Fast Approximate PCPs for Multidimensional
Bin-Packing Problems*

Tugkan Batti, Ronitt Rubinfeld**, and Patrick Whité

Department of Computer Science, Cornell University, I1thatY 14850
{batu,ronitt,white}@s.cornell.edu

Abstract. We consider approximate PCPs for multidimensional birkjperprob-
lems. In particular, we show how a verifier can be quickly éoogd that a set of
multidimensional blocks can be packed into a small numbeéire. The running
time of the verifier is bounded b@(T'(n)), whereT'(n) is the time required to
test forheavinessWe give heaviness testers that can test heaviness of an ele-

ment in the domaifl, ..., n]? in time O((log n)?). We also also give approxi-
mate PCPs with efficient verifiers for recursive bin packind multidimensional
routing.

1 Introduction

Consider a scenario in which the optimal solution to a vergdacombinatorial opti-
mization problem is desired by a powerful corporation. Theporation hires an in-
dependent contractor to actually find the solution. The axation then would like to
trust that thevalue of the solution is feasible, but might not care about thecstme
of the solution itself. In particular they would like to hagequick and simple test that
checks if the contractor has a good solution by only inspgati very small portion of
the solution itself. Two hypothetical situations in whittist might occur are:

— A major corporation wants to fund an international commatians network. Data
exists for a long history of broadcasts made over currersiygdunetworks, including
bandwidth, duration, and integrity of all links attempt&tie corporation wants to
ensure that the new network is powerful enough to handle ondred times the
existing load.

— The services of a trucking company are needed by an (e-prdér company to
handle all shipping orders, which involves moving large bens of of boxes be-
tween several locations. The mail-order company wants sarerthat the trucking
company has sufficient resources to handle the orders.

In both cases, large amounts of typical data are presentis tconsulting company,
which determines whether or not the load can be handled. mpilistically checkable-
proof (PCP) techniques (cf. [3, 4, 1]) offer ways of verifgisuch solutions quickly. In

* This work was partially supported by ONR N00014-97-1-0508JRI, NSF Career grant
CCR-9624552, and an Alfred P. Sloan Research Award.The &hithor was supported in part
by an ASSERT grant.

** Part of this work was done while on sabbatical at IBM Almadesé&arch Center

these protocols a proof is written down which a verifier carsttby inspecting only
a constant number of bits of the proof. The PCP model offdisiefit mechanisms
for verifying any computation performed in NEXP with an effict verifier. We note
that the verifiers in the PCP results all requi?én) time. Approximate PCPs were in-
troduced in [7] for the case when the input data is very laage, even linear time is
prohibitive for the verifier. Fast approximate PCPs allovedfier to ensure that the an-
swer to the optimization problem is at leastnostcorrect. Approximate PCPs running
in logarithmic or even constant time have been presented]ifof several combina-
torial problems. For example, a proof can be written in suetag as to convince a
constant time verifier that there exists a bin-packing wipabks a given set of objects
into a small number of bins. Other examples include proofskwbkhow the existence of
a large flow, a large matching, or a large cut in a graph to digethat runs in sublinear
time.

Our Results.We consider approximate PCPs for multidimensional bin pagrkn par-
ticular, we show how a verifier can be quickly convinced ths¢bof multidimensional
objects can be packed into a small number of bins. We alsddmmthe related prob-
lems of recursive bin packing and multidimensional routi@gr results generalize the
1-dimensional bin packing results of [7]. The PCPs are marécate in higher dimen-
sions; for example, the placements and orientations of libekb within the bin must
be considered more carefully. In the 1-dimensional caseagproximate PCP of [7]
makes use of a property callé@avines®f an element in a list, introduced by [6]. Es-
sentially,heavinesss defined so that testing if an element is heavy can be done ver
efficiently (logarithmic) in the size of the list and suchfttladl heavy elements in the
list are in monotone increasing order. We generalize thi®nao the multidimensional
case and give heaviness tests which determine the heavhegintz € [1,...,n]¢
intime O((21ogn)?¢). Then, given a heaviness tester which runs in tiie), we show
how to construct an approximate PCP for binpacking in whighrinning time of the
verifierisO(T'(n)).

