmax{p|a(p) = 1} = p(S), for some setS
profits corresponding to rounded weights. The original Wesg with weight in[L, R] andp(S) > p(S*).

allow us to strictly enforce one of the two constraints witie The size of the dynamic programming table is

rounded weights (= additional profits) enable us to take ca/er/F|[P/G] = O n’R ) P needs to be chosen

also for the other constraint - (r-Lhe/”
: sufficiently large so that all solutions are covered. WYJ.p.

In more detail, we divide the intervdl = [L, R] equally 1 . . -
: . . A > assume < 3. Then choosing® > 2 - Opt is sufficient.
into two parts; and/,.. Rounding the weights virtually shlftsF — 2 g = -y

th ,if th ted solutishsatisfiesp(S) > P/4
knapsack packings along the weight dimension. In phas h%(la‘r ermore, if the computed solutishsatisfiesp(S) = P/

2 : . L np(S) > (1 —¢) - Opt, ,,, Which follows analogously to
we round up, shifting packings frorh to the. r|ght,_ while N the calculation for the approximation factor of the staaddar
phase 2 we round down. When calculating with sufficie

Rh k problem. The problem that remains to be solved i
accuracy, packings froni; will not be shifted beyondR, apsack provlem © probiem mat remains 1o be SovVed 1S

. : : how to determine the right choice fét. We do this in form of
and pacl_<|ngs from/;. will not be shifted b(_eyondL. Thus, a binary search. We start by settify= 2 ", p,. If we do not
the required accuracy depends on the rdljttx — L). L\_et ind any feasible solution then we immediately stop and retur
M = (L + R)/.2' Let Opt, ; denote the valye .Of an Optlma'fOptL m = 0. Otherwise, we find a solutiof whose profit
solution to the interval knapsack problem with interj&l B].  _ o imal I ted solutionss(iS) > L P
An approximate solution to interval knapsack can be foundﬁ& ) is maximal among all computed solutionsz(fS) > 3
solving the following two relaxed subproblems: en
e Compute solutior; with w(S1) € [L, R] andp(S;) > p(S) > (1—¢€)-p(S) > ;p(S) > %.P ,

(1—¢€)-Opty, -
. . so thatS is the (1 — ¢)-approximation that we are looking for.
» Compute solutiorB, with w(52) € [L, B] andp(S2) > (S) < %P(then 3/ve increase the accuracy by decreasing

(1~ ¢) - Oply p- the value ofP by a factor of2 until we find a solutionS with
Clearly,max{p(S1),p(S2)} > (1—¢)-Opt,, 5. We focus onthe w(S) € 3P, P]. The maximum number of iterations that we
first subproblem, the other one can be solved analogousty. heed to execute i© (log (%Tp)) Thus the overall running

w; = [w;/F| - Fandp; :== [p;/G] -G, foralli € [n],denote 3 S _
rounded weights and profits, respectively, where the vaiedme ISO ((R—}g)e log ( e )) This proves Theorem 6.1.
F and G will be set momentarily. For ang C [n], define For the average case analysis in the next section, we need

w(S) =Y ,cq Wi andp(S) = Y, ¢ bi- LetT(i,w, p) denote this result in a slightly different form. LetWrn. and Wiin

the largest weight among all knapsack packisgs [i] with denote the maximum and minimum weight, respectively. If
w(S) = w andp(S) = p. The following formula gives a profits are defined by a non-decreasing, non-negative, genca
recursive definition for all non-trivial values @f{(-). function thenfeas < fmax This yields the following.

TG+ 1,w,p) = max{T(i,w,p), T(i,w —w;4+1,p— Dit1)} . COROLLARY 8.1. Suppose profits in the interval knapsack
_ _ _ _ problem are defined by a non-negative, non-decreasing, con-
Rounding weights to multiples af introduces an absolute ercave function of weights. Then the algorithm above solves th

ror strictly less thamF. SettingF" := (R — L)/(2n) eN- jtarval knapsack problem in tinm@ (<éf’§> log (nvxffvm_ax))'
suresnF < (R — L)/2. Therefore,w(S) € [L,M] = ¢
w(S) € [L,R]. The other scaling factor is defined loy = . T

eP/(4n), where P is chosen sufficiently large. Following a8‘4 Average-case analysis of the equilibria problem We

dynamic programming approach, we compute g, w, p) now pro(\j/e '{he(;retlﬁ 62t Lel»;tke [0,1] kbe f|t>)<|ed. \(/jVe ﬂi:i:;t d
values for allevaluation points i € {1,...,n} in dimen- use a reduction fo the interval knapsack problems descfibe

sion 1,w € {F,2F,...,[R/F|F} in dimension 2, ang € Section 8.2. Each interval knapsack problem will be solved

