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Abstract

Let H be a fixed graph on h vertices. We say that a graph G is induced H-free if it does not

contain any induced copy of H. Let G be a graph on n vertices and suppose that at least εn2

edges have to be added to or removed from it in order to make it induced H-free. It was shown

in [5] that in this case G contains at least f(ε, h)nh induced copies of H, where 1/f(ε, h) is an

extremely fast growing function in 1/ε, that is independent of n. As a consequence it follows that

for every H, testing induced H-freeness with one-sided error has query complexity independent

of n. A natural question, raised by the first author in [1], is to decide for which graphs H the

function 1/f(ε,H) can be bounded from above by a polynomial in 1/ε. An equivalent question

is, for which graphs H, can one design a one-sided error property tester for testing induced H-

freeness, whose query complexity is polynomial in 1/ε. We answer this question by showing that,

quite surprisingly, for any graph other than the paths of lengths 1,2 and 3, the cycle of length

4, and their complements, no such property tester exists. We further show that a similar result

also applies to the case of directed graphs, thus answering a question raised by the authors in [9].

We finally show that the same results hold even in the case of two-sided error property testers.

The proofs combine combinatorial, graph theoretic and probabilistic arguments with results from

additive number theory.

1 Preliminaries

1.1 Definitions

All graphs and directed graphs (=digraphs) considered here are finite and have no loops and no

parallel edges. Let P be a property of graphs, that is, a family of graphs closed under isomorphism.
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A graph G with n vertices is ε-far from satisfying P if no graph G̃ with the same vertex set, which

differs from G in at most εn2 places, (i.e., can be constructed from G by adding and removing at

most εn2 edges), satisfies P . An ε-tester, or property tester, for P is a randomized algorithm which,

given the quantity n and the ability to make queries whether a desired pair of vertices of an input

graph G with n vertices are adjacent or not, distinguishes with probability at least 2
3 between the

case of G satisfying P and the case of G being ε-far from satisfying P . Such an ε-tester is a one-sided

ε-tester if when G satisfies P the ε-tester determines that this is the case (with probability 1). The

ε-tester is a two-sided ε-tester if it may determine that G does not satisfy P even if G satisfies it.

Obviously, the probability 2
3 appearing above can be replaced by any constant smaller than 1, by

repeating the algorithm an appropriate number of times.

The property P is called strongly-testable, if for every fixed ε > 0 there exists a one-sided ε-tester

for P whose total number of queries is bounded only by a function of ε, which is independent of the

size of the input graph. This means that the running time of the algorithm is also bounded by a

function of ε only, and is independent of the input size.

In what follows we denote by P2, P3 and P4 the paths of lengths 1,2 and 3 (which have 2,3 and

4 vertices respectively), and by C4, the cycle of length 4. We measure query-complexity by the

number of vertices sampled, assuming we always examine all edges spanned by them. For a fixed

graph H, let P ∗
H denote the property of being induced H-free. Therefore, G satisfies P ∗

H if and only

if it contains no induced subgraph isomorphic to H. We define PH to be the property of being (not

necessarily induced) H-free. Therefore, G satisfies PH if and only if it contains no copy of H. Thus,

for example, for H = C4, any clique of size at least 4 satisfies P ∗
H , but does not satisfy PH .

1.2 Related work

The general notion of property testing was first formulated by Rubinfeld and Sudan [29], who were

motivated mainly by its connection to the study of program checking. The study of the notion of

testability for combinatorial objects, and mainly for labelled graphs, was introduced by Goldreich,

Goldwasser and Ron [23], who showed that all graph properties describable by the existence of a

partition of a certain type, and among them k-colorability, have efficient ε-testers. The fact that

k-colorability is strongly testable is, in fact, implicitly proven already in [12] for k = 2 and in [27] (see

also [2]) for general k, using the Regularity Lemma of Szemerédi [30], but in the context of property

testing it is first studied in [23], where far more efficient algorithms are described. These have been

further improved in [7]. The notion of property testing has been investigated in other contexts as

well, including the context of regular languages, [6], functions [21], [8], [3], [19], [20], computational

geometry [16], [4], graph and hypergraph coloring [15], [8], [11] and other contexts. See [22], [28] and

[18] for surveys on the topic.
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2 The Main Results