In [9], multidimensional monotonicity testers are givenigrhpass functiong that
are monotone and fail functiorfsif no way of changing the value gfat at most frac-
tion of the inputs will turnf into a monotone function. The query complexity of their
tester isO(d?n?r) wheref is a function fromn]? to [r]. Our multidimensional heavi-
ness tester can also be used to construct a multidimensiavatonicity tester which
runs in timeO(T (n)). However, more recently Dod&t. al.[5] have given monotonic-
ity testers that greatly improve on our running times for elirsion greater than 2, and
are as efficient as ours for dimension 2. This gives hope tloae refficient heaviness
testers in higher dimensions can also be found.

2 Preliminaries

Notation. We use the notation € S to indicatez is chosen uniformly and at random
from the setS. The notatiorin] indicates the intervdl, ..., n].

We define a partial ordering relatiet over integer lattices such thatifandy are
d-tuples therr < y if and only if z; < y; forall € {1,...,d}. Consider a function

f: D* = R, whereD? is ad-dimensional lattice. If,y € D¢ are such that < y
thenif f(z) < f(y) we say that: andy are inmonotone ordeiWe sayf is monotone
if for all z,y € D¢ such thatr < y, = andy are in monotone order.

Approximate PCP.The approximate PCP model is introduced in [7]. The verifas h
access to a written proof/, which it can query in order to determine whether the
theorem it is proving isloseto correct. More specifically, if on input, the prover
claims f(z) = y, then the verifier wants to know ifis close tof (z).

Definition 1. [7] Let A(:,-) be a distance function. A functiofiis said to have a
t(e,n)-approximate probabilistically checkable proof systeith distance functiomd

if there is a randomized verifie¥ with oracle access to the words of a prd@fsuch
that for all inputse, and z of sizen, the following holds. Ley be the contents of the
output tape, then:

1. If A(y, f(z)) = 0, there is a proof/T, such that’ outputs pass with probability
at least 3/4(over the internal coin tosses b¥;

2. If Ay, f(z)) > e, for all proofsIT’, V' outputs fail with probability at least 3/4
(over the internal coin tosses d; and

3. VrunsinO(t(e,n)) time.

The probabilistically checkable proof protocol can be egpdO(lg 1/4) times to get
confidence> 1 — 4. We occasionally describe the verifier's protocol as anration
with a prover. In this interpretation, it is assumed thatghaver is bound by a function
which is fixed before the protocol begins. It is known thasthiodel is equivalent to
the PCP model [8]. The verifier is a RAM machine which can reatad in one step.

We refer to PCP using the distance functid(y, f(z)) = max{0,1 — f(z)/y}as
anapproximate lower bounBCP : if f(z) > y thenIT cause9’™ to pass; iff(z) <
(1 — €)y then no prooflT’ convinces)™ with high probability. This distance function
applied to our bin-packing protocol will show that if a prowtaims to be able to pack
all of then input objects, the verifier can trust that at le@ist- ¢)n of the objects can
be packed.

It also follows from considerations in [7] that the protosele give can be em-
ployed to prove the existence of suboptimal solutions. higaar, if the prover knows
a solution of valuey, it can prove the existence of a solution of value at Ié&ast €)v.
Sincev is not necessarily the optimal solution, these protocafshEaused to trust the
computation of approximation algorithms to the NP-complatoblems we treat. This
is a useful observation since the prover may not have cortipng powers outside
of deterministic polynomial time, but might employ very gbbeuristics. In addition,
since the prover is much more powerful tHdnt may use its computational abilities to
get surprisingly good, yet not necessarily optimal, solusi

Heaviness TestingOur methods all rely on the ability to define an approprisavi-
nessproperty of a functiory. In the multidimensional case, heaviness is defined so that
testing if a domain element is heavy can be done very effigiémthe size of the do-
main, and such that all heavy elements in the domain whiclkk@rarable according

to < are in monotone order.

