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Abstract

Let H be a fixed graph withh vertices, letG be a

graph onn vertices and suppose that at leastεn2 edges

have to be deleted from it to make itH-free. It is known

that in this caseG contains at leastf(ε,H)nh copies of

H. We show that the largest possible functionf(ε,H) is

polynomial inε if and only ifH is bipartite. This implies

that there is a one-sided error property tester for check-

ingH-freeness, whose query complexity is polynomial in

1/ε, if and only if H is bipartite.

1 Introduction

1.1 Preliminaries

All graphs considered here are finite, undirected, and

have neither loops nor parallel edges.

Let P be a property of graphs, that is, a family of

graphs closed under graph isomorphism. A graphG with

n vertices isε-far from satisfyingP if no graphG̃ with

the same vertex set, which differs fromG in no more than

εn2 places, (i.e., can be constructed fromG by adding

and removing no more thanεn2 edges), satisfiesP . An

ε-tester for P is a randomized algorithm which, given

the quantityn and the ability to make queries whether a

desired pair of vertices of an input graphG with n ver-
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tices are adjacent or not, distinguishes with probability at

least, say,23 between the case ofG satisfyingP and the

case ofG beingε-far from satisfyingP . Such a tester is

a one-sidedtester if whenG satisfiesP the tester deter-

mines that this is the case (with probability1). Obviously,

the probability2
3 appearing above can be replaced by any

constant smaller than1, by repeating the algorithm an ap-

propriate number of times.

The propertyP is calledstrongly-testable, if for every

fixed ε > 0 there exists a one-sidedε-tester forP whose

total number of queries is bounded only by a function of

ε, which is independent of the size of the input graph.

1.2 The main result

For a fixed graphH (with at least one edge), letPH
denote the property of beingH-free. Therefore,G satis-

fiesPH iff it contains no (not necessarily induced) sub-

graph isomorphic toH. It is known that for each fixed

graphH, the propertyPH is strongly-testable. This is

proved (implicitly) in [1], see also [2]. The proof in [1]

relies on the regularity lemma of Szemerédi [18], and

thus provides a one-sidedε-tester forPH whose query-

complexly is bounded by a function which, though in-

dependent of the size of the input graphG, has a huge

dependency onε and the size ofH. For some graphs

H, however, there are more efficient testers; for exam-

ple, if H is a single edge, it is easy to see that there is

a one-sidedε tester forPH , which makes onlyO(1/ε)
queries. Our main result here is a precise characterization

of all graphsH for which there are one-sidedε-testers

whose query-complexity (and running time) is polyno-

mial in 1/ε.
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Theorem 1 LetH be fixed graph onh vertices.

(i) If H is bipartite, then for everyε > 0 there is a one-

sidedε-tester forPH whose query-complexity (and run-

ning time) are bounded by

O(h2(
1
2ε

)h
2/4).

(ii) If H is non-bipartite, then there exists a constantc =
c(H) > 0 such that the query-complexity (and running

time) of any one-sidedε-tester forPH is at least

(
c

ε
)c log(c/ε).

Thus, for example, for all sufficiently smallε > 0 and

all sufficiently largen, it is much easier to test if an input

graphG onn vertices isK100,100-free, than to test if it is,

say,C5-free.

1.3 Related work

The general notion of property testing was first for-

mulated by Rubinfeld and Sudan [17], who were mo-

tivated mainly by its connection to the study of pro-

gram checking. The study of the notion of testability

for combinatorial objects, and mainly for labeled graphs,

was introduced by Goldreich, Goldwasser and Ron [10],

who showed that all graph properties describable by the

existence of a partition of a certain type, and among

themk-colorability, have efficient testers. The fact that

k-colorability is strongly testable is, in fact, implicitly

proven already in [6] fork = 2 and in [14] (see also

[1]) for generalk, using the Regularity Lemma of Sze-

meŕedi [18], but in the context of property testing it is

first studied in [10], where far more efficient algorithms

are described. These have been further improved in [4].

