
Fast Approximate PCPs for Multidimensional
Bin-Packing Problems

�

Tuğkan Batu
�
, Ronitt Rubinfeld

���
, and Patrick White

�

Department of Computer Science, Cornell University, Ithaca, NY 14850�
batu,ronitt,white�@cs.cornell.edu

Abstract. We consider approximate PCPs for multidimensional bin-packing prob-
lems. In particular, we show how a verifier can be quickly convinced that a set of
multidimensional blocks can be packed into a small number ofbins. The running
time of the verifier is bounded by� �� �� 		, where

� �� 	 is the time required to
test for heaviness. We give heaviness testers that can test heaviness of an ele-
ment in the domain
� � � ��� in time � ����� � 	� 	. We also also give approxi-
mate PCPs with efficient verifiers for recursive bin packing and multidimensional
routing.

1 Introduction

Consider a scenario in which the optimal solution to a very large combinatorial opti-
mization problem is desired by a powerful corporation. The corporation hires an in-
dependent contractor to actually find the solution. The corporation then would like to
trust that thevalueof the solution is feasible, but might not care about the structure
of the solution itself. In particular they would like to havea quick and simple test that
checks if the contractor has a good solution by only inspecting a very small portion of
the solution itself. Two hypothetical situations in which this might occur are:

– A major corporation wants to fund an international communications network. Data
exists for a long history of broadcasts made over currently used networks, including
bandwidth, duration, and integrity of all links attempted.The corporation wants to
ensure that the new network is powerful enough to handle one hundred times the
existing load.

– The services of a trucking company are needed by an (e-)mail-order company to
handle all shipping orders, which involves moving large numbers of of boxes be-
tween several locations. The mail-order company wants to ensure that the trucking
company has sufficient resources to handle the orders.

In both cases, large amounts of typical data are presented tothe consulting company,
which determines whether or not the load can be handled. The probabilistically checkable-
proof (PCP) techniques (cf. [3, 4, 1]) offer ways of verifying such solutions quickly. In
�

This work was partially supported by ONR N00014-97-1-0505,MURI, NSF Career grant
CCR-9624552, and an Alfred P. Sloan Research Award.The third author was supported in part
by an ASSERT grant.��
Part of this work was done while on sabbatical at IBM Almaden Research Center

these protocols a proof is written down which a verifier can trust by inspecting only
a constant number of bits of the proof. The PCP model offers efficient mechanisms
for verifying any computation performed in NEXP with an efficient verifier. We note
that the verifiers in the PCP results all require� ��� time. Approximate PCPs were in-
troduced in [7] for the case when the input data is very large,and even linear time is
prohibitive for the verifier. Fast approximate PCPs allow a verifier to ensure that the an-
swer to the optimization problem is at leastalmostcorrect. Approximate PCPs running
in logarithmic or even constant time have been presented in [7] for several combina-
torial problems. For example, a proof can be written in such away as to convince a
constant time verifier that there exists a bin-packing whichpacks a given set of objects
into a small number of bins. Other examples include proofs which show the existence of
a large flow, a large matching, or a large cut in a graph to a verifier that runs in sublinear
time.

Our Results.We consider approximate PCPs for multidimensional bin packing. In par-
ticular, we show how a verifier can be quickly convinced that aset of multidimensional
objects can be packed into a small number of bins. We also consider the related prob-
lems of recursive bin packing and multidimensional routing. Our results generalize the
1-dimensional bin packing results of [7]. The PCPs are more intricate in higher dimen-
sions; for example, the placements and orientations of the blocks within the bin must
be considered more carefully. In the 1-dimensional case, the approximate PCP of [7]
makes use of a property calledheavinessof an element in a list, introduced by [6]. Es-
sentially,heavinessis defined so that testing if an element is heavy can be done very
efficiently (logarithmic) in the size of the list and such that all heavy elements in the
list are in monotone increasing order. We generalize this notion to the multidimensional
case and give heaviness tests which determine the heavinessof a point� � ��� 	 	 	 � �
�
in time� �� ��� � �� �. Then, given a heaviness tester which runs in time� �� �, we show
how to construct an approximate PCP for binpacking in which the running time of the
verifier is� �� �� ��.