A . . using the algorithm described in Section 8.3. ISet= {0} U
{G,2G, ..., [P/G]G} in dimension 3, of the three dimen .., S2n, } denote the set of boundary points of the intervals,

sional table. Now, define {8.1" X .
with s; < ... < s9,. For analytical purposes, we consider the

{ 1 ifthere exists an evaluation poifit, w, p) intervals for all pairs{L, R} € S, I = {(L,R) : {L,R} C

st. we [L,R] and T(n,w,p) € [L,R), S,L < R}.
0 otherwise. Consider anylL, R with (L, R) € I. Note that eaclL, R
is of the formb; or b; — w; wherew,; andb; are non-negative
Observe that infeasible subsets (i#(,S) ¢ [L, R]) have no random variables with density functiofisandg; respectively,
influence onx(p). SetsS with w(S) > R are mapped to anwith p being an upper bound on all the expectations and
evaluation point with second coordinaigS) > R. SetsS — an upper bound on the values of all functiofisg;. We
with w(S) < L might be mapped to evaluation points witlneed to modify the algorithm as follows. If for somgthe
second coordinate ifL, M| but they are explicitly filtered out sampled value. = b; — w; is negative, then our algorithm
by checkingT (n,w,p) € [L,R]. Let S* denote a set with takes into account only all intervals of the fority R) for all

alp) =



R € SNR,. We assume thus that sedoes not contain anyProof. The expectation can be upper-bounded in the
interval (L, R) with L < 0, but (0, R) instead. Moreover, if following way: E[Z] = E [min (max(X Y) 2n)j| <
[X—Y] =

we are given an intervdb; — w;,b;) € I, then the algorithm . v

solves only the interval knapsack problem in inter\(zﬂsb ) E [max (mln (ﬁ, 2”) ) + max (mm (W’ 2”) 70)

and(b; — w;, B) whereL = max{L’ € §: L' < bi —wi} g4 it syffices to bount —=,27) 0

andR = min{R' € S : R’ > b;}. Thatis, the algorlthm does [ ax (mm (X Yo ) )}

not consider intervalb; — w;, b;) itself. Thus, our algorithm Let h(z,y) = max (Inin (I%y, 2”) ,O). Observe that

considers only intervalgL, R) € I of the formL = b; — x;, h(z,y) = h(z/y,1) andh(z,0) = 0, and ifz = 0, y > O,

R =b; — x;, wherei # j andz; € {0, wi}, z; € {0, w;}. thenh(z,y) = 1. Also if z > 1, thenh(z,1) = 0.
LetusfixanintervalL, R) € I. LetT(L, R) be arandom  Opserve, that the random variabl&sY have discontinu-

variable denoting the running time of our algorithm for thgy at valueo, andE [X] < pandE[Y] < . Also, observe that

interval knapsack problem on intervdl, R). Let/ = u27". in the range of value#, o] we can usef; and f, as density
If w, < ¢ for somei € {1,...,n}, then we use a brutefynctions forX andY.
force exact algorithm with runnmg timé@ (2"). Note, that Lety > 0 be fixed, ands = ;;1_ Suppose first that
this part contributes a® (¢u) to the expected running timepy [ x [X = 0] = 0. We can write:
sincePr [w; < /(] = fo gi(x)dx < ¢p/2™. Inthe same way the
algorithm also checks iR/(R—L)<2m. [~ Y

If R/(R— L) <2, a/rgdwi z)E fori =1,...,n,thenwe E[n(X,y)] = /0 hiz, y) fr(z)de = /0 h(z/y, 1) fi(z)dz.

call the adaptive algorithm from Section 8.3. The runninggti

of this algorithm isO( F?%La) log (nwmx)) by Corollary By changing the variable te = xz/y, sincedz/da: = 1/y,
Wania we obtain that: E[h(X,y)] = y [y h(z1)fi(zy)dz <
8.1, wheréW,.x = max;{w;} andWy,i, = min;{w;}. - )
Our algorithm only considers intervalg, R) € I of the ®Y Jo hz dz = ¢y [ max (mm (Ev ) ’ )dz =
form L = b; — z;, R = b; — z;, wherei # j andz; € {0,w;}, ¢yf max(min(1=,2"),0)dz =
zj € {0,w;}. Thus, for the analysis of the expected runmn&d max(min( I ") 0)dz +
0 1—27 )

time of the partO( n’R ) we can assume that possible + oy f; max(min(llz,2n) O)dz _

R—L)e
values ofz; = w; that may appear i, R are worst case fixed s 1 1on
numbers. This can only decrease the expectatioris &fand *Y Jo max (E’ 0) dz + gy [, 2"dz = oy [y vd
sou is still an upper bound on these expectations, and this dée8" 5 = ¢y[—In(1 — 2)]Z=§ + ¢y = (In(2") + )
not affect thep upper bound. This means that we can treat tke + 1)¢y.

