Testing subgraphs in large graphs
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Abstract tices are adjacent or not, distinguishes with probability at
least, say,% between the case @f satisfying P and the
Let H be a fixed graph witth vertices, letG' be a  case ofG beinge-far from satisfyingP. Such a tester is
graph onn vertices and suppose that at least’ edges  a one-sidedester if whenG satisfiesP the tester deter-
have to be deleted from it to makefft-free. Itis known  mines that this is the case (with probabillly Obviously,
that in this case’ contains at leasy (¢, H)n" copies of  the probability appearing above can be replaced by any
H. We show that the largest possible functita, H) is  constant smaller than by repeating the algorithm an ap-
polynomial ine if and only if  is bipartite. This implies  propriate number of times.
that there is a one-sided error property tester for check-  The propertyP is calledstrongly-testablgif for every
ing H-freeness, whose query complexity is polynomial in fixed ¢ > 0 there exists a one-sideetester forP? whose
1/e,ifand only if H is bipartite. total number of queries is bounded only by a function of
€, which is independent of the size of the input graph.

1 Introduction 1.2 The main result

1.1 Preliminaries For a fixed graphH (with at least one edge), léty
denote the property of beinf-free. Therefore(z satis-

All graphs considered here are finite, undirected, and fies p;; iff it contains no (not necessarily induced) sub-
have neither loops nor parallel edges. graph isomorphic td. It is known that for each fixed

Let P be a property of graphs, that is, a family of graph H, the propertyPy; is strongly-testable. This is
graphs closed under graph isomorphism. A gréphith proved (implicitly) in [1], see also [2]. The proof in [1]
n vertices ise-far from satisfyingP if no graphG with relies on the regularity lemma of Szeradr [18], and
the same vertex set, which differs fragin nomorethan  thys provides a one-sidestester forP; whose query-
en® places, (i.e., can be constructed fréiby adding  complexly is bounded by a function which, though in-
and removing no more tham?* edges), satisfie®. An dependent of the size of the input graph has a huge
e-testerfor P is a randomized algorithm which, given dependency or and the size ofd. For some graphs
the quantityn and the ability to make queries whether a 7, however, there are more efficient testers; for exam-
desired pair of vertices of an input graphwith n ver-  ple if I is a single edge, it is easy to see that there is
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Theorem 1 Let H be fixed graph ot vertices.

(i) If H is bipartite, then for every > 0 there is a one-
sidede-tester for Py whose query-complexity (and run-
ning time) are bounded by
1
2¢
(i) If H is non-bipartite, then there exists a constant
¢(H) > 0 such that the query-complexity (and running
time) of any one-sidegttester forPy is at least

(6
Thus, for example, for all sufficiently smadl > 0 and
all sufficiently largen, it is much easier to test if an input

graphG onn vertices isK1¢¢,100-free, than to test if it is,
say,Cs-free.

O(R?* (o)1),

C

)clog(c/e) )

1.3 Related work

The general notion of property testing was first for-
mulated by Rubinfeld and Sudan [17], who were mo-
tivated mainly by its connection to the study of pro-
gram checking. The study of the notion of testability
for combinatorial objects, and mainly for labeled graphs,
was introduced by Goldreich, Goldwasser and Ron [10],

who showed that all graph properties describable by the

existence of a partition of a certain type, and among
them k-colorability, have efficient testers. The fact that
k-colorability is strongly testable is, in fact, implicitly
proven already in [6] fork = 2 and in [14] (see also
[1]) for generalk, using the Regularity Lemma of Sze-
metedi [18], but in the context of property testing it is
first studied in [10], where far more efficient algorithms
are described. These have been further improved in [4].
In [2] it is shown that every first order graph property
without a quantifier alternation of typesr3” has testers

1.4 Organization

The main result consists of two parts. The first one
(Theorem 1, part (i) is not difficult, and relies on known
techniques in Extremal Graph Theory dealing with the
problem of Zarankiewicz. These techniques, initiated in
[13], are applied in Section 2 to show that for any bipar-
tite H, any graphG which is e-far from being H-free,
contains many copies dff. Therefore, the-tester can
find a copy ofH in any suchG with high probability,
without making too many queries.