In [9], multidimensional monotonicity testers are given which pass functions� that
are monotone and fail functions� if no way of changing the value of� at at most� frac-
tion of the inputs will turn� into a monotone function. The query complexity of their
tester is �� ������ � where� is a function from��
� to ��
. Our multidimensional heavi-
ness tester can also be used to construct a multidimensionalmonotonicity tester which
runs in time� �� �� ��. However, more recently Dodiset. al.[5] have given monotonic-
ity testers that greatly improve on our running times for dimension greater than 2, and
are as efficient as ours for dimension 2. This gives hope that more efficient heaviness
testers in higher dimensions can also be found.

2 Preliminaries

Notation. We use the notation� �� � to indicate� is chosen uniformly and at random
from the set� . The notation��
 indicates the interval��� 	 	 	 � �
.

We define a partial ordering relation� over integer lattices such that if� and� are
�-tuples then� � � if and only if � � � �� for all � � ��� 	 	 	 � � . Consider a function

� � � � � � , where
� � is a �-dimensional lattice. If� � � � � � are such that� � �

then if � �� � � � �� � we say that� and� are inmonotone order. We say� is monotone
if for all � � � � � � such that� � � , � and� are in monotone order.

Approximate PCP.The approximate PCP model is introduced in [7]. The verifier has
access to a written proof,� , which it can query in order to determine whether the
theorem it is proving isclose to correct. More specifically, if on input�, the prover
claims� ��� � � , then the verifier wants to know if� is close to� �� �.
Definition 1. [7] Let � ��� �� be a distance function. A function� is said to have a� �� � � �-approximate probabilistically checkable proof systemwith distance function�
if there is a randomized verifier	 with oracle access to the words of a proof� such
that for all inputs�, and� of size�, the following holds. Let� be the contents of the
output tape, then:

1. If � �� � � �� �� �
, there is a proof,� , such that	 � outputs pass with probability
at least 3/4(over the internal coin tosses of);

2. If � �� � � �� �� � �, for all proofs� , 	 �
�

outputs fail with probability at least 3/4
(over the internal coin tosses of); and

3. 	 runs in� �� �� � � �� time.

The probabilistically checkable proof protocol can be repeated� ��� ��� � times to get
confidence� � � �. We occasionally describe the verifier’s protocol as an interaction
with a prover. In this interpretation, it is assumed that theprover is bound by a function
which is fixed before the protocol begins. It is known that this model is equivalent to
the PCP model [8]. The verifier is a RAM machine which can read aword in one step.

We refer to PCP using the distance function� �� � � �� �� � ��� �
 � � � � ����� as
anapproximate lower boundPCP : if � �� � � � then� causes	 � to pass; if� ��� �
�� � ��� then no proof� convinces	 �

�
with high probability. This distance function

applied to our bin-packing protocol will show that if a prover claims to be able to pack
all of the� input objects, the verifier can trust that at least�� � ��� of the objects can
be packed.

It also follows from considerations in [7] that the protocols we give can be em-
ployed to prove the existence of suboptimal solutions. In particular, if the prover knows
a solution of value� , it can prove the existence of a solution of value at least�� � ��� .
Since� is not necessarily the optimal solution, these protocols can be used to trust the
computation of approximation algorithms to the NP-complete problems we treat. This
is a useful observation since the prover may not have computational powers outside
of deterministic polynomial time, but might employ very good heuristics. In addition,
since the prover is much more powerful than� it may use its computational abilities to
get surprisingly good, yet not necessarily optimal, solutions.

Heaviness Testing.Our methods all rely on the ability to define an appropriateheavi-
nessproperty of a function� . In the multidimensional case, heaviness is defined so that
testing if a domain element is heavy can be done very efficiently in the size of the do-
main, and such that all heavy elements in the domain which arecomparable according
to � are in monotone order.