2.1 Background

In [5] it is shown that every first order graph property without a quantifier alternation of type “∀∃”

has ε-testers whose query complexity is independent of the size of the input graph. It follows from

the main result of [5] that for every fixed H, the property P ∗
H is strongly testable. Although the

query complexity is independent of n, it has a huge dependency on 1/ε (the third function in the

Ackerman Hierarchy, which is a tower of towers of exponents). In [2], it was shown, using Szemerédi’s

Regularity Lemma, that for every fixed H, the property PH is also strongly testable. This result

was generalized to the case of directed graphs (=digraphs) in [9], by first proving a directed version

of the regularity lemma. In the above two cases the query complexity is also huge, a tower of 2’s

of height polynomial in 1/ε. For some graphs, however, there are obviously much more efficient

property testers than the ones guaranteed by the above general results. For example for the case of

H being an edge, there is obviously a one-sided error property tester for both PH and P ∗
H , whose

query complexity is Θ(1/ε). A natural question is therefore, to decide for which graphs H can one

design a one-sided error property tester for PH or P ∗
H , whose query complexity would be bounded

by a polynomial of 1/ε. We call a property P easily testable if there is a one-sided error property

tester for P whose query complexity is polynomial in 1/ε.

In [1] it is shown that for an undirected graph H, PH is easily testable if and only if H is bipartite.

The authors of [9] obtain a precise characterization of all digraphs H for which PH is easily testable.

As is evident from this characterization, recognizing these digraphs is rather difficult. Indeed, it is

shown in [9] that deciding whether for a directed graphs H, PH is easily testable, is NP -complete.

The next natural steps, suggested in [1] and [9], are therefore to give characterizations of the graphs

and digraphs H for which P ∗
H is easily testable. In this paper we give such characterizations.

2.2 The new results

Our first new result here is the following:

Theorem 1 Let H be a fixed undirected graph other than P2, P3, P4, C4 and their complements.

Then, there exists a constant c = c(H) > 0 such that the query-complexity of any one-sided error

ε-tester for P ∗
H is at least

(

1

ε

)c log(1/ε)

.

As P2-freeness can obviously be tested with query complexity Θ(1/ε), the following theorem,

together with the above theorem, supplies a complete characterization for the graphs H for which

P ∗
H is easily testable, except for the case of P4, C4 and its complement (the complement of P4 is also

P4).
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Theorem 2 There is a one-sided error property tester for testing P3-freeness, with query complexity

O(log(1/ε)/ε).

We also prove the following theorem, which is analogous to Theorem 1, only with respect to

directed graphs.

Theorem 3 Let H be a fixed directed graph on at least 5 vertices. Then, there exists a constant

c = c(H) > 0 such that the query-complexity of any one-sided error ε-tester for P ∗
H is at least

(

1

ε

)c log(1/ε)

.

We can actually prove a super-polynomial (in 1/ε) lower bound for the query complexity of P ∗
H

for some of the directed graphs H on at most 4 vertices as well.

We finally show that Theorems 1 and 3 can also be extended to the cases of two-sided error

property testers.

Theorem 4 All the lower bounds of Theorems 1 and 3 hold for two-sided error property testers as

well.

2.3 Organization

The (short) proof of Theorem 2 appears in section 3. The lower bound proved by Theorem 1 is

established in section 4. To prove this result we have to construct, for any graph H (other than the

ones mentioned in the theorem) and any small ε > 0, a graph G which is ε-far from being induced

H-free and yet contains relatively few induced copies of H. The proof of this part, described in

Section 4, uses the approaches of [1] and [9], but requires several additional ideas. It applies certain

constructions in additive number theory, based on (simple variants of) the construction of Behrend

[10] of dense subsets of the first n integers without three-term arithmetic progressions. The proof of

Theorem 3 also appears in section 4. In Section 5 we sketch the proof of Theorem 4 which extends

the lower bounds of Theorems 1 and 3 to the more general cases of two-sided error property-testers.

Due to space limitations, the complete proof appears in appendix 7.2. The final section, Section 6,

contains some concluding remarks and open problems.