To prove the second part of Theorem 1 we have to
construct, for any non-bipartite gragth and any small
e > 0, a graphG which is e-far from beingH-free and
yet contains relatively few copies df. The proof of
this part, described in Section 3, is more difficult, and
applies some properties of graph homomorphisms as well
as certain constructions in additive number theory, based
on (simple variants of) the construction of Behrend [5]
of dense subsets of the firsintegers without three-term
arithmetic progressions.

The final Section 4 contains some concluding remarks
and open problems.

Throughout the paper we assume, whenever this is
needed, that the number of vertice®f the graphG is
sufficiently large. In order to simplify the presentation,
we omit all floor and ceiling signs whenever these are not
crucial.

2 Bipartite subgraphs

A homomorphisnof a graphH into a graphG is a
function from the vertex set dff to that ofG, so that ad-

jacent vertices are mapped into adjacent vertices. Note

whose query complexity is independent of the size of the that the function does not have to be injective. Thus,

input graph (but has a huge dependencecpnThese
properties contain the propertié$; whose query com-
plexity is studied here.

The notion of property testing has been investigated
in other contexts as well, including the context of regular
languages, [3], functions [9] , hypergraphs [8] and other
contexts. See [15] for a survey on the topic.

for example, every bipartite graph can be mapped homo-

morphically into an edge. More generally, a grapli-s
colorable if and only if it admits a homomorphism into
a complete graph oh vertices. It is more convenient to
count the number of homomorphisms of a grapimto a
graphG, than to count the number of subgraphgko-
morphic toH. The next lemma shows that every dense



graph contains many copies of any bipartite graph. Thefor s = ¢, where theo(1) terms tend td) asn tends to

proof is based on known techniques, initiated in [13].

Lemma 2.1 For every two integers > ¢ > 1 and for
every graphG = (V, E) onn vertices with at leastn?

edges, the number of homomorphisms from a labelled

copy of the complete bipartite grapf = K, into G
is at least(2¢)5tn° T,

Proof: Letd; > dy > ... > d, be the degrees of the
vertices ofG, and letd = (3", d;)/n (> 2en) de-

infinity.

Proof: The number of homomorphisms &f into G
which are not injective is at mo&(nstt=1) = o(n*t),
and the result thus follows from the previous lemma, after
dividing by the number of automorphisms &f. ]

It is worth noting that as shown by the random graph
G(n,2¢) onn labelled vertices in which each pair of ver-
tices, randomly and independently , is an edge with prob-

note the average degree. The number of homomorphismgWbility 2¢, the assertion of the last corollary is tight.

from a labelled staf(; , into G is

Zdﬁ >nd > n(2en)t = (2¢)'n'*1,

i=1
where the first inequality follows from the convexity of
the functionzt. PutN = n?, and classify the homomor-
phisms above intdv classes, according to the ordered set
of images of the leaves of the star. LdD, Do, ..., Dy
be the numbers of homomorphisms of the possible
types. Note that each orderaduple of (not necessar-

ily distinct) homomorphisms of the same type defines a

homomorphism off = K, into G by mapping the star
whose apex is vertex numbepf the first color class of
K, according to the homomorphism numben the s-
tuple. It follows that the total number of homomorphisms
of H into G is at least

N

> D; = N((20)'n) = (260",

=1
where the first inequality follows from the convexity of
the functionz®. This completes the proof. ]

Corollary 2.1 For every fixed > 0, and every fixed two
integerss > t > 1, and for any graphG with n vertices

and at leasten? edges, the number of subgraphs@f

isomorphic toH = K , is at least

e ow)(2) (7)o

if s > ¢, and at least

(5 +o)(7) () o

Proof of Theorem 1, part (i): Let H be a bipartite graph
with h = s + ¢ vertices (and at least one edge), and sup-
pose it has a bipartition with color classes of sizemd

t. If G = (V, E) is e-far from beingH -free then it obvi-
ously has at least? edges. Therefore, by Corollary 2.1,
it has at least

5 +o(7) (7)o

copies ofH. Thus, if we choose, randomly and indepen-
dently, say,

1
10/(2€)St S 10(2_)’12/4
€

pairs of disjoint sets of sizesandt, and check if they
form a copy ofK ; (and hence contain a copy £f), the
probability to find a copy o exceed®/3. Thee-tester

will thus simply decide that? is H-free iff it finds no
copy of H. If G is indeedH-free, then the tester will
surely report that’s the case. If it ésfar from beingH -
free, then the probability the tester reports it is Hofree
exceed®/3. This completes the proof of Theorem 1, part
(). |
Remark: By the discussion above, every graghon
sufficiently many vertices with a quadratic number of
edges contains a copy of every fixed bipartite graph.
Therefore there is a very simple and efficiéwb-sided
error algorithm for testingPy, for every fixed bipartite
graphH, based on estimating the number of edges in the
input graphGG by sampling. The proof above is needed as
we deal here with one-sided error testers. See also Sec-
tion 4 for more details.