In [2] it is shown that every first order graph property

without a quantifier alternation of type “∀∃” has testers

whose query complexity is independent of the size of the

input graph (but has a huge dependence onε). These

properties contain the propertiesPH whose query com-

plexity is studied here.

The notion of property testing has been investigated

in other contexts as well, including the context of regular

languages, [3], functions [9] , hypergraphs [8] and other

contexts. See [15] for a survey on the topic.

1.4 Organization

The main result consists of two parts. The first one

(Theorem 1, part (i)) is not difficult, and relies on known

techniques in Extremal Graph Theory dealing with the

problem of Zarankiewicz. These techniques, initiated in

[13], are applied in Section 2 to show that for any bipar-

tite H, any graphG which is ε-far from beingH-free,

contains many copies ofH. Therefore, theε-tester can

find a copy ofH in any suchG with high probability,

without making too many queries.

To prove the second part of Theorem 1 we have to

construct, for any non-bipartite graphH and any small

ε > 0, a graphG which is ε-far from beingH-free and

yet contains relatively few copies ofH. The proof of

this part, described in Section 3, is more difficult, and

applies some properties of graph homomorphisms as well

as certain constructions in additive number theory, based

on (simple variants of) the construction of Behrend [5]

of dense subsets of the firstn integers without three-term

arithmetic progressions.

The final Section 4 contains some concluding remarks

and open problems.

Throughout the paper we assume, whenever this is

needed, that the number of verticesn of the graphG is

sufficiently large. In order to simplify the presentation,

we omit all floor and ceiling signs whenever these are not

crucial.

2 Bipartite subgraphs

A homomorphismof a graphH into a graphG is a

function from the vertex set ofH to that ofG, so that ad-

jacent vertices are mapped into adjacent vertices. Note

that the function does not have to be injective. Thus,

for example, every bipartite graph can be mapped homo-

morphically into an edge. More generally, a graph isk-

colorable if and only if it admits a homomorphism into

a complete graph onk vertices. It is more convenient to

count the number of homomorphisms of a graphH into a

graphG, than to count the number of subgraphs ofG iso-

morphic toH. The next lemma shows that every dense
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graph contains many copies of any bipartite graph. The

proof is based on known techniques, initiated in [13].

Lemma 2.1 For every two integerss ≥ t ≥ 1 and for

every graphG = (V,E) on n vertices with at leastεn2

edges, the number of homomorphisms from a labelled

copy of the complete bipartite graphH = Ks,t into G

is at least(2ε)stns+t.

Proof: Let d1 ≥ d2 ≥ . . . ≥ dn be the degrees of the

vertices ofG, and letd = (
∑n
i=1 di)/n ( ≥ 2εn) de-

note the average degree. The number of homomorphisms

from a labelled starK1,t intoG is

n∑
i=1

dti ≥ nd
t ≥ n(2εn)t = (2ε)tnt+1,

where the first inequality follows from the convexity of

the functionzt. PutN = nt, and classify the homomor-

phisms above intoN classes, according to the ordered set

of images of thet leaves of the star. LetD1, D2, . . . , DN

be the numbers of homomorphisms of theN possible

types. Note that each ordereds-tuple of (not necessar-

ily distinct) homomorphisms of the same type defines a

homomorphism ofH = Ks,t intoG by mapping the star

whose apex is vertex numberi of the first color class of

Ks,t according to the homomorphism numberi in thes-

tuple. It follows that the total number of homomorphisms

of H intoG is at least

N∑
i=1

Ds
i ≥ N((2ε)tn)s = (2ε)stns+t,

where the first inequality follows from the convexity of

the functionzs. This completes the proof.