We give a simple motivating example of a heaviness testlfer 1 from [6]. This
one-dimensional problem can be viewed as the problem oftesthether a list, =
(f(1), f(2),..., f(n)) is mostly sorted. Here we assume that the list containsdisti
elements (a similar test covers the nondistinct case). i@enthe following for testing
whether such a list is mostly sorted: pick a point € L uniformly and at random.
Perform a binary search dnfor the valuez. If the search finds then we calk heavy
It is simple to see that if two points andy are heavy according to this definition,
then they are in correct sorted order (since they are eaclpable to their common
ancestor in the search tree). The definition of a heavinegsepty is generalized in this
paper. We can call a propertyheeaviness propertyf it implies that points with that
property are in monotone order.

Definition 2. Given a domainD = [1,...,n]?, a functionf : D — R and a property
H, we say thaf{ is aheaviness properiy

1. Vz <y H(z) A H(y) impliesf(z) < f(y)
2. In a monotone list all points have property H

If a point has a heaviness propeffily then we say that point iseavy There may be

many properties which can be tested of points of a domainiwaie valid heaviness
properties. A challenge of designing heaviness tests isntb groperties which can
be tested efficiently. A heaviness test is a probabilistacpdure which decides the
heaviness property with high probability. If a point is nefaly, it should fail this test

with high probability, and if a function is perfectly monai®, then every point should
pass. Yet it is possible that a function is not monotone, bigisted point is actually
heavy. In this case the test may either pass or fail.

Definition 3. LetD< = [1,...,n]? be a domain, and lef : D — R be a function on
D. LetS(-,-) be a randomized decision procedure Bn Given security paramete,
we will sayS is aheaviness tegor z if

1. Ifforall z <y, f(z) < f(y) thenS(z, d) = Pass
2. If z is not heavy the®r(S(z,0) = Fail) > 1 -6

The heaviness tests we consider enforce, among other tiespdocal multidimen-
sional monotonicity of certain functions computed by thever. It turns out that mul-
tidimensional heaviness testing is more involved that theedimensional version con-
sidered in earlier works, and raises a number of interesfirggtions.

Our results on testing bin-packing solutions are valid fay heaviness property,
and require only a constant number of applications of a Ineagitest. We give sample
heaviness properties and their corresponding tests inBekLtyet it is an open question
whether heaviness properties with more efficient heavitesss exist. Such tests would
immediately improve the efficiency of our approximate PCRfiez for bin-packing.

Permutation EnforcemenSuppose the values of a functigrare given for inputs ifin]
in the form of a listyy, . . ., y,. Suppose further that the prover would like to convince
the verifier that they;’s are distinct, or at least that there die— ¢)n distincty;’s. In
[7], the following method is suggested: The prover writesprd of lengthn. A(j)

should contairi whenf (i) = j (its preimage according tf). We say that is honesif
A(f(i)) = i. Note that the number of honest elementgihlower bounds the number
of distinct elements iny,,...,y, (even if A is written incorrectly). Thus, sampling
0(1/e) elements and determining that all are honest suffices taerisat there are at
least(1 — €)n distincty;'s in O(1/¢) time. We refer toA as thepermutation enforcer

3 Multidimensional Bin-Packing

We consider thei-dimensional bin-packing problem. We assume the objectseto
packed ard-dimensional rectangular prisms, which we will hereaféder to as blocks.
The blocks are given agtuples (inN?) of their dimensions. Similarly, the bin size is
given as ad-tuple, with entries corresponding to the integer widthha# bin in each
dimension. When we say a block with dimensians= (w;,...,wq) € N¢ is located

at positionz = (x1,...,x4), we mean that all the locatiogssuch thate < y < = +w

are occupied by this block. The problem of multidimensidsialpacking is to try to
find a packing ofn blocks which uses the least number of bins of given dimension
D= (N1,...,Ng).

It turns out to be convenient to cast our problem as a maxitiizgroblem. We
define thed-dimensional bin-packing problem as follows: giverblocks, the dimen-
sions of a bin, and an integét, find a packing that packs the largest fraction of the
blocks intok bins. It follows that ifl — e fraction of the blocks can be packed#rbins,
then at mosk + en bins are sufficient to pack all of the blocks, by placing eattine
remaining blocks in separate bins.

