
Sublinear Algorithms for Testing Monotone and Unimodal
Distributions

Tuğkan Batu∗

batu@cs.utexas.edu
Department of Computer

Sciences
University of Texas
Austin, TX 78712

Ravi Kumar
ravi@almaden.ibm.com

IBM Almaden Research
Center

650 Harry Road
San Jose, CA 95120

Ronitt Rubinfeld†

ronitt@theory.lcs.mit.edu
Computer Science and

Artificial Intelligence
Laboratory, M.I.T.

Cambridge, MA 02139

ABSTRACT
The complexity of testing properties of monotone and uni-
modal distributions, when given access only to samples of
the distribution, is investigated. Two kinds of sublinear-
time algorithms—those for testing monotonicity and those
that take advantage of monotonicity—are provided.

The first algorithm tests if a given distribution on [n] is
monotone or far away from any monotone distribution in
L1-norm; this algorithm uses Õ(

√
n) samples and is shown

to be nearly optimal. The next algorithm, given a joint
distribution on [n]× [n], tests if it is monotone or is far away
from any monotone distribution in L1-norm; this algorithm
uses Õ(n3/2) samples.

The problems of testing if two monotone distributions
are close in L1-norm and if two random variables with a
monotone joint distribution are close to being independent
in L1-norm are also considered. Algorithms for these prob-
lems that use only poly(log n) samples are presented. The
closeness and independence testing algorithms for monotone
distributions are significantly more efficient than the corre-
sponding algorithms as well as the lower bounds for arbi-
trary distributions.

Some of the above results are also extended to unimodal
distributions.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; G.3 [Mathematics of Comput-
ing]: Probability and Statistics

∗The first author was partially supported by NSF Grant No.
CCR-9912428 and a David and Lucile Packard Fellowship
for Science and Engineering.
†Part of this work was done while the author was at NEC
Laboratories America.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

General Terms
Algorithms, Theory

Keywords
Sublinear algorithms, property testing, distribution testing,
monotone and unimodal distributions

1. INTRODUCTION
Consider the following scenarios:
(1) Suppose one is studying the outbreak of a certain type

of cancer and need to uncover any salient statistical proper-
ties of it that might hold. For example, it would be impor-
tant to know if the probability of contracting the disease is
monotone decreasing with the distance of one’s home from
Chernobyl. Once this is established, then one might want
further information—such as if the distribution is close to
the distribution of asthma. For obvious reasons, it is impor-
tant to notice such trends using as few samples as possible.

(2) Suppose one is studying the performance of individuals
in a standardized test. For example, it would be useful to
know if age of the participant and score they obtain in the
test are correlated at all. Furthermore, suppose that the
distribution of the ages of the participants is normal and so
is the distribution of the scores. Can one conclude that the
distribution of the scores is independent of the distribution
of the ages of the participants? Again, it is desirable to
assess this using as few samples as possible.

In this paper we focus on two specific properties of dis-
tributions. The first is (decreasing) monotonicity, i.e., for
some partial order on the underlying domain and two el-
ements x ≺ y in the domain, the probability of x in the
distribution is at least as big as the probability of y. The
second is unimodality, which characterize distributions that
have a single “peak.”

There are several reasons to focus attention on the mono-
tonicity and unimodality properties in the context of distri-
butions. Many commonly studied distributions are either
monotone or unimodal, or can be described as a combina-
tion of a small number of monotone distributions; familiar
examples include Gaussian, Cauchy, exponential, and Zipf
distributions. Moreover, tails of distributions occurring in
natural phenomena are often monotone. The importance
of such distributions motivates the problem of testing if a
distribution is monotone/unimodal (Scenario (1)).

381

The monotonicity property of distributions has been ex-
ploited in statistics, for example, in order to quickly gen-
erate random variables [5]. In [1], it has been shown that
estimating the entropy of a distribution can be performed
using exponentially fewer samples when the distribution is
known to be monotone. This leads us to further investigate
when one can exploit monotonicity/unimodality in getting
more efficient algorithms for testing properties of distribu-
tions (Scenario (2)).

1.1 Summary of our results
We first focus on understanding the complexity of testing

whether a distribution is monotone. Our main result is to
show that the complexity of monotonicity testing for a distri-
bution on [n] is essentially the same (up to polylogarithmic
factors) as that of testing uniformity, which is known to be

Θ̃(
√
n). We build on this basic algorithm to obtain a sublin-

ear monotonicity testing algorithm for higher dimensions—
for instance, the monotonicity testing algorithm for a distri-
bution on [n]×[n] runs in time Õ(n3/2). In this case, we show
a lower bound of Ω(n). We next show that (as is the case
with estimating the entropy) when distributions are known
to be monotone, the tasks of testing if two distributions are
close, or whether a joint distribution is independent, are
(near-exponentially) easier than the general case.

Monotonicity testing. We begin by investigating algorithms
that test if a distribution is monotone. It is tempting to
construct an algorithm for testing monotonicity based on
sampling: say, partition the domain into equal or unequal
intervals, estimate the weight of the distribution in these in-
tervals by sampling, and verify that the average weights are
monotone. However, this naive approach fails. For instance,
consider the distribution that is uniform on the even labeled
domain points and zero on the odd labeled domain points.
This distribution is far from any monotone distribution, but
a test based purely on testing the monotonicity of weights
of various partitions of the domain will be fooled.

The above example points to an intriguing relationship
between the problems of testing monotonicity and testing
closeness to uniformity in distributions. On one hand, the
problem of testing monotonicity seems to be as hard as uni-
formity testing. We present a reduction showing that this
is indeed the case, and thus monotonicity testing requires
Ω(
√
n) samples. On the other hand, could testing mono-

tonicity be a much harder problem? One of our contribu-
tions is to show that, at least in the one-dimensional case,
it cannot.

In the one-dimensional case, we reduce the problem of
testing monotonicity to the problem of testing uniformity
by showing how to recursively break up the domain of the
distribution into a small number of balanced intervals (see
Section 3), i.e., intervals for which the collision probability
of the distribution is close to that of the uniform distribu-
tion. Since distributions that have low collision probability
are known to be statistically close to uniform, as long as the
average probability in each of the above intervals is mono-
tone, the whole distribution must be close to monotone. Our
techniques implicitly show that any monotone distribution
can be approximated by a decomposition into a small (poly-
logarithmic in the size of the support) number of balanced
intervals. We also show that this characterization is robust:
it is not possible to decompose a distribution that is far from
monotone into a small number of such balanced intervals.

The biggest difficulty to overcome in showing this charac-
terization is that a monotone distribution may be close to
uniform on an interval, but still may not have a small enough
collision probability, causing the algorithm to further subdi-
vide the interval. A crucial fact that is used to upper bound
the number of balanced intervals required to accurately rep-
resent monotone distributions is that the intervals can be
linearly ordered such that the average weights of many con-
secutive intervals are substantially decreasing. We believe
that this characterization of monotone distributions is inter-
esting in its own right and might have other applications.1