Corollary 2.1 For every fixedε > 0, and every fixed two

integerss ≥ t ≥ 1, and for any graphG with n vertices

and at leastεn2 edges, the number of subgraphs ofG

isomorphic toH = Ks,t is at least

(1 + o(1))
(
n

s

)(
n

t

)
(2ε)st

if s > t, and at least

(
1
2

+ o(1))
(
n

s

)(
n

t

)
(2ε)st

for s = t, where theo(1) terms tend to0 asn tends to

infinity.

Proof: The number of homomorphisms ofH into G

which are not injective is at mostO(ns+t−1) = o(ns+t),
and the result thus follows from the previous lemma, after

dividing by the number of automorphisms ofH.

It is worth noting that as shown by the random graph

G(n, 2ε) onn labelled vertices in which each pair of ver-

tices, randomly and independently , is an edge with prob-

ability 2ε, the assertion of the last corollary is tight.

Proof of Theorem 1, part (i): LetH be a bipartite graph

with h = s + t vertices (and at least one edge), and sup-

pose it has a bipartition with color classes of sizess and

t. If G = (V,E) is ε-far from beingH-free then it obvi-

ously has at leastεn2 edges. Therefore, by Corollary 2.1,

it has at least

(
1
2

+ o(1))
(
n

s

)(
n

t

)
(2ε)st

copies ofH. Thus, if we choose, randomly and indepen-

dently, say,

10/(2ε)st ≤ 10(
1
2ε

)h
2/4

pairs of disjoint sets of sizess and t, and check if they

form a copy ofKs,t (and hence contain a copy ofH), the

probability to find a copy ofH exceeds2/3. Theε-tester

will thus simply decide thatG is H-free iff it finds no

copy ofH. If G is indeedH-free, then the tester will

surely report that’s the case. If it isε-far from beingH-

free, then the probability the tester reports it is notH-free

exceeds2/3. This completes the proof of Theorem 1, part

(i).

Remark: By the discussion above, every graphG on

sufficiently many vertices with a quadratic number of

edges contains a copy of every fixed bipartite graph.

Therefore there is a very simple and efficienttwo-sided
error algorithm for testingPH , for every fixed bipartite

graphH, based on estimating the number of edges in the

input graphG by sampling. The proof above is needed as

we deal here with one-sided error testers. See also Sec-

tion 4 for more details.
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3 Non-bipartite subgraphs

In this section we apply techniques from additive

number theory, based on the construction of Behrend [5]

of dense sets of integers with no three-term arithmetic

progressions, together with some properties of graph ho-

momorphisms, to prove part (ii) of Theorem 1.

A linear equation with integer coefficients

∑
aixi = 0 (1)

in the unknownsxi is homogeneousif
∑
ai = 0. If X ⊆

M = {1, 2, . . . ,m}, we say thatX has no non-trivial

solution to(1), if wheneverxi ∈ X and
∑
aixi = 0, it

follows that allxi are equal. Thus, for example,X has

no nontrivial solution to the equationx1 − 2x2 + x3 = 0
iff it contains no three-term arithmetic progression.

Lemma 3.1 For every fixed integerr ≥ 2 and every

positive integerm, there exists a subsetX ⊂ M =
{1, 2, . . . ,m} of size at least

|X| ≥ m

e10
√

logm log r

with no non-trivial solution to the equation

x1 + x2 + . . .+ xr = rxr+1. (2)

Proof: Let d be an integer (to be chosen later) and define

X = {
k∑
i=0

xid
i | xi <

d

r
(0 ≤ i ≤ k) ∧

k∑
i=0

x2
i = B},

wherek = blogm/ log dc − 1 andB is chosen to maxi-

mize the cardinality ofX. If x1, . . . xr+1 ∈ X satisfy (2)

and

xj =
k∑
i=0

xi,jd
i, for 1 ≤ j ≤ r + 1

then, for everyi, 0 ≤ i ≤ k

xi,1 + xi,2 + . . .+ xi,r = rxi,r+1.