We give an approximate lower bound PCP protocol for the meétion version of
the d-dimensional bin-packing problem in which the verifier ram$((1/¢)T (N, d))
time wherel' (N, d) is the running time for a heaviness tester®a= [V1] x - - - x [Ny4]
and we takeV = max; N;. In all of these protocols, we assume that the block and bin
dimensions fit in a word.

In this protocol, we assume that the prover is trying to coogithe verifier that
all the blocks can be packed inbins. We address the more general version of this
problem in the full version of this paper. In doing so we use dpproximate lower
bound protocol for set size from [7].

We require that the prover provides an encoding of a feapiadéing of the input
blocks in a previously agreed format. This format is such iftell the input blocks can
be packed in the bins used by the prover, the verifier acdéjsss thanl — e fraction of
the input blocks can be simultaneously packed, the veriijects the proof with some
constant probability. In the intermediate case, the verdfigner accepts or rejects.

3.1 A First Representation of a Packing

We represent a bin asdadimensional grid with the appropriate length in each dimen
sion. The prover will label the packed blocks with uniquesgdrs and then label the
grid elements with the label of the block occupying it in ttecking. In Figure 1, we
illustrate one such encoding. The key to this encoding isvlegacan give requirements
by which the prover can define a monotone function on the grildgithese labels only
if he knows a feasible packing. To show such a reductiongxist first define a relation
on blocks.

~l 444|444 ol 4 | 4 4 | 4
© [Te} 3 3
© 3|33 <
1 1 3|13
- 3|33
i w111 |33
o 1)1 3/3|3
o 1] 2|2 11 212
|1 2|2 -1 2|2
1 2 3 4 5 6 7 1 2 3 4 5
Fig. 1. A 2D Encoding Fig. 2. Compressed Grid Encoding

Definition 4. For a blockb, the highest corner df, denotech(®), is the corner with the
largest coordinates in the bin it is packed with respect ®@-threlation. Similarly,the
lowest corner ob, denoted(®), is the corner with the smallest coordinates.

In our figure, /") = (1,1) andh() = (2,4). We can order blocks by only considering
the relative placement of these two corners.

Definition 5. Letb; andb, be two blocks packed in the same bin. Bléckprecedes
blockb, in a packing if/(?1) < (),

Note that for a pair of blocks in dimension higher tHaih may be the case that neither
of the two blocks precedes the other. This fact along withftlewing observation
makes this definition interesting: For two blocks,andb,, such thabt, precedes,,

b, andb, overlap if and only ifby precede®;. Surely ifb; precede$, and this pair
overlaps it must be the case thiée) < A1), It follows that the precedence relation
on blocks is a reflexive-antisymmetric ordering precisehewthe packing of blocks is
feasible. Given such an ordering, it is easy to construct aatome function.

Lemma 1. Given a feasible packing of a bin with blocks, we can labelbdoeks with
distinct integers such that when we assign each grid elemehe d-dimensional grid
(of the bin) with the label of the block occupying it, we get@wtone function on this
grid.

Proof. Without loss of generality, assume that the bin is filled umptetely. We know
that by inserting extra “whitespace” blocks we can fill up Hie. It can be shown that
the bin can be packed in such a way thatwhitespace blocks are sufficient. The rela-
tion from Definition 5 gives a relation on the blocks that iBexive and antisymmetric.
Therefore we can label the blocks according to this relatiorh that a block gets a la-
bel larger than those of all its predecessors. This labgives us a monotone function
on the grid.

Now we can describe the proof that the prover will write dowhe proof will
consist of three parts: the first one is a table which will hameentry for each block
containing the label assigned to the block; a pointer to theathere the object was
assigned and the locations of the two (lowest and highestlecs of the block in this
bin. The second partis a permutation enforcer on the blauttshee labels of the blocks.

Finally, the third part consists ofédimensional grid of siz§[[V;] for each bin used
that numbers each grid element with the label of the blockipging it.