Extending this approach to higher dimensions is tricky.
The main reason is that the natural extension of intervals
is to rectangles, which cannot be totally ordered according
to the weights, but only partially ordered. Thus our crucial
fact from the one-dimensional case does not give us a very
strong bound on the number of rectangles in the decomposi-
tion. For those rectangles whose collision probability is not
small enough to guarantee that their conditional distribu-
tion is close to uniform, we generalize the one-dimensional
arguments in two new ways. First, we modify the recur-
sive decomposition in such a way that rectangles that are
“too far” from the origin are ignored. To argue that the
error made by this truncation step is bounded, we look at
a path decomposition of an appropriate partial order and
upper bound both the maximum chain length and the total
error contributed by any anti-chain. Second, rather than re-
cursing, we perform a specialized test on balanced rectangles
where the weight of the left half of the rectangle is almost
the same as the right half. For such rectangles, we show
that if the given distribution is monotone, then it is close to
uniform on a large fraction of columns in a balanced rect-
angle. Thus, we would like to test monotonicity of these
rectangles by testing uniformity of the columns. Unfortu-
nately, existing uniformity tests may not pass distributions
that are only guaranteed to be close to uniform. We over-
come this barrier by showing how to use the one-dimensional
monotonicity testing algorithm in order to give a specialized
uniformity test. Finally, since the marginal distribution on
the rows of the balanced rectangle is monotone, we invoke
the characterization from the one-dimensional case to argue
that the rows can be partitioned into intervals that are close
to uniform. This induces a partitioning of the balanced rect-
angle into strips of columns where each strip is close to uni-
form. As in the one-dimensional case, we prove that if such
a decomposition is possible, then it can be patched together
into a monotone distribution. This approach yields a mono-
tonicity testing algorithm that runs in Õ(n3/2) time. These
ideas can be extended to higher dimensions with a sublin-
ear running time of Õ(nd−1/2); a lower bound of Ω(nd/2) is
shown.

Monotone closeness and independence. We next consider
the problem of testing whether two monotone distributions
are close in L1-norm—that is, to distinguish pairs of distri-

1We note that there is also an algorithm for partitioning
a monotone distribution into intervals such that the condi-
tional distribution is close to uniform in each interval [1].
However, the analysis of this algorithm makes strong use of
the fact that the distribution is already known to be mono-
tone. Thus, the algorithm that performs the partitioning
can use simpler properties by which to make its decisions,
and the analysis of the size of the partition is stronger, as
well as significantly simpler.

382

butions that are identical from pairs of distributions that are
far in L1-norm. For this problem, we construct a test that
uses only poly(log n) samples (Section 6.1). We also consider
the problem of testing whether d random variables with a
monotone joint distribution are close to independent—that
is, to distinguish the case in which the distributions are inde-
pendent from the case in which they are far in L1-norm from
any independent distribution. Once again, we construct a
test that uses only poly(d log n) samples (Section 6.2). Here
we make use of the work of [1], which allows us to decom-
pose a known monotone distribution into a small number of
uniform distributions.

Our monotone closeness testing algorithm should be con-
trasted against the Ω(n2/3) lower bound for testing closeness
for arbitrary distributions [3]. Similarly, our monotone inde-
pendence testing algorithm should be viewed in light of an
Ω(n) lower bound for testing independence for arbitrary dis-
tributions [2]. Thus, the complexity of testing these proper-
ties of monotone distributions is near-exponentially smaller
than that of testing the same properties of arbitrary distri-
butions.

Unimodal distributions and other models. By suitably adapt-
ing the algorithms in the monotone case, we obtain algo-
rithms for testing if a given distribution is unimodal and
if two unimodal distributions are close in L1-norm (Section
7). The sample complexities and the running times of these
algorithms are almost the same as in the monotone case.

For comparison, we also consider the problem of testing
monotonicity in the evaluation oracle model when an ora-
cle access to the cumulative distribution is available to the
algorithm. We obtain an O(log2 n) algorithm (Section 8).

1.2 Related work
When no assumptions are made on the distributions, stan-

dard statistical tests, such as the χ2-test and the straight-
forward use of Chernoff bounds in order to estimate various
properties of the distribution, seem to require a number of
samples that is superlinear in the domain size for the above
tasks. However, there have been several recent works that
achieve sublinear complexity for testing various properties
of arbitrary distributions in the L1-norm. From the work
of [9], it can be seen that there is an Õ(

√
n)-time algorithm

to test if a given distribution is close to the uniform distribu-
tion; it is also known that this is almost optimal. This result
was subsequently generalized in [2], where an algorithm us-

ing Õ(
√
n) samples was presented to test if a distribution is

close to another, where the latter’s probability distribution
function is available as an advice to the algorithm.

In [3], it is shown that Õ(n2/3) time is sufficient for dis-
tinguishing pairs of distributions that are close in L1-norm
from pairs of distributions that are far (this is also shown to
be tight up to polylogarithmic factors); in contrast, it is also
shown that one can approximate the distance in L2-norm in
time independent of n. In [2], it is shown that for a joint
distribution of two variables over [n] × [m] (without loss of

generality, assuming n ≥ m), Õ(n2/3m1/3) time is sufficient
for distinguishing the case when the two variables are inde-
pendent from the case in which the joint distribution is far
from any independent distribution (this is again shown to
be tight up to polylogarithmic factors).

Finally, in [1], the number of samples needed to approxi-
mate the entropy is studied and for distributions with suffi-

ciently high entropy, one can get a γ-multiplicative approxi-

mation of the entropy with Õ(n1/γ2
) samples. In that paper,

an Ω(n1/2γ2
) lower bound on the sample size was shown for

approximating the entropy. However, it is also shown that
for monotone distributions, only polylogarithmically many
samples are needed in order to approximate the entropy. In
fact, as we have already mentioned, we build on their ideas
in our algorithms for testing closeness and independence of
distributions that are known to be monotone.

Monotonicity, as a property on posets, has been exten-
sively studied in the context of property testing [7, 4, 10, 6,
8]. In this setting, the model is the evaluation oracle model
where the value of function at any point in the domain can
be queried. In contrast, our result can be viewed as testing
monotonicity property in the generation oracle model.

2. PRELIMINARIES
We consider discrete probability distributions over [n].

Let p = 〈p1, . . . , pn〉 be such a distribution where pi ≥
0,
∑n

i=1 pi = 1. We assume that all distributions are given
via generation oracles: for distribution p over [n], each in-
vocation of the oracle supplies us with an element in [n]
distributed according to p and chosen independently of all
previous oracle invocations. The parameters of interest are
the number of samples and running time required by the
algorithm. For simplicity, we will assume that n is a power
of 2; this is without loss of generality.

We use |p− q| to denote the L1-distance2 and ‖p− q‖ to
denote the L2-distance between two distributions. We call a
distribution p to be ε-close in L1-norm to a distribution q if
|p− q| ≤ ε. In particular, p is ε-close in L1-norm to uniform
if |p− Un| ≤ ε where Un is the uniform distribution on [n].
The following fact upper bounds the collision probability
when the maximum and minimum probability values are
not too far away from each other [3, 2].

Lemma 1 ([3, 2]). Let p be a distribution on [n]. If
maxi pi ≤ (1+ ε) ·mini pi, then ‖p‖2 ≤ (1+ ε2)/n. If ‖p‖2 ≤
(1 + ε2)/n, then |p− Un| ≤ ε.
We now formally define monotone and unimodal distribu-
tions. Unless otherwise specified, for this paper, monotone
means monotone decreasing.

Definition 2 (Monotone distributions). A distri-
bution p on [n] is said to be monotone if p1 ≥ · · · ≥ pn.
A distribution p on [n] is said to be ε-monotone in L1-
norm if there is a monotone distribution q on [n] such that
|p− q| ≤ ε.
The notions of monotonicity and ε-monotonicity naturally
extend to higher dimensions, when a partial order is imposed
on the domain. For instance, in two dimensions, distribution
p on [n]× [n] is monotone if pi,j ≥ pi′,j′ whenever i ≤ i′ and
j ≤ j′.

Definition 3 (Unimodal distributions). A distribu-
tion p on [n] is said to be unimodal if there exists an i ∈ [n]
such that p1 ≤ · · · ≤ pi ≥ pi+1 ≥ · · · ≥ pn. A distribution
p on [n] is said to be ε-unimodal in L1-norm if there is a
unimodal distribution q on [n] such that |p− q| ≤ ε.
2The commonly used total variation distance between dis-
tributions is defined to be half of the L1-distance between
distributions.