two partsO (—(}gif)s) andO (1og (”W"m)) in the running Suppose now thar [X = 0] = p > 0. Then

time independently. The expected running time over alrirte WX — 0 Elh 1— ) -E(X. )X _
knapsack problems is by linearity of expectation bounded by R(Xsy)] = p-E[R(O,)] + (1 = p) - E[A(X,y)|X > 0]

E[ > T(L,R)
(

L,R)eIl

<0 (n2) .IE,%‘%(E [T(R,L)] = +(-p) /0+ h(z,y)f(z)dx

wheref is a density function of random variabl| X > 0. Let

0 n® £ R el nWhax us observe, that for any > 0 we havef(x) < ff%”;). We can
< ) IR —L| | ' therefore write that:

€ min

o0

Lemmas 8.2, 8.3 below prove upper boundsto RIEL} E (X, )] < p+/ Wz, y)de < 1+ (n+ 1oy,

and onkE [1og ("Wm)} . After applying these lemmas we can 0t
obtain the following upper bound on the expected runningtinFinally, we observe thait(x 0) = 0, so we have thatE [7]
nd En(X fo+ MX,y)] f2(y)dy < fooj (1 + (n
@ (7 “((n+ 1L)gu + 1) - (log(ppn + 1) +310g(n))) : 1)¢y)fz( dy = Jor fo()dy + (n + 1)¢ [ yfa(y)dy
1+ n+1DeE[Y] <1+ (n+1)ou.

LEMMA 8.2. Letby, by be two given continuous random vari-

ables with density functiong, (z), f2(y), respectively, and LEMMA 8.3. Let X, X»,..., X,, be n given non-negative,

let wy,ws > 0 be two fixed worst-case numbers. Iget= continuous random variables with density functiofi§z),

sup{fi(z) : z € R,i = 1,2}, u = max{E[b],E[b2]}, fo(x),..., fn(z) respectively. Letp = sup{fi(z) : = >

n > 2. Define new random variable¥ = max{b; — wy,0} 0;i = 1,...,n}, p = max;(E[X;]), n > 2, and?l = p27".

|/\—|-||

andY = max{by — wy,0} and Z = min (%2’1 . Definen(zy,...,z,) = logw ifzy,...,x, >4
Then, the expectation of random variatiffecan be bounded@nd(z1,...,z,) = 0 otherwise. LetZ = h(Xy,...,X,),

as:E[Z] < 2(n+1)¢u + 2. then we haveE [Z] < log(¢un + 1) + 2log(n).



Proof. Using the linearity of expectation we can write:

B max(Xq,...,X,)/u]
E[Z]—E{log min(Xy,..., X))/ /]
max(Xy,...,X,) ]
E{log }JFE[lOg min(Xy,..., X,) |’

[8] M. R. Garey and D. S. Johnsofomputers and Intractability: A
Guide to the Theory of NP-completeneBseeman, 1979.
[9] A. Goel and P. Indyk. Stochastic load balancing and eslat
problems.40th FOC$1999.
[10] A. Goldberg and A. Marchetti-Spaccamela. On findingakact

solution to a zero-one knapsack problebtth STOC 359368,
1984.

Sincelog is a concave function, we can apply the well-knowi#1] M. Harris and A. Raviv. A theory of monopoly pricing sehes

Jensen’s inequality to the first term:

E [1og max (X7, ... ,Xn)}

< logE {maX(Xl,...,Xn)} '

with demand uncertainty. The American Economic Review
71(3): 347-365, 1981.

[12] J. C. Harsanyi. Games with incomplete information pldyoy
Bayesian players, I, Il, lll.Management Sciengé4: 159-182,
320-332, 468-502, 1968.

By using the linearity of expectation we obtain the fof13] J. C. Harsanyi. Games with randomly disturbed paydifser-

lowing: logE{W} < logE[ﬁZin} -

log (% > E [Xl]) < log (%nu) = log(n). Now we apply

Jensen’s inequality to the second term:

14 12 14
7 | < [ R el
E [log mini(Xi)] <logE Lnini(Xi)] logE [mzax Xl}

e ] e (el

and so it suffices to bound:
pl_ [Tey _[Te, Tp
E [XZ} — [ Ahtwan= [ xfz(x)der/ﬂ (e
" 1 o M T=p
<ou [ —dr+ = fi(z)dz = ¢p[ln(z)];Z) +
¢ T n H

+ [ Re)dn = o)~ nlu/2) + 1 < g+ 1,

where we have used the fact thfat f;(z)dx < [;° fi(z)dz =
. K A .
1. Putting the two bounds together, we obtain the claim.
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