3.2 Testing Multidimensional Bin-Packing Using Heaviness

The heaviness test we have defined can be used to test thabtlee'plabeling agrees
with a monotone function. By using Observation 1, we will ideato show if all the
defining corners of a pair of blocks are heavy then they caovetap.

Protocol. We will define “good” blocks such that all “good” blocks can packed
together feasibly. Our notion of “good” should have the mnties that (1) a good block
is actually packed inside a bin, and it is not overlapping ather “good” block; and
(2) we can efficiently test a block for being good. Then, thefiee will use sampling
to ensure that at least— € fraction of the blocks are “good” in the protocol.

Definition 6. The blocki with dimensionsy = (wx,...,wq) IS goodwith respect to
an encoding of a packing if it has the following properties:

— Two corners defining the block in the proof have positive dmates with values
inside the bin, i.e.] < 1 A < N,

— The distance between these corners exactly fits the dinmenefathe block, i.e.,
w=h® -1 41,

— The grid elements dt?) andh(?) are heavy.

— The block is assigned a unique label among the good bloe&ksitiis honest with
respect to the permutation enforcer.

Given this definition, we can prove that two good blocks camwerlap.

Lemma 2. If two blocks overlap in a packing, then both of the blocksmzrbe good
with respect to this packing.

Proof. Note that when two blocks overlap, according to Definitioriigy must both
precede each other. Without loss of generabityprecede$,. Since these blocks over-
lap, the lowest corner d#k, 1(*2), is smaller than the highest cornertgf h(®1) (1(b2) <
h(*1)). We know, by definition of a heaviness tester, that two camipia heavy points
on the grid do not violate monotonicity. But, since both diefjrcorners of a good block
must have the same label, eitiiér) andh(®>), or1(*2) andh(®") violates monotonicity.

Corollary 1. There is a feasible packing of all the good blocks in an enupdisingk
bins.

The verifier’s protocol can be given as follows: The verifieboses a block randomly
from the input, and using the encoding described above roasthat the block is good.
Testing a block for being good involvé}(d) comparisons for the first two conditions
in the definition, O(1) time for checking the unique labelinging the permutation
enforcer, and 2 heaviness tests for the third condition.vEmiier repeats thi®)(1/¢)
times to ensure at leagt — ¢) fraction of the blocks are good.

Theorem 1. There is anO((1/€)T (N, d))-approximate lower bound PCP for the
dimensional bin packing problem whef§ N, d) is the running time for a heaviness
tester onD = [N1] x -+ - x [Ng].

3.3 A Compressed Representation of a Packing

The previous protocol requires the prover to write down apwhose size depends on
thedimension®f the bins to be filled, since the valud% were based on the actual size
of the bins given. We show here how the prover may write a pndoth depends only
on the numbenm, of objects to be packed. In the protocol from the previoutiee the
verifier calls the heaviness tester only on grid elementglwvborrespond to the lowest
or the highest corners of the blocks. We use this observéiiomcompressed proof.

The prover constructs a set distinguished coordinatealuesS;, for each dimen-
sionk = 1,...,d. Each set is initially empty. The prover considers each lblboc
and does the following: for the lower cornéf) = (c,,...,cy), and higher corner,
h® = (ey,...,eq), Of block i, the prover computeS; < S; U {c;} U {e;}. Af-
ter all the blocks are processdf;| < 2n. Thecompressed griavill be a sublattice
of D with each dimension restricted to these distinguisheddinates, that is the set
{{z1,-.-,zq)|z; € Si}. This grid will contain in particular all the corners of alie
blocks and the size of this proof will be at mag{(2n)?). Note that although in the
previous test we have added “whitespace” blocks to generatenonotone number-
ing, those blocks themselves were never tested, hence thegtdaffect the number
of distinguished coordinates. The fact that this new cosgeéd encoding is still eas-
ily testable does not trivially follow from the previous $ea. In particular, we must
additionally verify that the prover’s compression is valid

The proof consists of four parts. First the prover implicitlefines the proof from
the previous section, which we refer to as thiginal grid. The prover then writes down
a table containing theompressed gridn each axis, the prover labels the coordinates
[1,...,2n] and provides #okup-table(of length2n) for each axis which maps com-
pressed grid coordinates to original grid coordinatesaliirthe prover writes down
the list of objects with pointers to the compressed grid, apermutation enforcer as
before. In Figure 2 , we give the compressed encoding of thkipgfrom Figure 1.