We give a simple motivating example of a heaviness test for� � � from [6]. This
one-dimensional problem can be viewed as the problem of testing whether a list� �
�� ��� � � �� � 	 	 	 � � �� �� is mostly sorted. Here we assume that the list contains distinct
elements (a similar test covers the nondistinct case). Consider the following for testing
whether such a listL is mostly sorted: pick a point� � � uniformly and at random.
Perform a binary search on� for the value�. If the search finds� then we call� heavy.
It is simple to see that if two points� and � are heavy according to this definition,
then they are in correct sorted order (since they are each comparable to their common
ancestor in the search tree). The definition of a heaviness property is generalized in this
paper. We can call a property aheaviness propertyif it implies that points with that
property are in monotone order.

Definition 2. Given a domain� � �� � 	 	 	 � �
�, a function� � � � � and a property�
, we say that

�
is a heaviness propertyif

1. �� � � � �� � � � �� � implies� ��� � � �� �
2. In a monotone list all points have property H

If a point has a heaviness property
�

then we say that point isheavy. There may be
many properties which can be tested of points of a domain which are valid heaviness
properties. A challenge of designing heaviness tests is to find properties which can
be tested efficiently. A heaviness test is a probabilistic procedure which decides the
heaviness property with high probability. If a point is not heavy, it should fail this test
with high probability, and if a function is perfectly monotone, then every point should
pass. Yet it is possible that a function is not monotone, but atested point is actually
heavy. In this case the test may either pass or fail.

Definition 3. Let
� � � ��� 	 	 	 � �
� be a domain, and let� � � � � be a function on

� . Let � ��� �� be a randomized decision procedure on
�

. Given security parameter�,
we will say� is a heaviness testfor � if

1. If for all � � � , � �� � � � �� � then� �� � � � � ����
2. If � is not heavy then�	 �� �� � � � �
� ��� � � � �

The heaviness tests we consider enforce, among other properties, local multidimen-
sional monotonicity of certain functions computed by the prover. It turns out that mul-
tidimensional heaviness testing is more involved that the one dimensional version con-
sidered in earlier works, and raises a number of interestingquestions.

Our results on testing bin-packing solutions are valid for any heaviness property,
and require only a constant number of applications of a heaviness test. We give sample
heaviness properties and their corresponding tests in Section 4, yet it is an open question
whether heaviness properties with more efficient heavinesstests exist. Such tests would
immediately improve the efficiency of our approximate PCP verifier for bin-packing.

Permutation Enforcement.Suppose the values of a function� are given for inputs in��

in the form of a list� � � 	 	 	 � �� . Suppose further that the prover would like to convince
the verifier that the�� ’s are distinct, or at least that there are�� � ��� distinct �� ’s. In
[7], the following method is suggested: The prover writes array of length�. �� �

should contain� when� ��� � �
(its preimage according to�). We say that� is honestif

 �� ���� � �. Note that the number of honest elements in��
 lower bounds the number
of distinct elements in� � � 	 	 	 � �� (even if is written incorrectly). Thus, sampling
� ����� elements and determining that all are honest suffices to ensure that there are at
least�� � ��� distinct��’s in � ����� time. We refer to as thepermutation enforcer.

3 Multidimensional Bin-Packing

We consider the�-dimensional bin-packing problem. We assume the objects tobe
packed are�-dimensional rectangular prisms, which we will hereafter refer to as blocks.
The blocks are given as�-tuples (in� �) of their dimensions. Similarly, the bin size is
given as a�-tuple, with entries corresponding to the integer width of the bin in each
dimension. When we say a block with dimensions� � �� � � 	 	 	 �� � � � � � is located
at position� � �� � � 	 	 	 � � � �, we mean that all the locations� such that� � � � � � �
are occupied by this block. The problem of multidimensionalbin-packing is to try to
find a packing of� blocks which uses the least number of bins of given dimension� � �� � � 	 	 	 �� ��.

It turns out to be convenient to cast our problem as a maximization problem. We
define the�-dimensional bin-packing problem as follows: given� blocks, the dimen-
sions of a bin, and an integer� , find a packing that packs the largest fraction of the
blocks into� bins. It follows that if� � � fraction of the blocks can be packed in� bins,
then at most� � �� bins are sufficient to pack all of the blocks, by placing each of the
remaining blocks in separate bins.