383

Notation. For i, j ∈ Z where i ≤ j, we (ab)use the interval
notation [i, j] to refer to the set {k ∈ Z | i ≤ k ≤ j}. For
a sample set S and i ∈ [n], occ(i, S) denotes the number of

times i occurs in S; for I ⊆ [n], occ(I, S)
def
=
∑

i∈I occ(i, S).
We also use SI to denote the samples in S from the interval
I . Given a function f defined over domain D, for D′ ⊆ D,
we use f(D′) to denote

∑
x∈D′ f(x). In particular, given

a distribution p on [n] and an interval I in [1, n], p(I) will
denote

∑
i∈I pi. For an interval I = [i, i + 2k − 1], we use

I� = [i, i + k − 1] and Ir = [i + k, i + 2k − 1] to denote
its bisection. For a rectangle K = I × J ⊆ [n] × [n] and

b, b′ ∈ {�, r}, we use Kb,b′ to denote the quadrant Ib × Jb′ .

3. BALANCED INTERVALS
A recurring technique in our algorithms in this paper is

to reduce the complexity of the problem by partitioning the
domain into subdomains where the conditional distribution
is almost uniform. Weaker variants of this technique are
implicit in some of the earlier work mentioned above.

Consider a monotone distribution p on [n] and an interval
in [n]. Intuitively, if the weight of p in the first half of an
interval is nearly the same as its weight in the second half,
then the conditional distribution of p over the interval must
be close to uniform. The following lemma formalizes this
intuition quantitatively.

Lemma 4. Let I ⊆ [n] be an interval of length 2k and let
p be a monotone distribution on [n]. If p(I�) ≤ (1+ε)·p(Ir),

then
∑

i∈I

∣∣∣pi − p(I)
2k

∣∣∣ ≤ εp(I).

Proof. We define w
def
= p(I) and δi

def
=
∣∣pi − w

2k

∣∣. Let
j be the largest index in I such that pj ≥ w/2k. First

consider the case when j ≤ k. Let A1
def
=
∑

i∈I,i≤j δi, A2
def
=∑

i∈I,j<i≤k δi, A3
def
=
∑

i∈I,k<i≤2k δi. We want to show that
A1 + A2 + A3 ≤ εw. Note that A1 = A2 + A3. By the
assumption, we have

A1 − A2 + w/2

−A3 + w/2
=

p(I�)

p(Ir)
≤ 1 + ε.

By substituting A2 +A3 for A1, we get A3 ≤ (εw)/(4 + 2ε).
By δj+1 ≤ δj+2 ≤ · · · ≤ δ2k, A2 ≤ A3. Therefore, we have
A1 +A2 +A3 ≤ εw. The case j > k is similar.

A weaker, but analogous result can be obtained for a mono-
tone distribution on [n]d.

Lemma 5. Let I1, . . . , Id ⊆ [n] be intervals. Let p be a
monotone distribution on I1× · · · × Id. If p(I�

1× · · · × I�
d) ≤

(1 + ε)p(Ir
1 × · · · × Ir

d) and w = p(I1 × · · · × Id), then

∑
j∈I1×···×Id

∣∣∣∣∣pj − w∏
i∈[d] |Ii|

∣∣∣∣∣ ≤ 2εw.

Proof. Let R =
∏

i∈[d] |Ii|, namely, the size of the d-

dimensional rectangle. Without loss of generality, assume
that for all j ∈ I�

1 × · · · × I�
d, pj ≥ w/R. The argument is

analogous when for all j ∈ Ir
1×· · ·×Ir

d , pj ≤ w/R. (Note that
if there exists a j ∈ I�

1 × · · · × I�
d such that pj < w/R, then

monotonicity implies that pj′ ≤ w/R for all j′ ∈ Ir
1×· · ·×Ir

d .)

For each b ∈ {�, r}d, let Ab
def
= {j ∈ Ib1

1 × · · · × Ibd
d | pj ≥

w/R}, and let Wb
def
=
∑

j∈Ab
(pj−w/R). Finally, let t be the

d-dimensional all-�’s vector, i.e., t
def
= 〈�, �, . . . , �〉. Note that

for any b ∈ {�, r}d, Wb ≤Wt by the monotonicity of f .
Since p(I�

1×· · ·×I�
d) = Wt +(w/2d) and p(Ir

1×· · ·×Ir
d) ≤

w/2d, by the assumption in the lemma statement, we know
that

Wt + (w/2d)

(w/2d)
≤ (1 + ε).

Hence, Wt ≤ (εw)/2d. So, we can conclude∑
j∈I1×···×Id

∣∣∣pj − w
R

∣∣∣ = 2
∑

b∈{�,r}d

Wb ≤ 2d+1 ·Wt ≤ 2εw.

4. MONOTONICITY IN ONE DIMENSION
We consider the problem of distinguishing monotone de-

creasing distributions from those that are not ε-monotone
in L1-norm. We give an Õ(

√
n) algorithm that reduces the

problem of testing if a distribution is close to monotone to
the problem of testing if several distributions are close to
uniform. Our reduction can be viewed as a structural de-
composition of a monotone distribution into several uniform
distributions. This reduction is robust in the sense that the
resulting testing algorithm will pass monotone distributions
and fail distributions that are not ε-monotone. We then
essentially match this upper bound by showing that any
algorithm for this problem requires Ω(

√
n) samples, by re-

ducing the problem of testing whether a distribution is close
to uniform to monotonicity testing.

Our algorithm partitions the domain [n] into a small (i.e.,
poly(log n)) number of intervals, each of which has its weight
distributed roughly evenly over the elements in the interval.
The conditional distribution on such an interval is close to
the uniform distribution such that each element in the in-
terval has probability close to the average probability.

Once the desired partition is obtained, our algorithm then
determines whether the uniform distributions in each of the
intervals can be “patched” together to form a monotone dis-
tribution over the whole domain that is close to the original
distribution. Since there are very few intervals, this latter
task can be performed efficiently via linear programming.

Flat distributions. We define flat distributions, which are
reminiscent of histograms.

Definition 6 (Flat distribution). Let � be an inte-
ger and let I� = 〈I1, . . . , I�〉 be a partition of [n]. A dis-
tribution q on [n] is called an �-flat distribution if it can
be described by the pair (w, I�), with w = 〈w1, . . . , w�〉 and
qi = wj/ |Ij | for i ∈ Ij.
Flat distributions are interesting to us for the following two
reasons. Firstly, flatness is a robust property with respect to
monotonicity, that is, a flat distribution is ε-close to mono-
tone if and only if it is ε-close to a monotone flat distribution.

Lemma 7. An �-flat distribution p described by (w, I�) is
ε-monotone if and only if p is ε-close to a monotone flat
distribution.

Proof. It is clear that if p is ε-close to a monotone flat
distribution, then p is ε-monotone. For the converse, let

384

q be a monotone distribution such that |p− q| ≤ ε. Let
w = 〈w1, . . . , w�〉 such that pi = wj/|Ij | if i ∈ Ij . Define the
monotone �-flat distribution q′ that is described by the pair
(w′, I�) where w′ = 〈w′

1, . . . , w
′
�〉 and w′

j = q(Ij), j ∈ [�]. We
now show that q′ is ε-close to p. By the flatness property
and triangle inequality,∣∣p− q′∣∣ =

∑
j∈[�]

∣∣wj −w′
j

∣∣ =
∑
j∈[�]

|wj − q(Ij)|

=
∑
j∈[�]

∣∣∣∣∣∣
∑
i∈Ij

wj

|Ij | − qi
∣∣∣∣∣∣ ≤

∑
j∈[�]

∑
i∈Ij

∣∣∣∣ wj

|Ij | − qi
∣∣∣∣

=
∑
i∈[n]

|pi − qi| = |p− q| ≤ ε.