Protocol. By making the prover write only a portion of the proof from first protocol,
we provide more opportunities for the prover to cheat. Faneple, even if the prover
uses the correct set of hyperplanes for the compression,dyer@order them in the
compressed grid to hide overlapping blocks. The conversibles we introduced to
our proof will allow the verifier to detect such cheating.

The definition of a good block is extended to incorporate taklip tables. In a
valid proof, the lookup tables would each define a monotonetfan on[2n]. We will
check that the entries in the lookup tables which are useatizting a particular block
areheavyin their respective lookup tables. Additionally we test atth block is good
with respect to Definition 6 in the compressed griél block which passes both phases
is agoodblock.

Our new protocol is then exactly as before. The verifier $8l6¢€1/¢) blocks and
tests that each is good and if so concludes that at(least) fraction of the blocks are
good.

! Except when we test the size of the block, for which we refeh#original coordinates via
the lookup table.

Correctness.Any two good objects do not overlap in the compressed gridgdptying
Lemma 2. Furthermore, since the labels of good objects itothiaip table are heavy, it
follows that two good objects do not overlap in the originatigeither. Certainly, since
the corresponding values in the lookup table form a monosmwgience, the prover
could not have re-ordered the columns during compressiamtangle an overlap of
blocks. It also follows from the earlier protocol that godddks are the right size and
are uniquely presented.

Theorem 2. There is anO((1/e)T(n,d))-approximate lower bound PCP for the
dimensional bin packing problem with proof si2¢(2n)¢), whereT (n, d) is the run-
ning time for a heaviness tester @h= [n]<.

3.4 Further Applications

Multidimensional Routing A graphG with edge-capacity constraints is given along
with a set of desired messages which are to be routed betvegtaxpairs. Each mes-
sage has a bandwidth requirement and a duratioR.khows how to routef of these
messages, he can conviré¢hat a routing of> (1 —¢) f exists. We sketch the method:
The prover presents the solution as a 2D bin packing prodi, @ie bin for each edge:
one dimension corresponds to the bandwidth, the other tdubetion. The portion of
a message routed along a particular bin is a 2D block. Tow#rit a routing is legal,
V selects a message at random and the prover provides thaisaat@s a list of edges.
The verifier checks that sufficient bandwidth is allocated #rat durations are consis-
tent along all edges of the route and that the mesghalgek) is “good” with respect
to the packings of blocks in each of the edgeins). If we assume that the maximum
length of any routing provided by the prover is lendththis yields a protocol with
running timeO((k/e) - log®(n)), wheren is the maximum number of calls ever routed
over an edge. To achieve this running time we employ the heasitester in Section 4.
Higher dimensional analogues of this problem can be verifiedn extension of these
methods.

Recursive Bin Packing At the simplest level the recursive bin packing problem sake
as input a set of objects, a list of container sizes (of unéchguantity), and a set of
bins. Instead of placing the objects directly in the binspbject must first be fit into
a container (along with other objects) and the containess fhacked in the bin. The
goal is to minimize the total number of bins required for tleeking. We can solve
this problem by applying an extension of our multidimensidnin-packing tester. In
particular, we define an object geodif it passes the goodness test (with respect to
its container) given in Section 2 and furthermore if the e@mér it is in passes the
same goodness test (with respect to the bin). Aft€t/e) tests we can conclude that
most objects are good and hence ttiat- ¢) fraction of the objects can be feasibly
packed. For &-level instance of recursive bin packing, therefore, ttavpr will write

k compressed proofs ari@#(k/e) goodness tests will be needed.