We give an approximate lower bound PCP protocol for the maximization version of
the�-dimensional bin-packing problem in which the verifier runsin � ������� �� � ���
time where� �� � � � is the running time for a heaviness tester on

� � �� �
 � � � � � �� �

and we take� � ��� � � �. In all of these protocols, we assume that the block and bin
dimensions fit in a word.

In this protocol, we assume that the prover is trying to convince the verifier that
all the blocks can be packed in� bins. We address the more general version of this
problem in the full version of this paper. In doing so we use the approximate lower
bound protocol for set size from [7].

We require that the prover provides an encoding of a feasiblepacking of the input
blocks in a previously agreed format. This format is such that if all the input blocks can
be packed in the bins used by the prover, the verifier accepts.If less than�� � fraction of
the input blocks can be simultaneously packed, the verifier rejects the proof with some
constant probability. In the intermediate case, the verifier either accepts or rejects.

3.1 A First Representation of a Packing

We represent a bin as a�-dimensional grid with the appropriate length in each dimen-
sion. The prover will label the packed blocks with unique integers and then label the
grid elements with the label of the block occupying it in the packing. In Figure 1, we
illustrate one such encoding. The key to this encoding is that we can give requirements
by which the prover can define a monotone function on the grid using these labels only
if he knows a feasible packing. To show such a reduction exists, we first define a relation
on blocks.

1

1

1

1

1

1

11

4 4 4 4 4 4

2

2

2

2

3 3 3

3 3 3

3 3 3

1 2 3 4 5 6 7

1

 2

3

 4

 5

6

7

Fig. 1.A 2D Encoding

1

1

1

1

1

1

11 2

2

2

2

3

3

3

3

4 4 4 4

1 2 3 4 5

1

 2

3

 4

5

 6

3 3

Fig. 2. Compressed Grid Encoding

Definition 4. For a block�, the highest corner of�, denoted� ���, is the corner with the
largest coordinates in the bin it is packed with respect to the � relation. Similarly,the
lowest corner of�, denoted� ���, is the corner with the smallest coordinates.

In our figure,� �
�
� � ��� �� and� �

�
� � � � � �. We can order blocks by only considering

the relative placement of these two corners.

Definition 5. Let �� and �� be two blocks packed in the same bin. Block�� precedes
block �� in a packing if� ���� � � ��� �.
Note that for a pair of blocks in dimension higher than� it may be the case that neither
of the two blocks precedes the other. This fact along with thefollowing observation
makes this definition interesting: For two blocks,�� and ��, such that�� precedes�� ,�� and �� overlap if and only if�� precedes��. Surely if �� precedes�� and this pair
overlaps it must be the case that� ��� � � � ��� �. It follows that the precedence relation
on blocks is a reflexive-antisymmetric ordering precisely when the packing of blocks is
feasible. Given such an ordering, it is easy to construct a monotone function.

Lemma 1. Given a feasible packing of a bin with blocks, we can label theblocks with
distinct integers such that when we assign each grid elementin the�-dimensional grid
(of the bin) with the label of the block occupying it, we get a monotone function on this
grid.

Proof. Without loss of generality, assume that the bin is filled up completely. We know
that by inserting extra “whitespace” blocks we can fill up thebin. It can be shown that
the bin can be packed in such a way that�� whitespace blocks are sufficient. The rela-
tion from Definition 5 gives a relation on the blocks that is reflexive and antisymmetric.
Therefore we can label the blocks according to this relationsuch that a block gets a la-
bel larger than those of all its predecessors. This labelinggives us a monotone function
on the grid.

Now we can describe the proof that the prover will write down.The proof will
consist of three parts: the first one is a table which will havean entry for each block
containing the label assigned to the block; a pointer to the bin where the object was
assigned and the locations of the two (lowest and highest) corners of the block in this
bin. The second part is a permutation enforcer on the blocks and the labels of the blocks.

Finally, the third part consists of a�-dimensional grid of size� �� �
 for each bin used
that numbers each grid element with the label of the block occupying it.