Throughout this extended abstract we assume, whenever this is needed, that the number of

vertices n of the graphs or digraph G is sufficiently large, and that the error parameter ε is sufficiently

small. In order to simplify the presentation, we omit all floor and ceiling signs whenever these are not

crucial, and make no attempt to optimize the absolute constants. In order to make the presentation

simple, from this part on, when we refer to a copy of H in G, we always refer to an induced copy

of H in G. Also, when we speak of the property of being H-free, we mean the property of being

induced H-free.
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3 Easily Testable Graphs

In this section we describe the proof of Theorem 2. The algorithm simply picks a random subset

of O(log(1/ε)/ε) vertices, and checks if there is an induced copy of P3 spanned by the set. If G is

P3-free, the algorithm clearly always answers correctly. We therefore only have to show that if G is

ε-far from being P3-free, the algorithm finds an induced copy of P3 with probability at least 2/3. In

the proof we use the well known observation that a graph G is P3-free, if and only if it is a disjoint

union of cliques.

Proof of Theorem 2 Let T denote the set of vertices of G whose degree is at least ε
4n, and let

W be any set of vertices that contains all the vertices of T but at most ε
4n of them. We claim that

if G is ε-far from being P3-free, then the induced subgraph of G on W is at least ε
2 -far from being

P3-free. Assume, this is not the case. Then we can make less than ε
2n2 changes within W and get

a graph that contains no induced copy of P3 within W . Finally, we remove all the edges that touch

a vertex not in T ∪ W (there are at most ε
4n2 such edges), and any edge that touches a vertex in

T \ W (there are at most ε
4n2 such edges), and thus get a graph that is P3-free. As altogether we

make less than εn2 changes in G, this contradicts the assumption that G is ε-far from being T -free.

Let A be a randomly chosen subset of size 8 log(1/ε)/ε, and consider a vertex v ∈ T . The

probability that A does not contain any neighbor of v is at most (1 − ε
4)8 log(1/ε)/ε ≤ ε2 ≤ ε/32. As

T is of size at most n, it follows that the expected number of vertices that belong to T and have no

neighbor in A, is at most ε
32n. By Markov’s inequality, with probability at least 7/8, the number of

these vertices is at most ε
4n.

Assume we were successful in choosing a set A such that all but at most ε
4n members of T have a

neighbor in A. If A contains an induced copy of P3 we are done, otherwise there is a unique partition

of A into cliques C1, . . . , Cr. If a vertex v /∈ A has a neighbor u ∈ A that belongs to Ci, it follows

that if G can be partitioned into cliques, D1, . . . ,Dk, where for 1 ≤ i ≤ r, Ci ⊆ Di, then v must

belong to Di. For each vertex v /∈ A that has a neighbor u ∈ Ci ⊆ A, assign v the number i. If u

has neighbors in A that belong to different cliques, then pick any of these numbers. This numbering

induces a partition of all the vertices of G that have a neighbor in A into r cliques. As G is by

assumption ε-far from being P3-free it follows from the discussion at the beginning of the proof, that

there are at least ε
2n2 pairs of vertices u, v ∈ V (G) \ A, such that either u and v should belong to

the same clique, but u and v are not connected, or u and v should belong to different cliques, but u

and v are connected. It follows that choosing a set B of 6/ε randomly chosen pairs of vertices finds

such a violating pair with probability at least 7
8 . The probability of A failing to satisfy the required

property is at most 1
8 , and the same applies also for B. It follows that with probability at least 3

4

the induced subgraph on A∪B is not P3-free. As |A|+ |B| = O(log(1/ε)/ε) the proof is complete.
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4 Hard to Test Graphs and Digraphs

In this section we give the proofs of Theorems 1 and 3. The approach uses a construction in additive

number theory, which uses the technique of Behrend [10], used to construct dense sets of integers

with no three-term arithmetic progressions. A set X ⊆ M = {1, 2, . . . ,m} is called h-sum-free if

for every three positive integers a, b, c ≤ h such that a + b = c, if x, y, z ∈ X satisfy the equation

ax + by = cz then x = y = z. That is, whenever a + b = c, and a, b, c ≤ h, the only solution to the

equation that uses values from X, is one of the |X| trivial solutions. We need the following lemma,

whose proof appears in Appendix 7.1 due to space limitations:

Lemma 4.1 For every positive integer m, there exists an h-sum-free subset X ⊂ M = {1, 2, . . . ,m}
of size at least

|X| ≥ m

e10
√

log h log m
(1)

We proceed with the proofs of Theorems 1 and 3. It is convenient to start the discussion with

directed graphs and then obtain the results for undirected graphs as a special case, (as they can be

viewed as symmetric digraphs).