3 Non-bipartite subgraphs

In this section we apply techniques from additive

number theory, based on the construction of Behrend [5]
of dense sets of integers with no three-term arithmetic
progressions, together with some properties of graph ho-

momorphisms, to prove part (ii) of Theorem 1.
A linear equation with integer coefficients

Zaixi =0 (1)

in the unknowng:; is homogeneou$ > a; = 0. If X C
M = {1,2,...,m}, we say thatX has no non-trivial
solution to(1), if wheneverz; € X and)_ a,xz; = 0, it
follows that allxz; are equal. Thus, for examplé&, has
no nontrivial solution to the equatian — 2z, + 23 =0
iff it contains no three-term arithmetic progression.

Lemma 3.1 For every fixed integer > 2 and every
positive integerm, there exists a subset C M
{1,2,...,m} of size at least

m

61()\ /log mlogr

with no non-trivial solution to the equation

| X| >

)

T1+x2+ ...+ X =TTr4q.

Proof: Letd be an integer (to be chosen later) and define

k k

: ; d

=0 i=0

B},

wherek = |logm/logd| — 1 and B is chosen to maxi-
mize the cardinality ofX. If z1, ...z, € X satisfy (2)
and

k
Tj = Z-Ti,jdi; for 1 S] <r+1
=0
then, foreveryi, 0 <i <k
T 1 + £i,2 4+ ...+ i =TT r41-

By the convexity of the functiorf(z) = 2?2 this implies
that
x?’l + x?a +. 42 > rm?wrl,

,r =

and the inequality is strict unless &l + 1) numberse; ;
are equal. ThusX has no nontrivial solution to (2). The
size of X satisfies

m

Xl>——————
X1 = d2rk(k + 1) %

Take d = [eV!°e™Ilo¢7| to conclude (with room to
spare) that

m
6lOy/lognfL log r

We next apply the construction in the last lemma to
construct, for every odd integer+ 1 > 3, a relatively
dense graph consisting of pairwise edge disjoint copies
of C,41- the cycle of lengthr + 1, which does not con-
tain too many copies of’.,. Let m be an integer,
let X C {1,2,...m} be a set satisfying the assertion
of Lemma 3.1, and define, for eadh< i < r + 1,

V. = {1,2,...9m} where, with a slight abuse of nota-
tion, we think on the set¥; as being pairwise disjoint.
LetT = T'(r, m) be ther 4 1-partite graph on the classes
of verticesVy, Vs, ..., V.11, whose edges are defined as
follows. For eacly, 1 < j < m, and for each: € X the
verticesj e Vi,j+xz € Vo, j+2x € Vs,...,j+rx €
V,4+1 form a cycle of length- + 1 in this order. There-
fore,{j +ix,j+ (i + 1)z} is an edge betweeli_ ; and
Vieoforalll < j < m,z € Xand0 < i < r —1,
and{j,j + rx} is an edge betweeW, andV,, for all
1<j<m,ze X.

x| > m

Lemma 3.2 For every even integer > 2, and everymn,
the graphT'(r, m) defined above has + 1)(r + 2)m/2
vertices, (r + 1)m|X| > ewlﬁ edges, and pre-
ciselym|X| ( < m?) copies of the cycl€), ;.