3.2 Testing Multidimensional Bin-Packing Using Heaviness

The heaviness test we have defined can be used to test that the prover’s labeling agrees
with a monotone function. By using Observation 1, we will be able to show if all the
defining corners of a pair of blocks are heavy then they cannotoverlap.

Protocol. We will define “good” blocks such that all “good” blocks can bepacked
together feasibly. Our notion of “good” should have the properties that (1) a good block
is actually packed inside a bin, and it is not overlapping anyother “good” block; and
(2) we can efficiently test a block for being good. Then, the verifier will use sampling
to ensure that at least� � � fraction of the blocks are “good” in the protocol.

Definition 6. The block� with dimensions� � �� � � 	 	 	 �� � � is goodwith respect to
an encoding of a packing if it has the following properties:

– Two corners defining the block in the proof have positive coordinates with values
inside the bin, i.e.,� � � ��� � � ��� � � .

– The distance between these corners exactly fits the dimensions of the block, i.e.,
� � � ��� � � ��� � �.

– The grid elements at� ��� and� ��� are heavy.
– The block is assigned a unique label among the good blocks, i.e., it is honest with

respect to the permutation enforcer.

Given this definition, we can prove that two good blocks cannot overlap.

Lemma 2. If two blocks overlap in a packing, then both of the blocks cannot be good
with respect to this packing.

Proof. Note that when two blocks overlap, according to Definition 5,they must both
precede each other. Without loss of generality,�� precedes�� . Since these blocks over-
lap, the lowest corner of��, � ��� �, is smaller than the highest corner of��, � ���� (� ��� � �
� ��� �). We know, by definition of a heaviness tester, that two comparable heavy points
on the grid do not violate monotonicity. But, since both defining corners of a good block
must have the same label, either� ���� and� ��� �, or � ��� � and� ���� violates monotonicity.

Corollary 1. There is a feasible packing of all the good blocks in an encoding using�
bins.

The verifier’s protocol can be given as follows: The verifier chooses a block randomly
from the input, and using the encoding described above, confirms that the block is good.
Testing a block for being good involves� ��� comparisons for the first two conditions
in the definition, O(1) time for checking the unique labelingusing the permutation
enforcer, and 2 heaviness tests for the third condition. Theverifier repeats this� �����
times to ensure at least�� � �� fraction of the blocks are good.

Theorem 1. There is an� ������� �� � � ��-approximate lower bound PCP for the�-
dimensional bin packing problem where� �� � � � is the running time for a heaviness
tester on

� � �� �
 � � � � � �� �
.

3.3 A Compressed Representation of a Packing

The previous protocol requires the prover to write down a proof whose size depends on
thedimensionsof the bins to be filled, since the values� � were based on the actual size
of the bins given. We show here how the prover may write a proofwhich depends only
on the number,�, of objects to be packed. In the protocol from the previous section the
verifier calls the heaviness tester only on grid elements which correspond to the lowest
or the highest corners of the blocks. We use this observationfor a compressed proof.

The prover constructs a set ofdistinguished coordinatevalues�� for each dimen-
sion � � �� 	 	 	 � �. Each set is initially empty. The prover considers each block �
and does the following: for the lower corner,� ��� � ��� � 	 	 	 � ���, and higher corner,
� ��� � �� � � 	 	 	 � �� �, of block �, the prover computes�� � �� � �� � � �� � . Af-
ter all the blocks are processed,��� � � �. Thecompressed gridwill be a sublattice
of

�
with each dimension restricted to these distinguished coordinates, that is the set

� �� � � 	 	 	 � � � � �� � � �� . This grid will contain in particular all the corners of all the
blocks and the size of this proof will be at most� ��� �� �. Note that although in the
previous test we have added “whitespace” blocks to generateour monotone number-
ing, those blocks themselves were never tested, hence they do not affect the number
of distinguished coordinates. The fact that this new compressed encoding is still eas-
ily testable does not trivially follow from the previous section. In particular, we must
additionally verify that the prover’s compression is valid.