Secondly, ε-monotonicity of �-flat distributions can be tested
in time polynomial in �.

Lemma 8. There is an algorithm that outputs PASS if an
�-flat distribution described by (w, I�) is ε-close to a mono-
tone flat distribution, and outputs FAIL otherwise. The run-
ning time of this algorithm is poly(�).

Proof. For j ∈ [�], let kj = |Ij | and let w = 〈w1, . . . , w�〉.
First, consider the following mathematical program with
variables yi for i ∈ [l]:

min
∑

j∈[�] |yjkj − wj | s. t.∑
j∈[�] yjkj = 1; yj ≥ yj+1 for all j ∈ [�− 1];

y� ≥ 0.

The program above minimizes the distance between the given
distribution and a monotone �-flat distribution. We now
transform this into a linear program by introducing a new
variable zj to correspond to |yjkj − wj | and by adding the
constraints zj ≥ yjkj − wj and −zj ≤ yjkj − wj , for all
j ∈ [�]. It is easy to see that this transformation preserves
the value of the objective function. The lemma follows by
solving this LP in time poly(�), for example, using [11].

The algorithm. The collision count of SI , the samples in

an interval I , is defined to be coll(SI)
def
=
∑

i∈I

(
occ(i,SI)

2

)
.

The following lemma relates the collision count to the L2-
norm [3, 2]:

Lemma 9 ([3, 2]). Let I be an interval and q be the
conditional distribution of p on I. Then,(

‖q‖2 − ε2

32|I |
)
≤ coll(SI)(|SI |

2

) ≤
(
‖q‖2 +

ε2

32|I |
)
,

with probability at least 1−O(log−3 n), provided that |SI | =
Ω(ε−4

√|I | log log n).

Our algorithm will use collisions in the sample to deter-
mine a partition I� of [1, n]. Since a low count of collisions
in the sample suggests a nearly uniform distribution of the
weight, the use of this statistic will result in a partition
with close-to-uniform conditional distributions on each in-
terval. After obtaining a partition [1, n], the algorithm will
check if these close-to-uniform conditional distributions can
be patched together into a monotone flat distribution.

Now we describe our algorithm. The inputs are a genera-
tion oracle for p and an error parameter ε.

Algorithm TestMonotonicity

1. Obtain m
def
= O(ε−4√n log n) samples S from p.

Start with the interval I = [1, n], and bisect I in half
recursively as long as

coll(SI) ≥ (1 + ε2/32)

|I |

(
|SI |

2

)
and |SI | ≥ m

log3 n
.

Abort the algorithm, and output FAIL if it performed
more than O(ε−1 log2 n) splits.

2. Let I� = 〈I1, . . . , I�〉 denote the partition of [1, n] into
intervals induced by the leaves of the recursion from
the previous step.

3. Obtain an additional sample T of size O(ε−2 log4 n).

4. Let hist(T, I�) denote the �-flat distribution described
by (w, I�) where wj = occ(Ij , T)/ |T |.

5. Output PASS if hist(T, I�) is ε/2-close to a monotone
distribution (by using the algorithm from Lemma 8),
otherwise output FAIL.

Thus, we obtain the following theorem.

Theorem 10. Given access to a generation oracle for p
over [n], the algorithm TestMonotonicity outputs PASS
when p is monotone and outputs FAIL when p is not ε-
monotone, with probability at least 2/3. The algorithm uses
O(ε−4√n log n) samples and runs in time O(ε−4√n log3 n).

Proof. We first argue that hist(T, I�) is a good ap-
proximation to p, assuming Step (1) succeeds, i.e., when
� = O(ε−1 log2 n). Consider the partition I� obtained from
Step (1). Call an interval I light if occ(I, T) ≤ m/ log3 n;
call it balanced otherwise. By Lemma 9, the L2-norm of
the conditional distribution on a balanced interval I is at
most (1 + ε2/16)/|I |. Hence, by Lemma 1, we can claim
that

∑
i∈I |pi − p(I)/ |I || ≤ εp(I)/4. The total weight of

the light intervals is less than ε/4 by the virtue of being
light and the upper bound on �. Hence, by summing over
all intervals I ∈ I�, we get |hist(T, I�)− p| ≤ ε/2.

Suppose p is a monotone distribution. We show that the
algorithm will output PASS with probability at least 2/3.
We first show that � = O(ε−1 log2 n), i.e., Step (1) will suc-
ceed. Using Lemma 9 and the union bound over all in-
tervals, Step (1) will obtain a reliable estimate, as given by
Lemma 9, for the collision probability (i.e., the square of the
L2-norm) with probability at least 2/3. Now, fix a level and
consider the internal nodes in this level of the recursive tree
constructed in Step (1). For an interval that corresponds
to one of these nodes, the ratio of the maximum probabil-
ity to the minimum probability in the interval is at least
1 + ε/8 by Lemma 1 and Lemma 9; by monotonicity of p,
these extrema occur at the two ends of the interval. Since
for each of these intervals, the maximum probability is at
least n−2, there are at most O(log1+ε/8 n) internal nodes

on any level. Therefore, the tree has O(ε−1 log2 n) internal
nodes. Finally, since the tree is a complete binary tree, I�

contains O(ε−1 log2 n) intervals. Consequently, Step (1) will
succeed and as we argued in the beginning of this proof,
|hist(T, I�)− p| ≤ ε/2. Since hist(T, I�) is �-flat and is
ε/2-close to a monotone distribution, by Lemma 7, it is also

385

ε/2-close to a monotone �-flat distribution and so Step (5)
will also succeed and the algorithm will output PASS.

Suppose the algorithm outputs PASS. Then, from Step (5),
there is a monotone (in fact, flat) distribution q such that
|hist(T, I�)− q| ≤ ε/2. Moreover, since Step (1) succeeded,
� = O(ε−1 log2 n). Again, as we argued in the beginning of
this proof, this implies that |hist(T, I�)− p| ≤ ε/2. By
triangle inequality, |p− q| ≤ ε.

We also need to ensure that Step (5) can be implemented
in polylogarithmic time. But, this is possible via Lemma 8
with � = O(ε−1 log2 n). Hence, the running time of the
algorithm is dominated by the previous steps.

Lower bound. Next, we show that our upper bound is es-
sentially optimal.

Theorem 11. Let A be an algorithm that, given gener-
ation oracle access to an arbitrary distribution p over [n],
has the following behavior: if p is monotone, then A out-
puts PASS and if p is not ε-monotone in L1-norm, then A
outputs FAIL. Furthermore the error probability of A is at
most 1/3. Then A requires Ω(

√
n) samples.

Proof. We reduce the problem of testing if a given dis-
tribution is close to uniform to testing if the distribution is
close to monotone. Given a generation oracle, distinguishing
uniform distributions from distributions that are not even ε-
close to uniform in L1-norm is known to require Ω(

√
n) sam-

ples [2]. The desired lower bound for testing monotonicity
will follow.

For simplicity, we assume p is a distribution on [2n]. Sup-
pose there is an algorithm A to test if a given distribu-
tion is ε-monotone for ε < 1/16. We use this algorithm
as a black-box to construct a new algorithm B that tests
if a given distribution is (ε′ + ε)-close to uniform, where
ε′ = 4ε/(1/2 − ε) < 1. Define a new generation oracle pR

that on invocation, invokes p and outputs i if p outputs
2n− i. The algorithm B uses both p and pR in the following
manner: it runs A on both p and pR and outputs PASS if
and only if A outputs PASS on both p and pR.