Proof: The number of vertices and edges Bfr, m)

is obviously as stated, as the|X| cycles appearing in

its construction are pairwise edge-disjoint. We thus only
have to show that it does not contain any additional cycles
C-+1 besides those used in the construction. Note that
the graph obtained frorf' by deleting all edges connect-
ing V1 andV,., is bipartite, and hence contains no odd
cycles. It is thus easy to check that every copy’pf ;

in " must contain an edge betwe®nandV;_; for each



1 <4 < r, and one edge betweén ; andV;. There-
fore, there arg < m and elementsy, zs,..., 241 €
X, such that the vertices of the cycle a@re V;, j+x; €
Vo,j+x14+x0 € Vo, oy jtar+as+...+2, € Vg
andz; + z2 + ... + x, = rz,41. However, by the def-
inition of X this implies thatr; = z2 = ... = %41,
implying the desired result. |
An s-blow-up of a graphK’ = (V(K), E(K)) is the
graph obtained froni” by replacing each vertex df by
an independent set of size and each edge ok by a

c(H) > 0, such that for every positive < ¢,(H) and
every integen > ny(¢), there is a graph onn vertices
which ise-far from beingH -free, and yet contains at most
(¢/c)clo8 (c/Inh copies ofH.

Proof. Letr + 1 denote the length of the shortest odd
cycle of H. Let K be a subgraph off, such that there
is @ homomorphism off to K and K has the minimum
possible number of edges among all subgraphd eht-
isfying this property. Note that” must contain a cycle of
lengthr + 1, as a homomorphic image of any odd cycle

complete bipartite subgraph whose vertex classes are the

independent sets corresponding to the ends of the edge.

Lemma 3.3 LetH = (V(H), E(H)) be a graph with
vertices, letk = (V(K), E(K)) be another graph on
at mosth vertices, and lefl” = (V(T'), E(T)) be ans-
blow-up of K. Suppose there is a homomorphism

f:V(H)~ V(K)

from H to K and suppose > h. LetR C E(T) be
a subset of the set of edgesiafand suppose that each
copy ofH in T contains at least one edge Bf Then

|E(T)] [E(T)]
R| >
= EoE@] ~ W
Proof: Letg : V(H) — V(T) be a random injec-

tive mapping obtained by defining, for each veriex
V(K), the images of the vertices ifir*(v) € V(H)
randomly, in a one-to-one fashion, among allertices

must contain an odd cycle which is not longer, asid
which is a subgraph aff, does not contain odd cycles of
length shorter than+ 1. Let k£ denote the number of ver-
tices of K, and let us number its verticés;, vo, ..., vi }
such that the first + 1 verticesvy, v, ... v,.41 form a
cycle in this order. By the minimality of<, every ho-
momorphism ofK into itself must be an automorphism,
implying that in any homomorphism df into K there
is a cycle of lengthr + 1 in H which is mapped onto the
cycle of K on the firstr 4 1 vertices.

Given a smalk > 0, letm be the largest integer satis-
fying

1

810y logmlogh
It is easy to check that this satisfies

c

€<

m > (

clog(c/e€)
)

for an appropriate = c(h) > 0. LetX C {1,2,...,m}

of T'in the independent set that corresponds to the verteXpe as in Lemma 3.1. We next define a graphrom

v. Obviously, g maps adjacent vertices df into ad-
jacent vertices ofl’, and hence the image gfcontains

a copy ofH in T. Each edge off is mapped to one
of the corresponding? edges ofT" according to a uni-
form distribution, and hence the probability it is mapped
onto a member of? does not exceef?|/s?. It follows
that the expected number of edgedbmapped to mem-
bers of R is at mostm”f%, and as, by assumption,
this random variable is always at leastwe conclude
that ‘R”fﬁ > 1. The desired result follows, since
s2 = |E(D)|/|E(K)]. m
Lemma 3.4 For every fixed, non-bipartite grapfl =
(V(H),E(H)) on h vertices, there is a constamt =

K in a way similar to the one described in the para-
graph preceding Lemma 3.2. L&, V45,...V, be pair-
wise disjoint sets of vertices, whe(®;| = im and we
denote the vertices df; by {1,2,...,im}. For eachy,

1 < j < m, foreachr € X and for each edge,v, of
K,letj+(p—1)z € V, be adjacenttg+(¢—1)x € V.
Note that the induced subgraph Bfon the union of the
first (r 4+ 1) vertex classes, is precisely the graptr, m)
considered in Lemma 3.2. Finally, define

n 2n

L|V(F)\J Lk(k + 1)mJ
and letG be thes-blow-up of ' (together with some iso-
lated vertices, if needed, to make sure that the number of

S =



vertices is precisely).

SinceG consists of pairwise edge disjoissblow-ups
of K it follows, by Lemma 3.3, that one has to delete at
least a fraction ofl /h* of its edges to destroy all copies
of H in it. By the definition ofm and the construction
of X this implies, after taking the edge-density@into
account, tha@ is e-far from beingH -free.