The proof consists of four parts. First the prover implicitly defines the proof from
the previous section, which we refer to as theoriginal grid. The prover then writes down
a table containing thecompressed grid. In each axis, the prover labels the coordinates
�� � 	 	 	 � �
 and provides alookup-table(of length�) for each axis which maps com-
pressed grid coordinates to original grid coordinates. Finally the prover writes down
the list of objects with pointers to the compressed grid, anda permutation enforcer as
before. In Figure 2 , we give the compressed encoding of the packing from Figure 1.

Protocol. By making the prover write only a portion of the proof from thefirst protocol,
we provide more opportunities for the prover to cheat. For example, even if the prover
uses the correct set of hyperplanes for the compression, he may reorder them in the
compressed grid to hide overlapping blocks. The conversiontables we introduced to
our proof will allow the verifier to detect such cheating.

The definition of a good block is extended to incorporate the lookup tables. In a
valid proof, the lookup tables would each define a monotone function on��
. We will
check that the entries in the lookup tables which are used in locating a particular block
areheavyin their respective lookup tables. Additionally we test a that a block is good
with respect to Definition 6 in the compressed grid1. A block which passes both phases
is agoodblock.

Our new protocol is then exactly as before. The verifier selects � ����� blocks and
tests that each is good and if so concludes that at least�� � �� fraction of the blocks are
good.

1 Except when we test the size of the block, for which we refer tothe original coordinates via
the lookup table.

Correctness.Any two good objects do not overlap in the compressed grid, byapplying
Lemma 2. Furthermore, since the labels of good objects in thelookup table are heavy, it
follows that two good objects do not overlap in the original grid either. Certainly, since
the corresponding values in the lookup table form a monotonesequence, the prover
could not have re-ordered the columns during compression tountangle an overlap of
blocks. It also follows from the earlier protocol that good blocks are the right size and
are uniquely presented.

Theorem 2. There is an� ������� �� � ���-approximate lower bound PCP for the�-
dimensional bin packing problem with proof size� ��� �� �, where� �� � �� is the run-
ning time for a heaviness tester on

� � ��
�.

3.4 Further Applications

Multidimensional Routing A graph� with edge-capacity constraints is given along
with a set of desired messages which are to be routed between vertex pairs. Each mes-
sage has a bandwidth requirement and a duration. If� knows how to route� of these
messages, he can convince	 that a routing of� �� � ��� exists. We sketch the method:
The prover presents the solution as a 2D bin packing proof, with one bin for each edge:
one dimension corresponds to the bandwidth, the other to theduration. The portion of
a message routed along a particular bin is a 2D block. To verify that a routing is legal,
	 selects a message at random and the prover provides the routeused as a list of edges.
The verifier checks that sufficient bandwidth is allocated and that durations are consis-
tent along all edges of the route and that the message(block) is “good” with respect
to the packings of blocks in each of the edges(bins). If we assume that the maximum
length of any routing provided by the prover is length�, this yields a protocol with
running time� ��� ��� � ���� �� ��, where� is the maximum number of calls ever routed
over an edge. To achieve this running time we employ the heaviness tester in Section 4.
Higher dimensional analogues of this problem can be verifiedby an extension of these
methods.

Recursive Bin Packing At the simplest level the recursive bin packing problem takes
as input a set of objects, a list of container sizes (of unlimited quantity), and a set of
bins. Instead of placing the objects directly in the bins, anobject must first be fit into
a container (along with other objects) and the containers then packed in the bin. The
goal is to minimize the total number of bins required for the packing. We can solve
this problem by applying an extension of our multidimensional bin-packing tester. In
particular, we define an object asgood if it passes the goodness test (with respect to
its container) given in Section 2 and furthermore if the container it is in passes the
same goodness test (with respect to the bin). After� ����� tests we can conclude that
most objects are good and hence that�� � �� fraction of the objects can be feasibly
packed. For a�-level instance of recursive bin packing, therefore, the prover will write
� compressed proofs and� �� ��� goodness tests will be needed.