Clearly, if p is uniform on [2n], both p and pR are mono-
tone and A outputs PASS on both occasions. Conversely,
suppose A outputs PASS for both p and pR; then p and
pR must be ε-monotone. In this case, we show that p is
(ε′ + ε)-close to uniform. Let f be a monotone distribution
on [2n] such that |p− f| ≤ ε and gR be a monotone distribu-
tion on [2n] such that

∣∣pR − gR
∣∣ ≤ ε. By our construction

of pR, the function g defined by gi = gR
2n−i is monotone

non-decreasing and |p− g| =
∣∣pR − gR

∣∣ ≤ ε. We conclude
the proof by showing that f is ε′-close to uniform, which by
the triangle inequality will show that p is (ε′ + ε)-close to
uniform.

Let F = f([1, n]) =
∑n

i=i fi, F
′ = 1−F = f([n+ 1, 2n]) =∑2n

i=n+1 fi, and G = g([1, n]) =
∑n

i=1 gi. Since f is mono-
tone non-increasing and g is monotone non-decreasing, we
have G ≤ 1/2 ≤ F . On the other hand, by the triangle
inequality, |f − g| ≤ |f − p|+ |p− g| ≤ 2ε and in particular,
|F −G| ≤ 2ε. Combining all of these, 1/2 ≤ F ≤ G+ 2ε ≤
1/2 + 2ε and consequently, F ′ ≥ 1/2− 2ε . We have

0 ≤ F − F ′ = 2F − 1 ≤ 2

(
1

2
+ 2ε

)
− 1

= 4ε ≤ 4ε

1/2− 2ε
F ′ = ε′F ′.

Also, since f is a distribution,
∑2n

i=1 fi = 1. By appealing to

Lemma 4, we see that
∑2n

i=1 |fi − 1/(2n)| ≤ ε′, that is, f is
ε′-close to uniform.

5. MONOTONICITY IN HIGHER DIMEN-
SIONS

In this section we present an Õ(n3/2) algorithm for testing
monotonicity in two dimensions. These ideas can be used
to give Õ(nd−1/2)-time algorithms for testing monotonicity

in d dimensions. We also show a lower bound of Ω(nd/2) for
testing monotonicity in d dimensions.

As we indicated in the Introduction, testing monotonic-
ity in higher dimensions is trickier than the one-dimensional
case because of the partial ordering on the domain. Simi-
lar to the one-dimensional case, we would like to recursively
subdivide the domain until we can test for closeness to uni-
formity of each subdivision. In order to upper bound the
running time and the error probability of the algorithm, we
would need a bound on the number of subdivisions, as in the
one-dimensional case. However, the partial ordering on the
domain hinders the argument that bounds the number of
subdivisions. To handle this problem, we make the follow-
ing observations: (i) the quadrants that are “too far” from
the origin can be discarded since they cannot contribute sig-
nificant mass to a monotone distribution; (ii) if consecutive
quadrants have similar weights, they can be further decom-
posed into almost-uniform partitions in one step.

Let the domain of the distribution be [n] × [n]. We will
think of the algorithm as partitioning the two dimensional
space into four equal quadrants and recursing on each of
the quadrants. In other words, the algorithm builds a quad-
tree T with the following semantics. The nodes in T will
correspond to rectangles inside [n]× [n]; the root of T corre-
sponds to [n]× [n]. For an internal node v that corresponds
to a rectangle K = I × J , the four children of v, labeled
v�,�, v�,r, vr,�, vr,r correspond to the four quadrants of K.
Clearly, the depth of this tree is at most log n.

For a given level of the tree, the row (resp. column) dis-
tance of a quadrant is the number of quadrants to the left
(resp. bottom) of it to the origin. For a given level, the
distance of a quadrant from the origin is the maximum of
its row and column distances. We will derive a tree from
T where each quadrant corresponds to a leaf in T can be
further split, though not necessarily as quadrants. The size
of this new tree will be essentially that of T and so we will
deal with T for the rest of the discussion.

Let a be a suitably large constant and let b and c be
constants such that b > 2c + 1 and c > a + 2. Let δ =
O(ε/ loga n). Let S be a sample of size O(n3/2·poly(log n, ε−1))
and W be a global variable in the algorithm that keeps track
of the number of samples ignored. We now describe how the
algorithm recursively constructs the tree starting at the cur-
rent node v, which corresponds to a rectangle K = I ×J . If
a node is declared as a leaf, then we do not recurse on the
node further.

Algorithm TestMonotonicity2D

1. If occ(K,S)/|S| ≤ 1/ logb n, then v is a leaf.

2. If coll(SK) ≤ (1 + ε2/32)
(|SK |

2

)
/|K|, then v is a leaf.

3. If the quadrant K is more than logc n away from the
origin, then v is a leaf. Update W ←W + |occ(K,S)|.

386

4. IfK is not already designated as a leaf, then do the fol-
lowing two steps for each of the following ordered pairs:
〈K�,�,K�,r〉, 〈K�,�,Kr,�〉, 〈Kr,�,Kr,r〉, 〈K�,r,Kr,r〉. We
will illustrate the steps for 〈K�,�,K�,r〉.
(4a) If (1+ε)occ(K�,�, S) < occ(K�,r, S), then output

FAIL.

(4b) If occ(K�,�, S) ≤ (1 + δ)occ(K�,r, S) then select
1/δ many i’s where probability of i is propor-
tional to p({i} × Jr). For each i, output FAIL
if the distribution along the i-th column {i} × J
is not (ε/32)-close to monotone or p({i} × J�) >
(1 + ε/32)p({i} × Jr). Partition I� × J into con-
tiguous columns applying Step (1) in algorithm
TestMonotonicity on domain I� and mark each
set of columns as a leaf.

5. Recurse on the children that were not leaves in the
previous step.

6. Output FAIL if W > ε|S|/8.

7. Output FAIL if the partition of the domain induced by
the leaves of the recursion is not ε/2-close to a mono-
tone distribution (This condition can be checked by a
linear program formulation as in the one-dimensional
algorithm), otherwise output PASS.

Running time. Note that the total number of nodes in
this tree is O(log2c+1 n), which follows from the fact that
at any fixed level of the tree, there are at most log2c n inter-
nal nodes (from Step (3)). Thus, the sample complexity is
dominated by the one-dimensional monotonicity testing in
Step (4b) for poly(log n) columns each with weight at least

O(1/(n logb n)). This entails Õ(n3/2/ε4) samples.
Also, it is easy to see that an LP-based algorithm can be

designed to check if a given two-dimensional flat distribution
is ε/2-close to a two-dimensional monotone flat distribution
in Step (7). Since the number of nodes in T is log2c+1 n, the
running time of this step will be overwhelmed by the other
steps.

Proof overview. First note that the algorithm determines
the rectangles not to be divided any further in Steps (1)–
(4): such rectangles either have small weight (Step (1)), have
almost uniform conditional distribution (Step (2)), are far
from the origin (Step (3)), or can be further decomposed
into almost-uniform partitions in one step (Step (4)). We
show (Lemma 14) that the leaves designated by Step (3)
have a negligible fraction of the total weight in a monotone
distribution. We show that all these steps together ensure a
small tree size and that the total weight of the leaves ignored
by Steps (1) and (3) is negligible. Note that one cannot use
the weight threshold from Step (1) both to upper bound the
number of leaves and to simultaneously show that their total
weight is negligible.