We next claim that any copy dff in G must contain
a cycle of length- 4 1 in the induced subgraph ¢f on
the first(r + 1) vertex classes of it. To see this, note that
there is a natural homomorphism Gfonto K, obtained
by first mappingG homomorphically onta? (by map-
ping each class of vertices into the vertex af to which
it corresponds), and then by mapping all vertice¥ato
v;. This homomorphism maps each copyréfin G ho-
momorphically intoX, and hence, using the discussion
in the first paragraph of the proof, maps some cyclef
lengthr 4 1 in the copy ofH considered onto the cycle
on the firstr + 1 vertices of K. The definition of the
homomorphism thus implies the assertion of the claim.

By Lemma 3.2 it follows that the number of such cy-
cles is at mostn?s™ ! < n"*1/m, and this implies that
the total number of copies dff in G does not exceed
n" /m, implying the desired resuilt. [ |
Proof of Theorem 1, part (ii): Let H be a non-bipartite
graph o vertices and suppose> 0. Given a one-sided
tester for testingH-freeness we may assume, without

loss of generality, that it queries about all pairs of a ran-

implying the desired result. ]

4 Concluding remarks and open problems

We have characterized all grapltg for which the
property Py of being H-free has a one-sided tester
whose query complexity is polynomial {ii /¢). The situ-
ation for two-sided error algorithms is more complicated,
and although the characterization for this case may be the
same, this remains open. As mentioned at the end of Sec-
tion 2, for every bipartite grapi there is a trivial (two-
sided-error) algorithm for testingy which makes only
O(1/¢) queries (and this number can be easily seen to be
optimal, up to the multiplicative constant). Indeed, the
algorithm only has to sample random edges;adind es-
timate if the total number of edges(en?). Since every
graph with a quadratic number of edges contains every
fixed bipartite graph, this indeed provides the required
tester. On the other hand, it is easy to see that any one-
sided tester for testing, sako00,1000-freeness must ask
far more tharO(1/¢€) queries, as there are graphs which
aree-far from beingKo00,1000-free and yet contain only
O(elOGnQOOO) copies ofK 1000, 1000 The problem of find-
ing nontrivial lower bounds for the best possible query
complexity of two-sided error testers for the properly
for various graph4i seems interesting (and difficult).

It would be interesting to improve the upper bound
for the query complexity of the best one-sided tester for

domly chosen set of vertices (otherwise, as explained in Py for non-bipartite graph#/. At the moment, the only
[2], every time the algorithm queries about a vertex pair known upper bound is a tower type functionigk. Even

we make it query also about all pairs containing a vertex the special cas&/ = K3 would be of considerable inter-

of the new pair and a vertex from previous queries. This est, because of its connection to the problem of the max-

may only square the number of queries. See also [11]imum possible density of a subset £f, 2, ..
for a more detailed proof of this statement.) As the algo-

rithm is a one-sided-error algorithm, it can report tbat
is not H-free only if it finds a copy of{ in it. By Lemma
3.4 there is a grapti¥ onn vertices which is-far from
being H-free and yet contains at mo&t/c)c'o8 (¢/€)ph
copies ofH. The expected number of copiesifinside

a randomly chosen set afvertices in such a graph is at
most (7) (e/c)¢'°¢ (¢/<), which is far smaller thar un-
lessz exceedgc /)¢ 1°&(¢'/<) for somed’ = ¢/(H) > 0,

.,n} with
no three-term arithmetic progression. This problem re-
ceived a considerable amount of attention over the years,
see [16], [12], [19], [7]. A proof that any graph an
vertices which is-far from being triangle-free contains
at least, say,‘Z*C/gn3 triangles for some fixed > 0
would suffice to improve the best known bound for the
arithmetic progression problem.

Another intriguing problem is that of estimating the
best possible (one-sided and two-sided) query complex-



ity of the propertyP;; of not containing anyinduced
copy of a fixed graplH. We can show that for certain
fixed graphdd (like a star with two leaves) there are one-
sided testers foP;; whose query complexity is polyno-
mial in 1/¢, whereas for some other grapHs(like a star
with three leaves) there are no such efficient testers. It [9] A. Frieze and R. Kannan, Quick approximation
would be interesting to study this problem further.
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