By the convexity of the functionf(z) = z2 this implies

that

x2
i,1 + x2

i,2 + . . .+ x2
i,r ≥ rx2

i,r+1,

and the inequality is strict unless all(r+ 1) numbersxi,j
are equal. Thus,X has no nontrivial solution to (2). The

size ofX satisfies

|X| ≥ m

d2rk+1(k + 1)d2

r2

Take d = be
√

logm log rc to conclude (with room to

spare) that

|X| ≥ m

e10
√

logm log r
.

We next apply the construction in the last lemma to

construct, for every odd integerr + 1 ≥ 3, a relatively

dense graph consisting of pairwise edge disjoint copies

of Cr+1- the cycle of lengthr + 1, which does not con-

tain too many copies ofCr+1. Let m be an integer,

let X ⊂ {1, 2, . . .m} be a set satisfying the assertion

of Lemma 3.1, and define, for each1 ≤ i ≤ r + 1,

Vi = {1, 2, . . . im} where, with a slight abuse of nota-

tion, we think on the setsVi as being pairwise disjoint.

LetT = T (r,m) be ther+1-partite graph on the classes

of verticesV1, V2, . . . , Vr+1, whose edges are defined as

follows. For eachj, 1 ≤ j ≤ m, and for eachx ∈ X the

verticesj ∈ V1, j + x ∈ V2, j + 2x ∈ V3, . . . , j + rx ∈
Vr+1 form a cycle of lengthr + 1 in this order. There-

fore,{j + ix, j + (i+ 1)x} is an edge betweenVi+1 and

Vi+2 for all 1 ≤ j ≤ m,x ∈ X and0 ≤ i ≤ r − 1,

and{j, j + rx} is an edge betweenV1 andVr+1 for all

1 ≤ j ≤ m,x ∈ X.

Lemma 3.2 For every even integerr ≥ 2, and everym,

the graphT (r,m) defined above has(r+ 1)(r+ 2)m/2
vertices,(r + 1)m|X| ≥ m2

e10
√

logm log r
edges, and pre-

ciselym|X| ( < m2) copies of the cycleCr+1.

Proof: The number of vertices and edges ofT (r,m)
is obviously as stated, as them|X| cycles appearing in

its construction are pairwise edge-disjoint. We thus only

have to show that it does not contain any additional cycles

Cr+1 besides those used in the construction. Note that

the graph obtained fromT by deleting all edges connect-

ing V1 andVr+1 is bipartite, and hence contains no odd

cycles. It is thus easy to check that every copy ofCr+1

in T must contain an edge betweenVi andVi+1 for each
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1 ≤ i ≤ r, and one edge betweenVr+1 andV1. There-

fore, there arej ≤ m and elementsx1, x2, . . . , xr+1 ∈
X, such that the vertices of the cycle arej ∈ V1, j+x1 ∈
V2, j+x1 +x2 ∈ V3, . . . , j+x1 +x2 + . . .+xr ∈ Vr+1

andx1 + x2 + . . . + xr = rxr+1. However, by the def-

inition of X this implies thatx1 = x2 = . . . = xr+1,

implying the desired result.

An s-blow-up of a graphK = (V (K), E(K)) is the

graph obtained fromK by replacing each vertex ofK by

an independent set of sizes, and each edge ofK by a

complete bipartite subgraph whose vertex classes are the

independent sets corresponding to the ends of the edge.

Lemma 3.3 LetH = (V (H), E(H)) be a graph withh

vertices, letK = (V (K), E(K)) be another graph on

at mosth vertices, and letT = (V (T ), E(T )) be ans-

blow-up ofK. Suppose there is a homomorphism

f : V (H) 7→ V (K)

from H to K and supposes ≥ h. LetR ⊂ E(T ) be

a subset of the set of edges ofT , and suppose that each

copy ofH in T contains at least one edge ofR. Then

|R| ≥ |E(T )|
|E(K)||E(H)|

>
|E(T )|
h4

.