When a rectangle K is divided, we would like to main-
tain that the weights of the consecutive quadrants in K are
separated by a multiplicative factor, of at least 1 + δ, in
order to ensure a tree of polylogarithmic size at the end.
Hence, when the weights of two consecutive quadrants, say,
〈K�,�,K�,r〉 in K are within (1+δ), these two quadrants are
not recursively divided any further. In a monotone distribu-
tion we would expect that the individual columns in these

two quadrants are roughly uniform. Step (4b) ensures such
quadrants can be partitioned into O(log2 n) subdivisions,
each of which is close to uniform, using Lemma 13.

At the end of Step (7), we can derive a two-dimensional
flat distribution, defined similar to the one-dimensional case,
that is close to p. The leaves that are determined by Step (2)
correspond to flat quadrants with the total mass induced
by the sample. The conditional distribution is ε/4-close to
uniform for these rectangles. For the leaves that are deter-
mined by Step (4b), we split the rectangles one more level
into groups of contiguous columns (or rows, depending on
the orientation of the rectangle) to obtain (ε/4)-uniform par-
titions. The total weight of all the other leaves is negligible.

First, we show that for a monotone distribution, we can
assume that Step (4b) will not FAIL. We show that for a
monotone distribution, if the two halves have roughly the
same weight, then the conditional distributions on columns
are close to uniform.

Lemma 12. Let ε, σ < 1/8. Let distribution p over inter-
val I be ε-monotone. Furthermore, let p(I�) ≤ (1 + σ)p(Ir).
Then, p is (4ε+ 2σ)-close to uniform.

Proof. Let f be a monotone distribution such that |p− f| ≤
ε. Since p(I�) − p(Ir) ≤ 2σ/3 and |p− f| ≤ ε, f(I�) ≤
f(Ir) + ε+ 2σ/3. Thus, we get

f(I�)

f(Ir)
≤ 1 +

ε+ 2σ/3

f(Ir)
≤ 1 +

ε+ 2σ/3
1−ε−2σ/3

2

≤ 1 + 3ε + 2σ.

Hence, by Lemma 4, f is (3ε+ 2σ)-close to uniform. So, by
the triangle inequality, p is (4ε+ 2σ)-close to uniform.

The next lemma shows that in monotone distributions, for
those rectangles considered by Step (4b), most of the weight
in the rectangle is distributed on columns with roughly uni-
form conditional distribution.

Lemma 13. Let I×J ⊆ [n]× [n] and let p be a monotone
distribution such that p(I×J�) ≤ (1+δ)p(I×Jr). Then, for
any ρ > 0, Pri∈I

[
p({i} × J�) ≥ (1 + ρδ) · p({i} × Jr)

] ≤
1/ρ, where i is chosen with probability p({i}×Jr)/p(I×Jr).

Proof. Let W = p(I × J�),W ′ = p(I × Jr). We know
that W ′ ≤ W ≤ (1 + δ)W ′. Let wi = p({i} × J�) and
w′

i = p({i} × Jr). We know that w′
i ≤ wi for every i ∈ I .

Let B be the set of i’s such that wi ≥ (1 + δ′)w′
i, for δ′

to be chosen later. Then, from the definition of B and our
assumptions, we have that∑
i∈B

(1 + δ′)w′
i +

∑
i/∈B

w′
i ≤

∑
i∈B

wi +
∑
i/∈B

wi = W ≤ (1 + δ)W ′.

From this, it follows that
∑

i∈B w
′
i/W

′ ≤ δ/δ′. Setting
δ′ = ρδ, we see that if i is picked proportional to w′

i, the
probability that it is in B is at most 1/ρ.

We now bound the error introduced because of ignoring
nodes that are too far away from the origin in Step (3).

Lemma 14. For a monotone distribution p, the total er-
ror accrued at any level of T because of Step (3) is at most
O(ε−1 loga−c+1 n).

387

Proof. Consider a graph whose nodes are the internal
nodes of the tree at level �. In this graph, there is an edge
between two nodes if the rectangles K1 and K2 correspond-
ing to these nodes have an ordering relationship between
them (according to the definition of monotonicity in two di-
mensions) and K1 is one of the closest rectangles to K2 on
this level (i.e., either K1 and K2 are touching each other
or none of the rectangles of the same size in between them
survived until this level).

First, we claim that the maximum length of a path in this
graph is O(δ−1 log n), where recall that δ = O(ε/ loga n).
Consider a path of length t. One in every three edges on
this path have to be between two sibling nodes in the tree,
because four nodes on this path of three edges can belong to
at most three parents. Note that for each edge between two
siblings along the path, the weight of the quadrants drops
by at least a factor of 1 + δ. This follows from the fact that
these nodes are internal nodes and Step (4b) could not be
applied to them. Hence, t is O(δ−1 log n) = O(ε−1 loga+1 n).

Secondly, consider any set R of incomparable nodes, all at
distance at least logc n in this graph. Let v be a node in R.
Interpreting v in the partial order, without loss of generality,
let the “x-coordinate” of v be at least logc n. Let w1, . . . , wk

be the set of nodes at level � of a complete quad-tree with
the same y-coordinate as v and a smaller x-coordinate than
v, where k ≥ logc n. We know by monotonicity that p(w1) ≥
· · · ≥ p(wk) ≥ p(v). Thus, p(v) as a fraction of

∑k
i=1 p(wi)

is at most log−c n. We count ignoring v as an error and
charge this quantity to wk. Now, we look at the charges
each node gets. We claim that each node can get charged
at most twice in level �—once along x-direction and another
along y-direction. This follows since R was chosen to be a
set of incomparable nodes. Thus, as a fraction, the total
weight of the nodes in S is at most 2 log−c n.

Now, the total error caused by Step (3) is upper bounded
by the product of the maximum path length and the maxi-
mum weight of incomparable nodes. By the above two ob-
servations, this is at most O(ε−1 loga−c+1 n).

Thus, we obtain:

Theorem 15. Given access to samples from a distribu-
tion p over [n]× [n], the algorithm TestMonotonicity2D
outputs PASS when p is monotone and outputs FAIL when
p is not ε-monotone, with probability at least 2/3. Moreover,

the algorithm runs in time O(n3/2 · poly(log n, ε−1)).

Proof. First of all, by picking sample set S large enough,
we can guarantee that the error probability for any of the
operations (such as counting/comparing the number of oc-
currences, estimating collision probabilities, or performing
one-dimensional monotonicity test, etc.) at each node in T
is at most log−d n for some constant d > b > 2c + 1. Since
the number of nodes in T is only log2c+1 n, this will permit
us to apply a union bound over all nodes in T to guarantee
that no “bad event” happens.

Second, we also assume that the sampling error in esti-
mating various parameters (such as number of occurrences
of sample in a given quadrant, selecting i’s in Step (4a),
counting W , etc.) is ε′ for some ε′ � ε.

Note that the total error due to the nodes ignored in
Step (1) is at most the number of nodes in the tree mul-
tiplied by O(1/ logb n), which is O(log−b+2c+1 n), and so is
negligible when b > 2c+ 1.

Suppose p is a monotone distribution. We show that the
algorithm will output PASS with high probability. Since
we assumed that the sampling is good enough, Step (4a)
will never output FAIL for a monotone distribution. Com-
ing to Step (4b), by our choice of parameters, at least 1 −
1/Ω(loga n) fraction (by weight) of i’s will be such that w′

i ≤
wi ≤ (1 + ε/64)w′

i where wi = p({i}× J�), w′
i = p({i}× Jr)

by Lemma 13. So, Step (4b) is not likely output FAIL.
By Lemma 14, Step (6) will also not output FAIL. Finally,
we show that the flat distribution obtained from the par-
tition is ε/2-monotone so that Step (7) does not output
FAIL. The error due to Step (3) is the height of the tree
multiplied by O(ε−1 loga−c+1 n) (from Lemma 14), which is
O(ε−1 loga−c+2 n), and is negligible when c > a + 2. The
balanced rectangles from Step (4b) are divided into parti-
tions each of which is ε/4-close to uniform. The leaves des-
ignated by Step (2) also correspond to (ε/4)-uniform rect-
angles. Hence, we see that the two-dimensional flat distri-
bution is indeed ε/2-close to p.