An s-blow-up of a digraph H = (V (H), E(H)) on h vertices is the digraph obtained from H

by replacing each vertex vi ∈ V (H) by an independent set Ii of size s, and each directed edge

(vi, vj) ∈ E(H), by a complete bipartite directed subgraph whose vertex classes are Ii and Ij , and

whose edges are directed from Ii to Ij. Note that if we take an s-blow-up of H, we get a graph on

sh vertices that contains at least sh induced copies of H, where each vertex of the copy belongs to

a different blow-up of a vertex from H (simply pick one vertex from each independent set). We call

these copies the special copies of the blow-up. As each pair of vertices in the blow-up is contained

in at most sh−2 special copies of H, it follows that adding or removing an edge from the graph can

destroy at most sh−2 copies of H. It follows that one must add or remove at least sh/sh−2 = s2

edges from the blow-up in order to destroy all its special copies of H.

For the proofs of Theorems 1 and 3, we will need the following lemma, in which a triangle in a

digraph is simply three vertices u, v,w, such that there is at least one edge between each of the three

pairs.

Lemma 4.2 For every fixed directed graph H = (V (H), E(H)) on h vertices, that contains at least

one triangle, there is a constant c = c(H) > 0, such that for every positive ε < ε0(H) and every

integer n > n0(ε), there is a digraph G on n vertices which is ε-far from being induced H-free, and

yet contains at most εc log (1/ε)nh induced copies of H.

Proof: Given a small ε > 0, let m be the largest integer satisfying

ε ≤ 1

h4e10
√

log m log h
. (2)
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It is easy to check that this m satisfies

m ≥
(

1

ε

)c log(1/ε)

(3)

for an appropriate c = c(h) > 0. Let X ⊂ {1, 2, . . . ,m} be as in Lemma 4.1. Call the vertices of H

v1, . . . , vh, and let V1, V2, . . . Vh be pairwise disjoint sets of vertices, where |Vi| = im and we denote

the vertices of Vi by {1, 2, . . . , im}, where, with a slight abuse of notation, we think on the sets Vi as

being pairwise disjoint. For each j, 1 ≤ j ≤ m, for each x ∈ X and for each directed edge (vp, vq) of

H, let j +(p− 1)x ∈ Vp have an outgoing edge pointed to j +(q − 1)x ∈ Vq. In other words, for each

1 ≤ j ≤ m and x ∈ X, the graph F contains a copy of H, denoted by Hj,x, which is spanned by the

vertices j, j + x, j + 2x, . . . , j + (h − 1)x. Note that each of these m|X| copies of H is spanned by a

set of vertices that forms an arithmetic progression whose first element is j and whose difference is

x. A crucial implication is that F contains m|X| copies of H, such that each pair of copies have at

most one common vertex. In what follows we call these m|X| copies of H in F , the essential copies

of H in F . Finally, define

s =

⌊

n

|V (H)|

⌋

=

⌊

2n

h(h + 1)m

⌋

and let G be the s-blow-up of F (together with some isolated vertices, if needed, to make sure that

the number of vertices is precisely n).

We now turn to show that G is indeed ε-far from being H-free. Consider two essential copies of

H in F , H1 and H2. As was noted above, H1 and H2 share at most one vertex vi in F . It follows

that their corresponding blow-ups in G will share at most one common independent set Ii, which

replaces the vertex vi from F . Now, consider the blow-ups of H1 and H2 in G, denoted T1 and T2.

As T1 and T2 share at most one common independent set, we conclude that adding or removing an

edge from G, can either destroy special copies of H that belong to T1, or special copies of H that

belong to T2 (or not destroy any copies at all). As was explained above, in order to destroy all the

special copies of an s-blow-up of H, one needs to add or remove at least s2 edges from the blow-up.

As G contains m|X| blow-ups of essential copies of H, we conclude that one has to add or delete at

least

s2m|X| =
4m|X|n2

h2(h + 1)2m2
≥ |X|n2

h4m
≥ n2

h4e10
√

log m log h
≥ εn2 (4)

edges in order to make G H-free. The second inequality follows from the lower bound on |X|
guaranteed by Lemma 4.1, and the third from (2). It follows that G is indeed ε-far from being

H-free.