Proof: Let g : V (H) 7→ V (T ) be a random injec-

tive mapping obtained by defining, for each vertexv ∈
V (K), the images of the vertices inf−1(v) ∈ V (H)
randomly, in a one-to-one fashion, among alls vertices

of T in the independent set that corresponds to the vertex

v. Obviously, g maps adjacent vertices ofH into ad-

jacent vertices ofT , and hence the image ofg contains

a copy ofH in T . Each edge ofH is mapped to one

of the correspondings2 edges ofT according to a uni-

form distribution, and hence the probability it is mapped

onto a member ofR does not exceed|R|/s2. It follows

that the expected number of edges ofH mapped to mem-

bers ofR is at most |R||E(H)|
s2 , and as, by assumption,

this random variable is always at least1, we conclude

that |R||E(H)|
s2 ≥ 1. The desired result follows, since

s2 = |E(T )|/|E(K)|.

Lemma 3.4 For every fixed, non-bipartite graphH =
(V (H), E(H)) on h vertices, there is a constantc =

c(H) > 0, such that for every positiveε < ε0(H) and

every integern > n0(ε), there is a graphG onn vertices

which isε-far from beingH-free, and yet contains at most

(ε/c)c log (c/ε)nh copies ofH.

Proof: Let r + 1 denote the length of the shortest odd

cycle ofH. LetK be a subgraph ofH, such that there

is a homomorphism ofH toK andK has the minimum

possible number of edges among all subgraphs ofH sat-

isfying this property. Note thatK must contain a cycle of

lengthr + 1, as a homomorphic image of any odd cycle

must contain an odd cycle which is not longer, andK,

which is a subgraph ofH, does not contain odd cycles of

length shorter thanr+1. Letk denote the number of ver-

tices ofK, and let us number its vertices{v1, v2, . . . , vk}
such that the firstr + 1 verticesv1, v2, . . . vr+1 form a

cycle in this order. By the minimality ofK, every ho-

momorphism ofK into itself must be an automorphism,

implying that in any homomorphism ofH into K there

is a cycle of lengthr + 1 in H which is mapped onto the

cycle ofK on the firstr + 1 vertices.

Given a smallε > 0, letm be the largest integer satis-

fying

ε ≤ 1

h8e10
√

logm log h
.

It is easy to check that thism satisfies

m ≥ (
c

ε
)c log(c/ε)

for an appropriatec = c(h) > 0. LetX ⊂ {1, 2, . . . ,m}
be as in Lemma 3.1. We next define a graphF from

K in a way similar to the one described in the para-

graph preceding Lemma 3.2. LetV1, V2, . . . Vk be pair-

wise disjoint sets of vertices, where|Vi| = im and we

denote the vertices ofVi by {1, 2, . . . , im}. For eachj,

1 ≤ j ≤ m, for eachx ∈ X and for each edgevpvq of

K, let j+(p−1)x ∈ Vp be adjacent toj+(q−1)x ∈ Vq.
Note that the induced subgraph ofF on the union of the

first (r+ 1) vertex classes, is precisely the graphT (r,m)
considered in Lemma 3.2. Finally, define

s = b n

|V (F )|
c = b 2n

k(k + 1)m
c

and letG be thes-blow-up ofF (together with some iso-

lated vertices, if needed, to make sure that the number of
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vertices is preciselyn).

SinceG consists of pairwise edge disjoints-blow-ups

of K it follows, by Lemma 3.3, that one has to delete at

least a fraction of1/h4 of its edges to destroy all copies

of H in it. By the definition ofm and the construction

of X this implies, after taking the edge-density ofG into

account, thatG is ε-far from beingH-free.