Suppose the algorithm outputs PASS. Since the sampling
in Step (4b) is not likely to FAIL, it follows that the distri-
butions restricted to i’s are actually ε/32-close to monotone
and have the weights of the two halves within (1 + ε/16)
for at least 1 − 1/Ω(loga n) fraction (by weight) of the i’s.
Hence, by Lemma 12, for those i’s the distribution is ε/4-
close to uniform. If we replace columns for the rest of i’s
by uniform distributions, the total error resulting from this
modification will be at most ε/4. The total weight of the
parts of the domain designated as leaves by steps (1) and (3)
is at most O(log−b+2c+1 n) + |W |/|S| ≤ ε/4. Hence, the
two-dimensional flat distribution implied by the tree T is
ε/2-close to p. Finally, from the last step, there is a two-
dimensional monotone flat distribution q that is ε/2-close to
the two-dimensional flat distribution implied by the tree T
and the solution to the linear program constructed using T .
By the triangle inequality, p and q are ε-close.

Lower bound. By generalizing the lower argument in one-
dimension from Section 4, we show that a lower bound on
the sample complexity of testing monotonicity in higher di-
mensions. We reduce testing uniformity of a distribution to
testing monotonicity of a distribution over tuples.

Theorem 16. Let A be an algorithm that, given gener-
ation oracle access to an arbitrary distribution p over [n]d,
has the following behavior: if p is monotone, then A out-
puts PASS and if p is not ε-monotone in L1-norm, then A
outputs FAIL. Furthermore the error probability of A is at
most 1/3. Then A requires Ω(nd/2) samples.

6. CLOSENESS AND INDEPENDENCE
In this section we present efficient algorithms to test if two

monotone distributions over [n] are close in L1-norm and if
a monotone joint distribution is close in L1-norm to being
independent. Our algorithms run in time O(poly(log n)),
thereby going beyond the lower bounds for these problems
in the general case [3, 2] by a near-exponential factor.

The main idea behind the algorithms is the observation
underlying Lemma 4: if a monotone distribution p over [n]
is balanced, i.e., p([n/2]) and p([n]\[n/2]) are close, then the
distribution must be close to uniform. We require an effi-
cient procedure that, given a monotone distribution, parti-

388

tions the domain into a small number of intervals that are
balanced. The next theorem from [1] comes to our rescue.

Theorem 17 ([1]). Let p be a monotone distribution
on [n] given via a generation oracle. There is a proce-
dure Partition(p, ε, w) that outputs a (k+ 1)-partition I =
〈I1, . . . , Ik, J〉 of [n] such that Ij’s are intervals, J ⊆ [n],
and with probability at least 1 − o(1), the following hold:
(1) k = O(ε−1 log(n) log log n); (2) p(J) = o(wk); (3) for
j ∈ [k], p(Ij) > w and p(Ir

j) ≤ p(I�
j) ≤ (1 + ε) · p(Ir

j). The

procedure uses O(ε−3w−1 log n) samples from p.

Notice that we could not have used Theorem 17 for testing
monotonicity: Partition requires samples from a monotone
distribution and the guarantee that it gives on the partition
is weaker than the one we need for testing monotonicity.

6.1 Closeness of monotone distributions
In this section we present an algorithm to test if two mono-

tone distributions are close. We use the algorithm in The-
orem 17 to obtain a partition I�+1 = 〈I1, . . . , I�, J〉 of [n].
We then check if p and q are close in each of the intervals Ij
and if q(J) is small. Here is a description of the algorithm.

Algorithm TestMonotoneCloseness

1. Let 〈I1, . . . , Ik, J〉 = Partition(p, ε, log−2 n).

2. Obtain m
def
= O(ε−3 log3 n) samples Sp and Sq from p

and q respectively.

3. Output FAIL if occ(I�
j , S

q) > (1 + 2ε) · occ(Ir
j , S

q) or
if |occ(Ij , S

p)− occ(Ij , S
q)| ≥ ε · occ(Ij , S

p) for any
j ∈ [k], or if occ(J,Sq) > ε−1m log log n/ log n.

First, we show a simple consequence of Lemma 4:

Lemma 18. Let p,q be monotone distributions on [n] and
I ⊆ [n] be an interval such that p(I�) ≤ (1 + ε) · p(Ir) and
q(I�) ≤ (1+ε′)·q(Ir). Then,

∑
i∈I |pi − qi| ≤ εp(I)+ε′q(I)+

|p(I)− q(I)| .

Proof. Let w1 = p(I) and w2 = q(I). Then, by the
triangle inequality,∑

i∈I

|pi − qi| =
∑
i∈I

∣∣∣∣pi +
w1 − w1 + w2 − w2

|I | − qi
∣∣∣∣

≤
∑
i∈I

∣∣∣∣pi − w1

|I |
∣∣∣∣ +

∑
i∈I

∣∣∣∣w2

|I | − qi
∣∣∣∣ +

∑
i∈I

|w1 − w2|
|I |

≤ εw1 + ε′w2 + |w1 − w2| .

We now obtain

Theorem 19. Given generation oracle access to mono-
tone distributions p and q over [n], the algorithm Test-
MonotoneCloseness outputs PASS when p = q and out-
puts FAIL when |p− q| ≥ 9ε, with probability at least 2/3.
Moreover, the algorithm runs in time O(ε−3 log3 n).

Proof. Suppose p = q. By Theorem 17, for each Ij ,
p(I�

j) ≤ (1 + ε) · p(Ir
j) with probability 1 − o(1). Moreover,

since q(J) = o(ε−1 log log n/ log n), with probability 1−o(1),
Sq will contain less than ε−1m log log n/ log n samples from
J . Therefore, Step (3) is not likely to output FAIL.

Suppose the algorithm outputs PASS. Then, for each in-
terval Ij we know that q(I�

j) ≤ (1+4ε)·q(Ir
j), and moreover,

|p(Ij)− q(Ij)| ≤ 3ε · p(Ij). Now, using Lemma 18, and the
facts that p(J) = o(1) and q(J) = o(1), and summing over
all I1, . . . Ik, we can see that |p− q| ≤ 9ε.

6.2 Independence of monotone joint distribu-
tions

In this section we consider monotone distributions on [n]d,
and the independence of the random variables defined by
each component of the samples from these distributions.
Our goal is to distinguish monotone independent distribu-
tions from monotone distributions that are far from any in-
dependent distribution.

An easy but useful observation is that the marginal dis-
tributions of a monotone joint distribution are also mono-
tone distributions. Based on this observation, we will use
Theorem 17 to partition the domains of the marginal dis-
tribution into intervals. By Lemma 4, we know that the
marginal distributions will be close to uniform on these in-
tervals. Therefore, when the random variables defined by
the joint distribution are independent, the conditional dis-
tributions on the “rectangles” formed by the cross product
of the partitions will be close to uniform. Lemma 5 provides
a means to check this condition.