To complete the proof, we have to show that G contains at most εc log (1/ε)nh induced copies of

H. Note, that as H contains at least one triangle, and each triangle belongs to at most
( n
h−3

)

≤ nh−3

copies of H, it is enough to show that G contains at most εc log (1/ε)n3 triangles. Consider a partition

of the vertices of G into h subsets U1, . . . , Uh, where Ui contains the im independent sets that resulted
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from the blow-ups of the im vertices that belonged to Vi in F . Notice that if we show that the induced

subgraph of G on any three of the subsets U1, . . . , Uh contains at most εc′ log (1/ε)n3 triangles, then

the total number of triangles in G is at most
(h
3

)

εc′ log (1/ε)n3, which is still at most εc log (1/ε)n3.

Fix any three subsets Ui, Uj , Uk such that i < j < k, and recall that they are the result of an

s-blow-up of Vi, Vj , Vk. As there are no edges within these sets any triangle spanned by them must

have exactly one vertex in each set. Note, that if the sets span a triangle whose vertices belong to

the independent sets Ix ⊆ Ui, Iy ⊆ Uj , Iz ⊆ Uz, then the vertices x ∈ Vi, y ∈ Vj, z ∈ Vk in F must

also span a triangle. It follows that the number of triangles spanned by Ui, Uj , Uk is exactly s3 times

the number of triangles spanned by Vi, Vj , Vk.

If the vertices vi, vj , vk, do not span a triangle in H, then by the definition of F , Vi, Vj , Vk do not

span a triangle, and so do Ui, Uj , Uk in G, and we are done. If vi, vj , vk span a triangle in H, then

by definition of F for any triangle spanned by Vi, Vj , Vk, there are x, y ∈ X and 1 ≤ t ≤ im, such

that the three vertices of this triangle are t ∈ Vi, t + (j − i)x ∈ Vj, t + (j − i)x + (k − j)y ∈ Vk. As

this is a triangle, there must also be some z ∈ X such that t + (j − i)x + (k − j)y = t + (k − i)z. We

conclude that the following equation in positive coefficients, whose values are at most h, holds

(j − i)x + (k − j)y = (k − i)z.

As X is h-sum free, it follows that x = y = z, hence Vi, Vj , Vk span precisely m|X| triangles of the

form t+(i−1)x ∈ Vi, t+(j−1)x ∈ Vj , t+(k−1)x ∈ Vk, for every 1 ≤ t ≤ m and x ∈ X. We conclude

that Ui, Uj , Uk span at most m|X|s3 < m2(n/m)3 ≤ n3/m triangles. As by (3), m ≥ (1/ε)c log(1/ε),

the proof is complete.

The proofs of Theorems 1 and 3 now follow easily from the above Lemma.

Proof of Theorem 1: Let H be a fixed graph on h vertices. A simple yet crucial observation is

that for every graph H testing P ∗
H is equivalent to testing P ∗

H
, where H is the complement of H.

Note, that this relation does not hold for testing PH . It follows that in order to prove a lower bound

for testing P ∗
H , we may prove a lower bound for testing P ∗

H
.

Given a one-sided error ε-tester for testing H-freeness we may assume, without loss of generality,

that it queries about all pairs of a randomly chosen set of vertices (otherwise, as explained in [5],

every time the algorithm queries about a vertex pair we make it query also about all pairs containing

a vertex of the new pair and a vertex from previous queries. This may only square the number of

queries. See also [24] for a more detailed proof of this statement.) As the algorithm is a one-sided-

error algorithm, it can report that G is not H-free only if it finds a copy of H in it. Observe that if

the tester picks a random subset of x vertices, and an input graph contains only εc log (1/ε)nh copies of

H, then the expected number of copies of H spanned by x is at most xhεc log (1/ε), which is far smaller

than 1 unless x exceeds (1/ε)c
′ log(1/ε) for some c′ = c′(H) > 0. It follows by Markov’s inequality

that the tester finds a copy of H with negligible probability. It is therefore enough to show that for
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any undirected graph H, other than P2, P3, P4, C4 and their complements, there is a graph G on n

vertices which is ε-far from being H-free, yet contains only εc log (1/ε)nh copies of H.