We next claim that any copy ofH in G must contain

a cycle of lengthr + 1 in the induced subgraph ofG on

the first(r + 1) vertex classes of it. To see this, note that

there is a natural homomorphism ofG ontoK, obtained

by first mappingG homomorphically ontoF (by map-

ping each class ofs vertices into the vertex ofF to which

it corresponds), and then by mapping all vertices ofVi to

vi. This homomorphism maps each copy ofH in G ho-

momorphically intoK, and hence, using the discussion

in the first paragraph of the proof, maps some cycleC of

lengthr + 1 in the copy ofH considered onto the cycle

on the firstr + 1 vertices ofK. The definition of the

homomorphism thus implies the assertion of the claim.

By Lemma 3.2 it follows that the number of such cy-

cles is at mostm2sr+1 ≤ nr+1/m, and this implies that

the total number of copies ofH in G does not exceed

nh/m, implying the desired result.

Proof of Theorem 1, part (ii): LetH be a non-bipartite

graph onh vertices and supposeε > 0. Given a one-sided

tester for testingH-freeness we may assume, without

loss of generality, that it queries about all pairs of a ran-

domly chosen set of vertices (otherwise, as explained in

[2], every time the algorithm queries about a vertex pair

we make it query also about all pairs containing a vertex

of the new pair and a vertex from previous queries. This

may only square the number of queries. See also [11]

for a more detailed proof of this statement.) As the algo-

rithm is a one-sided-error algorithm, it can report thatG

is notH-free only if it finds a copy ofH in it. By Lemma

3.4 there is a graphG on n vertices which isε-far from

beingH-free and yet contains at most(ε/c)c log (c/ε)nh

copies ofH. The expected number of copies ofH inside

a randomly chosen set ofx vertices in such a graph is at

most
(
x
h

)
(ε/c)c log (c/ε), which is far smaller than1 un-

lessx exceeds(c′/ε)c
′ log(c′/ε) for somec′ = c′(H) > 0,

implying the desired result.

4 Concluding remarks and open problems

We have characterized all graphsH for which the

property PH of being H-free has a one-sided tester

whose query complexity is polynomial in(1/ε). The situ-

ation for two-sided error algorithms is more complicated,

and although the characterization for this case may be the

same, this remains open. As mentioned at the end of Sec-

tion 2, for every bipartite graphH there is a trivial (two-

sided-error) algorithm for testingPH which makes only

O(1/ε) queries (and this number can be easily seen to be

optimal, up to the multiplicative constant). Indeed, the

algorithm only has to sample random edges ofG and es-

timate if the total number of edges isΩ(εn2). Since every

graph with a quadratic number of edges contains every

fixed bipartite graph, this indeed provides the required

tester. On the other hand, it is easy to see that any one-

sided tester for testing, say,K1000,1000-freeness must ask

far more thanO(1/ε) queries, as there are graphs which

areε-far from beingK1000,1000-free and yet contain only

O(ε106
n2000) copies ofK1000,1000. The problem of find-

ing nontrivial lower bounds for the best possible query

complexity of two-sided error testers for the propertyPH

for various graphsH seems interesting (and difficult).

It would be interesting to improve the upper bound

for the query complexity of the best one-sided tester for

PH for non-bipartite graphsH. At the moment, the only

known upper bound is a tower type function of1/ε. Even

the special caseH = K3 would be of considerable inter-

est, because of its connection to the problem of the max-

imum possible density of a subset of{1, 2, . . . , n} with

no three-term arithmetic progression. This problem re-

ceived a considerable amount of attention over the years,

see [16], [12], [19], [7]. A proof that any graph onn

vertices which isε-far from being triangle-free contains

at least, say,2−c/ε
2
n3 triangles for some fixedc > 0

would suffice to improve the best known bound for the

arithmetic progression problem.

Another intriguing problem is that of estimating the

best possible (one-sided and two-sided) query complex-
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ity of the propertyP ∗H of not containing anyinduced
copy of a fixed graphH. We can show that for certain

fixed graphsH (like a star with two leaves) there are one-

sided testers forP ∗H whose query complexity is polyno-

mial in 1/ε, whereas for some other graphsH (like a star

with three leaves) there are no such efficient testers. It

would be interesting to study this problem further.
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