3.5 Can Monotonicity Testing Help?

Given the conceptual similarities between heavinessgstnd monotonicity testing,
it may seem that a monotonicity test could be used to easiplement our multidi-
mensional bin packing protocol. The obvious approach,ghodoes not seem to work.
The complications arise because we are embeddivigjects in a2n)? sized domain.
If a monotonicity tester can determine that the domain ofammpressed proof is has
(1—¢") of its points in a monotone subset, we can only conclude theastn —e'-(2n)?
boxes are “good”, by distributing the bad points among thmers of the remaining
boxes. Thus monotonicity testing on this domain seems td aaesrror parameter of
O(e/(n%)). If the running time of the monotonicity tester is lineardrhen this ap-
proach requires at leaét((2n)?1) time.

4 Heaviness Tests

We give two heaviness tests for functions on a domain isomotp an integer lattice.
The domains are given & = [1, ..., n]¢. The range can be any partial order, but here
we useR, reals. Both tests which follow determine that a point isdyeéa O((21log n)¢)
time, yielding efficient bin packing tests for small valudsioln particular, the exam-
ples applications of bin packing which we have cited tygicahve dimension less than
3. For complete proofs, please consult the full version efgaper [2].

4.1 The First Algorithm

We extend the protocol of [6] to multidimensional arrays.i@put2 our test compares

z to several random elemenjsselected from a set of carefully chosen neighborhoods
aroundz. It is tested that: is in order with a large fraction of points in each of these
neighborhoods. From this we can conclude that any two coapaheavy pointsa
andb can be ordered by a mutually comparable peirduch thata < ¢ < b and
f(a) < f(e) < f(b). The test is shown in Figure 4.

Proof of Correctness We consider a set dbg?n carefully chosen neighborhoods
around a pointz. We say that: is heavyif for a large fraction of pointg in each of
these neighborhoodg(z) and f(y) are monotonically ordered. We are able to show
from this that for any two heavy points andy, two of these regions can be found
whose intersection contains a pointvith the property that < z < y and f(z) <
f(2) < f(y). Hence this defines a valid heaviness property. The effigiefithe test

is bound by the fraction of points in each neighborhood wiittst be tested, which is
given to us by Chernoff bounds. It follows that

Theorem 3. AlgorithmHeavy- Test is a heaviness tester performing
O(log(1/68)(21log(n))?) queries.
4.2 The Second Algorithm

This algorithm is based on a recursive definition of heasinlamely a point is heavy
in dimensiond if a certain set of projections af onto hyperplanes are each heavy in

dimensiond — 1. We are able to use the heaviness of these projection poiotsiclude
thatd-dimensional heavy points are appropriately ordered.
Given a dimensiod hypercube(' , consider a subdividing operatignvhich maps
C into 2¢ congruent subcubes. This operation passes through ther demtperplanes
parallel to each of the axes of the hypercube. This is a basittibn in our algorithm.
For notational convenience, we extepido ¢ which acts on sets of cubes such that
S({z1,...,zn}) = {¢d(z1),...,0(zn)}. Itis now possible to compose with itself.
We also define a functiod(z,C) = S = = € S € &(C). This function is also a
notational convenience which identifies the subcube a fiemin after such a division.
Now consider any two distinct points in the hypercub@ndy. We wish to apply
& to the cube repeatedly until andy are no longer in the same cube. To quantify
this we define a new functiop : C2 — Z such thate(z,y) = r = &"(z,C) =
&r(y,C) andd ! (z,C) # #"+'(y,C). Thatis, ther + 1st composition off on C
separates fromy.

Definition 7. A pointz is heavy in a domai® = [n)? if the 2d perpendicular projec-
tions ofz onto each cube in the seridgz, D), ..., $'°8"(z, D) of shrinking cubes are
all heavy in dimensiod — 1. The domain®’ for these recurive tests are the respective
faces of the cubes. Whéen= 1 we use the test ¢6].

We can now give the heaviness test for a point.Céte ad-dimensional integer hyper-
cube with side length. Letz be some pointi©’. Constructthe sequenge,, . .., s, } =
{#'(z,0),...,P*(x,C)} wherek = [log(n)]. Note thats;, = =. At each cube;, per-
form the following test: (1) Compute ti%l perpendicular projection, . . ., p24} of

x onto the2d faces ofs;. (2) Verify that f is consistent with a monotone function on
each of the2d pairs(z,pr). (3) If d > 1 recursively test that each of the poinisis
heavy over the reduced domain of its corresponding face,oif d = 1, we use the
heaviness test of [6]. This test is shown in Figure 3.