For a rectangle, let the midpoint be the point that bisects
the rectangle along each coordinate. Then we refer to the top
cube (bottom cube) as the set of points in the rectangle that
are smaller (larger) than the midpoint in each coordinate.
Monotonicity ensures that each probability value in the top
cube is greater than each of those in the bottom cube. The
algorithm is:

Algorithm TestMonotoneIndependence

1. For each i ∈ [d], apply Partition to the marginal
distribution along the i-th dimension with εi = ε/(32d)
and w = d−1 log−2 n to obtain a partition of [n] into

I(i) = 〈I(i)1 , . . . , I
(i)
ki
, Ji〉.

2. For each d-dimensional rectangle I
(1)
i1
×I(2)i2

×· · ·×I(d)
id

,
output FAIL if the number of samples from the top
cube is more than (1 + ε/8) times that of the bottom
cube.

3. Check that the distribution on the rectangles is ε/4-
close to the product of the marginal distributions on
the rectangles.

Theorem 20. Given generation oracle access to mono-
tone joint distribution p on d-tuples, the algorithm Test-
MonotoneIndependence outputs PASS if p induces d in-
dependent random variables and outputs FAIL if p has L1-
distance at least ε to any set of d independent variables,
with probability at least 2/3. Moreover, the algorithm uses

O(log(2d/3)+1 n) samples and runs in time O(logd n).

Proof. Suppose the joint distribution is independent.
Then, for any d-dimensional rectangle that we check, the
weight of the top cube is at most (1 + ε/16) times that of
the bottom cube, because in each marginal distribution, the
top half of the interval has weight at most (1+ε/(32d)) times
that of the bottom half, and (1 + ε/(32d))d ≤ (1 + ε/16).

389

Hence, after accounting for the sampling errors, all the rect-
angles in Step (2) will pass with high probability. The algo-
rithm outputs PASS.

Now consider a distribution p that the algorithm outputs
PASS. We know by Lemma 5 that the conditional distribu-
tion on each rectangle has L1-distance at most ε/4 to the
uniform distribution. Let δ be the L1-distance of p to the
product of its marginal distributions. The total contribution
of all the rectangles to δ will be at most ε/2. Since, the total
weight of the ignored parts of the domain, where at least one
coordinate belongs to the corresponding Ji, is negligible, we
can claim that δ ≤ ε. Therefore, p has L1-distance at most
ε to a set of d independent variables on this domain.

The error probability is sum of the probabilities that The-
orem 17 does not hold for any invocation of Partition.
Therefore, the error probability is less than 1/3. The sam-
ple complexity of d invocations of the procedure Partition

is O(d5ε−3 log3 n). Step (3) can be accomplished by the al-
gorithm to test if two distributions are close [3], which will

entail O(log(2d/3)+1 n) samples.

7. UNIMODAL DISTRIBUTIONS
In this section we extend our results to unimodal distri-

butions. We will only indicate the appropriate modifica-
tions/extensions needed for the unimodal case.

Testing unimodality. The outline of our algorithm for test-
ing unimodality is be similar to our algorithm for testing
monotonicity. After partitioning the domain [n] into poly-
logarithmic number of intervals, each of which has close-
to-uniform conditional distribution, the algorithm checks
whether these intervals can be “patched” together to form a
unimodal distribution. We will again use unimodal flat dis-
tributions as a tool. The analogs of Lemma 7 and Lemma
8 hold for the unimodal flat distributions. The only addi-
tional step in the proof of the latter is that since the max-
imum probability can occur in any one of the � intervals, �
separate linear programs will be set up for each choice of
the peak of the unimodal distribution. Thus, as before, we
obtain an Õ(

√
n) algorithm for unimodality testing.

Testing closeness. The following is a unimodal analog of
Lemma 4. It says that for a fine-enough partition, unimodal-
ity on balanced intervals implies close to uniformity.

Lemma 21. Let I be a interval, and let p be a unimodal
distribution on [n]. Let � = �1/ε�, and I1, . . . , I� be a par-
tition of I into equal-length subintervals. If, for all j ∈ [�],

p(I)
(1+ε)�

≤ p(Ij) ≤ (1+ε)p(I)
�

, then
∑

i∈I

∣∣∣pi − p(I)
|I|

∣∣∣ ≤ εp(I).

We call an interval I to be (1 + ε)-smooth with respect
to sample S if, for the �-partition {I1, . . . , I�} of I where

� = �1/ε�, |SI |
(1+ε)�

≤ |SIj | ≤ (1+ε)|SI |
�

for all j. The al-

gorithm for testing closeness is similar to the monotone
case, where we will use Theorem 17 to obtain a partition
Ik+1 = 〈I1, . . . , Ik, J〉 of [n], where each Ij is (1+ε)-smooth.

8. THE CUMULATIVE ORACLE MODEL
It is instructive to compare the complexity of various tasks

changes under different assumption on how the distributions
are accessed. For example, suppose the only access to the
distribution p is through a cumulative evaluation oracle P
such that Pi =

∑i
j=1 pj , and that the algorithm can access

any Pi in one step. We show that in this model, monotonic-
ity testing can be done in a simpler and more efficiently.

Note that from such an oracle, one can generate an ele-
ment i with probability pi in logarithmic time: generate a
random r ∈ [0, 1] and output i such that Pi ≤ r by perform-
ing a binary search on P. We adapt the sorting spot-checker
of [7] to obtain a sublinear algorithm for monotonicity in
the cumulative oracle model.

Theorem 22. Given access to a cumulative oracle for
distribution p over [n], there is an algorithm that outputs
PASS if p is monotone and outputs FAIL if p is not 2ε-
monotone in L1-norm, with probability at least 2/3. The
algorithm runs in time O((1/ε)(log n+ log(1/ε)) log n).

Acknowledgments. The second author thanks Xin Guo
and D. Sivakumar for many useful suggestions.

9. REFERENCES
[1] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld.

The complexity of approximating the entropy. Proc.
34th ACM Annual Symposium on Theory of
Computing, pages 678–687, 2002.

[2] T. Batu, E. Fischer, L. Fortnow, R. Kumar,
R. Rubinfeld, and P. White. Testing random variables
for independence and identity. Proc. 42nd IEEE
Annual Symposium on Foundations of Computer
Science, pages 442–451, 2001.

[3] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and
P. White. Testing that distributions are close. Proc.
41st IEEE Annual Symposium on Foundations of
Computer Science, pages 259–269, 2000.

[4] T. Batu, R. Rubinfeld, and P. White. Fast approximate
PCPs for multidimensional bin-packing problems. Proc.
3rd International Workshop on Randomization and
Approximation Techniques in Computer Science, pages
246–256, 1999.

[5] L. Devroye. Algorithms for generating discrete random
variables with a given generating function or a given
moment sequence. SIAM J. on Scientific and Statistical
Computing, 12:107–126, 1991.

[6] Y. Dodis, O. Goldreich. E. Lehman, S. Raskhodnikova,
D. Ron, and A. Samorodnitsky. Improved testing
algorithms for monotonicity. Proc. 3rd International
Workshop on Randomization and Approximation
Techniques in Computer Science, pages 97–108, 1999.

[7] F. Ergün, S. Kannan, R. Kumar, R. Rubinfeld, and M.
Viswanathan. Spot-checkers. Journal of Computer and
System Sciences, 60(3):717–751, 2000.

[8] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova,
R. Rubinfeld, and A. Samorodnitsky. Monotonicity
testing over general poset domains. Proc. 34th ACM
Annual Symposium on Theory of Computing, pages
474–483, 2002.

[9] O. Goldreich and D. Ron. On testing expansion in
bounded degree graphs. Electronic Colloquium on
Computational Complexity, TR00-020, 2000.

[10] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and
A. Samorodnitsky. Testing monotonicity.
Combinatorica, 20(3):301–337, 2000.

[11] N. Karmarkar. A new polynomial time algorithm for
linear programming. Combinatorica, 4(4):373–395,
1984.

390