3.5 Can Monotonicity Testing Help?

Given the conceptual similarities between heaviness testing and monotonicity testing,
it may seem that a monotonicity test could be used to easily implement our multidi-
mensional bin packing protocol. The obvious approach, though, does not seem to work.
The complications arise because we are embedding� objects in a�� �� sized domain.
If a monotonicity tester can determine that the domain of ourcompressed proof is has
���� � of its points in a monotone subset, we can only conclude that at least��� ��� ��
boxes are “good”, by distributing the bad points among the corners of the remaining
boxes. Thus monotonicity testing on this domain seems to need an error parameter of
� ��� �� � ��. If the running time of the monotonicity tester is linear in� then this ap-
proach requires at least� ��� ���� � time.

4 Heaviness Tests

We give two heaviness tests for functions on a domain isomorphic to an integer lattice.
The domains are given as

� � �� � 	 	 	 � �
�. The range can be any partial order, but here
we use

�
, reals. Both tests which follow determine that a point is heavy in � �� ��� � �� �

time, yielding efficient bin packing tests for small values of �. In particular, the exam-
ples applications of bin packing which we have cited typically have dimension less than
3. For complete proofs, please consult the full version of the paper [2].

4.1 The First Algorithm

We extend the protocol of [6] to multidimensional arrays. Oninput� our test compares
� to several random elements� selected from a set of carefully chosen neighborhoods
around�. It is tested that� is in order with a large fraction of points in each of these
neighborhoods. From this we can conclude that any two comparable heavy points�
and � can be ordered by a mutually comparable point� such that� � � � � and
� �� � � � ��� � � ���. The test is shown in Figure 4.

Proof of Correctness We consider a set of��� � � carefully chosen neighborhoods
around a point�. We say that� is heavyif for a large fraction of points� in each of
these neighborhoods,� ��� and� �� � are monotonically ordered. We are able to show
from this that for any two heavy points� and � , two of these regions can be found
whose intersection contains a point� with the property that� � � � � and � �� � �
� �� � � � �� �. Hence this defines a valid heaviness property. The efficiency of the test
is bound by the fraction of points in each neighborhood whichmust be tested, which is
given to us by Chernoff bounds. It follows that

Theorem 3. AlgorithmHeavy-Test is a heaviness tester performing
� ���� ���� � � ��� �� ��� � queries.

4.2 The Second Algorithm

This algorithm is based on a recursive definition of heaviness. Namely a point� is heavy
in dimension� if a certain set of projections of� onto hyperplanes are each heavy in

dimension� � �. We are able to use the heaviness of these projection points to conclude
that�-dimensional heavy points are appropriately ordered.

Given a dimensiond hypercube,� , consider a subdividing operation� which maps
� into � congruent subcubes. This operation passes through the center d hyperplanes
parallel to each of the axes of the hypercube. This is a basic function in our algorithm.
For notational convenience, we extend� to � which acts on sets of cubes such that
� ��� � � 	 	 	 � �� � � �� �� � � � 	 	 	 � � ��� � . It is now possible to compose� with itself.
We also define a function�� �� �� � � � � � � � � � �� �. This function is also a
notational convenience which identifies the subcube a pointlies in after such a division.

Now consider any two distinct points in the hypercube,� and� . We wish to apply
� to the cube repeatedly until� and � are no longer in the same cube. To quantify
this we define a new function� � � � � � such that� �� � � � � � � ��� �� � � � �
��� �� � � � and ����

� �� � � � 	� ����
� �� �� �. That is, the� � �st composition of� on �

separates� from � .

Definition 7. A point� is heavy in a domain
� � ��
� if the � perpendicular projec-

tions of� onto each cube in the series�� �� �� � � 	 	 	 � ��
�� � �� �� � of shrinking cubes are
all heavy in dimension� � �. The domains

� for these recurive tests are the respective
faces of the cubes. When� � � we use the test of�
.
We can now give the heaviness test for a point. Let� be a�-dimensional integer hyper-
cube with side length� . Let� be some point in� . Construct the sequence��� � 	 	 	 � �� �
� ��

� �� � � � � 	 	 	 � �� � �� � � � where� � ���� �� ��. Note that�� � �. At each cube�� per-
form the following test: (1) Compute the� perpendicular projections�� � � 	 	 	 �� �� of
� onto the� faces of�� . (2) Verify that � is consistent with a monotone function on
each of the� pairs �� �� � �. (3) If � � � recursively test that each of the points� � is
heavy over the reduced domain of its corresponding face on�� . If � � �, we use the
heaviness test of [6]. This test is shown in Figure 3.