If h ≥ 6, then it follows from the simplest result in Ramsey Theory (c.f., e.g., [25], page 1) that

either H or H must contain a triangle. Hence, assuming that H contains a triangle, we can use

Lemma 4.2 to construct a graph G on n vertices which is ε-far from being H-free and yet contains

at most εc log (1/ε)nh copies of H. For h = 5, the only graph H, such that neither H nor H contain

a triangle is C5 (the cycle of length 5, whose complement is also C5). In this case we can use the

fact that C5 is the core of itself (see [1], [9] for the definition of a core) to prove that P ∗
C5

is not

easily testable. Due to space limitations, we omit the detailed argument. As for h = 2, 3, 4 the only

graphs H for which H and H are triangle-free are P2, P3, P4, C4 and their complements, the proof is

complete.

Proof of Theorem 3: The proof is similar to the proof of Theorem 1. One only has to note again

that for every directed graph H, on at least 6 vertices, either H or H contain a triangle, and that

the only digraph on 5 vertices which does not have this property is the directed graph obtained from

C5, by replacing each undirected edge with two directed edges. This case can be handled directly,

as it is essentially equivalent to the undirected case of H = C5. In fact, using some of the methods

of [9] we can show that for some of the digraphs H of size 3 and 4, P ∗
H is not easily testable. We

postpone the details to the full version of the paper.

5 Two-Sided Error Property-Testers

For the proof of Theorem 4 we apply Yao’s principle [31], by constructing, for every fixed graph H,

for which a lower bound was established in Theorems 1 and 3, two distributions D1 and D2, where

D1 consists of graphs which are ε-far from being H-free with probability 1 − o(1) (where the o(1)

term tends to 0 as ε tends to zero), while D2 consists of graphs which are H-free. We then show that

any deterministic algorithm, which makes a small number of queries (adaptively) cannot distinguish

with non-negligible probability between D1 and D2. We prove Theorem 4 for the case of directed

graphs, as it is clear that the case of undirected graphs follows as a special case. For the case of H

being the graph obtained from C5 by replacing each edge by a cycle of length 2, we can use the fact

that this graph is the core of itself (see [1], [9] for the definition of a core) to prove that P ∗
C5

is not

easily testable, even with two-sided error. Due to space limitations, we omit the detailed argument.

We thus assume that H is a graph on at least 6 vertices. As in the proofs of Theorems 1 and 3,

testing P ∗
H with two-sided error has the same query complexity as testing P ∗

H
, thus we assume that

H contains at least one triangle. Due to space limitations, the complete proof appears in appendix

7.2.
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6 Concluding Remarks and Open Problems

• As in the case of PH , there is a huge gap between the general upper bounds for testing P ∗
H that

were established in [5], and the lower bounds in this paper. It would be very interesting, and

probably challenging, to improve any of these bounds. Even in the seemingly simplest case of

H being a triangle, we do not know how to improve these bounds.

• Another interesting open problem is to complete the characterizations of easily testable prop-

erties P ∗
H by solving the cases of H = P4, C4, and by classifying all the directed graphs on 3

and 4 vertices. The case of testing P4-freeness seems the simplest one to resolve, since there

are known structural results, that characterize P4-free graphs. These graphs are also known

as Complement Reducible graphs, or Cographs for short, and they are precisely the graphs

formed from a single vertex under the closure of the operations of union and complement, see

[14], [26]. Cographs have a unique tree representation called a cotree. It might be possible

to use this characterization, and the unique tree representation in order to design an efficient

tester for P4-freeness. For some of the directed graphs H on 3 or 4 vertices it is also possible

to decide if P ∗
H is easily testable by combining our techniques here with the methods in [9], but

a few cases remain. A detailed discussion is postponed to the full version of the paper.