Theorem 4. If z andy are heavy and: < y thenf(z) < f(y)

Proof. (by induction onl). Letr = o(z,y). LetS = &"(z,C). Lets, = &+ (z,C)
ands, = Pt (y,C). There is at least one plane perpendicular to a coordina®s ax
passing through the center 8fwhich separates andy. This plane also defines a face
of s, and ofs,, which we denote ag, and f, respectively. By induction we know
the projections of: andy onto these faces are heavy. Sincdominatest in every
coordinate, we know thai, < p,. Inductively we can conclude from the heaviness
of the projection points thaf (p,;) < f(py) . Since we have previously tested that

f(z) < f(p2) andf(py) < f(y) we concludef (z) < f(y).

Running time analysis If we let H;(n) be the number of queries made by our algo-
rithm in testing that a point of the functigh: Z¢ — S is heavy, then we can show
Lemma 3. For all d > 1, for sufficiently largen, Hy(n) < (d — 1) log?(n) log(1/8)

Proof. By induction. For the casé = 1 we employ the spot checker algorithm from
[6], which performdog(1/6) log(n) queries to determine that a point is heavy.

RecursiveTest (f, ¢ 4, D, d) Heavy- Test (f, z, €, d)
ifd=1 for k1« 0...logz,
8"« &/(d!'log® n) :

return Spot CheckTest (f,¢,6") k 0. ..logzs do
d e d

elff)(: i=1...logn repeat t = O(2%log(1/4)) ti nmes
o) ki .
& = &i(z,0) choose h; €r [1,2%] 1 <i<d

h < (h1,..., ha)

{p1---,pa} = projections it (f(z)< f(z—h)) retum FAIL

of z onto &

for k=1, .d for kq < 0...log(n —z1),
C «+ the face of &'(x,D) :
contai ni ng px kq < 0...log(n —xz4) do
HeavyTest (f,¢,d, D,d) repeat t tinmes
end choose h; €r [1,2%] 1<i<n
end he (h1,...,hq)
end if (f(z)> f(z+h)) return FAIL
return PASS return PASS
Fig. 3. Algorithm RecursiveTest Fig. 4. Algorithm Heavy-Test

Theorem 5. AlgorithmRecur si veTest is a heaviness tester performioy(dlog(d)+
dloglog(n) + log(1/8))(d — 1) log®(n)) queries.

Proof. The confidence paramet®r= §/(d!log?(n)) which appears in Figure 3 arises
because the probability of error accumulates at each rigewasll. Now apply Lemma 3.

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.oPverification and hard-
ness of approximation problems, of the ACM 45(3):501-555, 1998.

2. T. Batu,R. Rubinfeld,P. White. Fast approximate PCPsfoaltidimensional bin-packing
problems.http://simon.cs.cornell.edu/home/ronitt/PAP/bin.ps

3. L. Babai, L. Fortnow, and C. Lund. Non-deterministic expntial time has two-prover
interactive protocolsComputational Complexityp. 3—40, 1991.

4. L. Babai, L. Forthow, C. Lund, and M. Szegedy. Checking potations in polylogarith-
mic time. Proc. 31st Foundations of Computer Scignme. 16—25, 1990.

5. Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, Dn Rad A. Samorodnitsky
Improved Testing Algorithms for Monotonicity. RANDOM *99.

6. F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswhaa. Spot-checker®roc.
30th Symposium on Theory of Computipg. 259-268, 1998.

7. F. Ergiin, R. Kumar, R. Rubinfeld. Fast PCPs for approtiona. Proc. 31st Symposium
on Theory of ComputingL999.

8. L. Fortnow, J. Rompel, and M. Sipser. On the power of nmuitiver interactive protocols.
Theoretical Computer Scienck34(2):545-557, 1994.

9. O. Goldreich,S. Goldwasser, E. Lehman, D. Ron. Testingdtmicity Proc. 39th Sym-
posium on Foundations of Computer Scieri@98.