Theorem 4. If � and� are heavy and� � � then� ��� � � �� �

Proof. (by induction on�). Let � � � �� � � �. Let � � ��� �� �� �. Let �� � ����
� �� �� �

and �� � ����
� �� � � �. There is at least one plane perpendicular to a coordinate axes

passing through the center of� which separates� and� . This plane also defines a face
of �� and of �� , which we denote as�� and �� respectively. By induction we know
the projections of� and � onto these faces are heavy. Since� dominates� in every
coordinate, we know that� � � � � . Inductively we can conclude from the heaviness
of the projection points that� �� � � � � �� � � . Since we have previously tested that
� ��� � � �� � � and� �� � � � � �� � we conclude� ��� � � �� �.

Running time analysis If we let
� � �� � be the number of queries made by our algo-

rithm in testing that a point of the function� � � �� � � is heavy, then we can show

Lemma 3. For all � � �, for sufficiently large�,
� � �� � � �� � �� ���� �� � ��� ���� �

Proof. By induction. For the case� � � we employ the spot checker algorithm from
[6], which performs��� ���� � ��� �� � queries to determine that a point is heavy.

RecursiveTest(�,�,�,�,�)
if d = 1
� � � �� �� � ��� � � 	
return SpotCheckTest(� � � � � �)

else
for 	
 � ��� ��
 �� �� � � 	�� � � �� � � = projections

of � onto
�

for �
 � �
� � the face of �� �� �� 	

containing � �
HeavyTest�� � � � � �� � � 	

end
end

end
return PASS

Fig. 3. Algorithm RecursiveTest

Heavy-Test(�,�,�,�)
for � � � � ��� � �,

...
�� � � ��� �� do

repeat �
 � ��� ��� ���� 		 times
choose � ��
� � ��� � � � 	 � �
� � �� � � � �� 	
if (� �� 	 � � �� � �) return FAIL

for �� � � ��� �� � � �	,
...

�� � � ��� �� � �� 	 do
repeat � times

choose � ��
� � ��� � � � 	 � �
� � �� � � � �� 	
if (� �� 	 � � �� � �) return FAIL

return PASS

Fig. 4. Algorithm Heavy-Test

Theorem 5. AlgorithmRecursiveTest is a heaviness tester performing� ��� ��� ����
� ��� ��� �� � � � ! ���� �� �� � �� ���� �� �� queries.

Proof. The confidence parameter� � � � �� " ���� �� �� which appears in Figure 3 arises
because the probability of error accumulates at each recursive call. Now apply Lemma 3.

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hard-
ness of approximation problems,J. of the ACM, 45(3):501–555, 1998.

2. T. Batu,R. Rubinfeld,P. White. Fast approximate PCPs formultidimensional bin-packing
problems.http://simon.cs.cornell.edu/home/ronitt/PAP/bin.ps

3. L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols,Computational Complexity, pp. 3–40, 1991.

4. L. Babai, L. Fortnow, C. Lund, and M. Szegedy. Checking computations in polylogarith-
mic time. Proc. 31st Foundations of Computer Science, pp. 16–25, 1990.

5. Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron and A. Samorodnitsky
Improved Testing Algorithms for Monotonicity. RANDOM ‘99.

6. F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers.Proc.
30th Symposium on Theory of Computing, pp. 259–268, 1998.

7. F. Ergün, R. Kumar, R. Rubinfeld. Fast PCPs for approximations. Proc. 31st Symposium
on Theory of Computing, 1999.

8. L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive protocols.
Theoretical Computer Science, 134(2):545-557, 1994.

9. O. Goldreich,S. Goldwasser, E. Lehman, D. Ron. Testing Monotonicity Proc. 39th Sym-
posium on Foundations of Computer Science, 1998.