• There is an interesting possible connection between the problem of graph isomorphism and

testing P ∗
H . It is known (see [13]) that for the graphs P2, P3, P4 and C4, the graph isomorphism

problem can be solved in polynomial time for H-free graphs. Moreover, for any other H, any

instance of the graph isomorphism problem can be reduced to an instance that is H-free. Thus,

in some sense, the problem on H-free graphs, for H other that P1, P2, P3 and C4, is isomorphism

hard. It might be interesting to understand if this connection is indeed meaningful.
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7 Appendix

7.1 Proof of Lemma 4.1

The main idea of the proof is to construct the set X by representing a set of numbers in base d, and

then choosing d in order to maximize the size of X. Let d be an integer (to be chosen later) and

define

X =

{

k
∑

i=0

xid
i | xi <

d

h
(0 ≤ i ≤ k) ∧

k
∑

i=0

x2
i = B

}

,

where k = blog m/ log dc − 1 and B is chosen to maximize the cardinality of X.

Assume x, y, z ∈ X satisfy the equation ax + by = cz, where a, b, c ≤ h are positive integers,

a + b = c, and

x =
k

∑

i=0

xid
i, y =

k
∑

i=0

yid
i, z =

k
∑

i=0

zid
i.

As xi, yi, zi < d/h, and a + b = c we have for every i, 0 ≤ i ≤ k

axi + byi = czi.

By the convexity of the function f(z) = z2 this implies that

ax2
i + by2

i ≥ cz2
i ,

and the inequality is strict unless all 3 numbers xi, yi and zi are equal. However, if for some i the

inequality is strict, we have

a
k

∑

i=0

x2
i + b

k
∑

i=0

y2
i > c

k
∑

i=0

z2
i

which is impossible as by definition of X

k
∑

i=0

x2
i =

k
∑

i=0

y2
i =

k
∑

i=0

z2
i = B.

Thus, xi = yi = zi for all i, and X has no nontrivial solution to the above equation.

We now aim at giving an upper bound for m/|X|. We lose a factor of d2 of the numbers {1, . . . ,m},
due to taking k = blog m/ log dc − 1. As we restrict xi < d/h, we lose a factor of h per digit, for a

total of hk+1. As xi < d/h, we have 0 ≤ ∑k
i=0 x2

i ≤ (k + 1)d2/h2. As we chose B to maximize |X|,
we can not lose more than the average, hence, this is a factor of at most (k + 1)d2/h2. We conclude

that

|X| ≥ m

d2hk+1(k + 1) d2

h2

.

Taking d = be
√

log m log hc, we conclude (with room to spare) that

|X| ≥ m

e10
√

log m log h
.

1



7.2 Proof of Theorem 4

Let H be a fixed digraph which contains at least one triangle. Given n and ε, let X, m and the sets

Vi be as in the proof of Lemma 4.2. Construct the digraph F just as in the proof of Lemma 4.2, and

remember that it consists of m|X| pairwise edge disjoint copies of H which we called the essential

copies of H in F (though it may well contain additional copies of H).

To construct D1 which consists of digraphs that are ε-far from being H-free with high probability,

we first construct F ′
1 by removing each of the m|X| essential copies of H, randomly and independently,

with probability 1 − 1/|E(H)|. We then create G1 by taking an s blow up of F ′
1 adding isolated

vertices, if needed. Finally, D1 consists of all randomly permuted copies of such digraphs G1. It

follows from a standard Chernoff bound, that with probability 1 − o(1), at least m|X|/2|E(H)|
essential copies of H are left in F ′

1, where the o(1) term tends to 0, as ε tends to 0. Similar to the

derivation of (4), it is easy to show that if m|X|/2|E(H)| of these copies of H are left in F ′
1, the

graph G1 is ε-far from being H free. It follows that with probability 1 − o(1), a member of D1 is

ε-far from being induced H-free.

The distribution D2 of digraphs that are H-free, is defined by first constructing F ′
2 by randomly,

independently and uniformly picking from a each of the m|X| essential copies of H a single edge, and

removing all the other edges of that copy. We then create G2 by taking an s blow up of F ′
2 adding

isolated vertices, if needed. Finally, D2 consists of all randomly permuted copies of such digraphs

G2. The main argument of Lemma 4.2, states that the graph F defined in the Lemma contains only

triangles whose three edges belong to one of the copies essential copies of H. Hence, keeping a single

edge from each of these copies results in a triangle free graph, and in particular all the graphs in G2

are H-free.

Now consider a set of vertices S in G1 (or G2) and its natural projection to a subset of V (F ),

which we also denote by S with a slight abuse of notation. Suppose S has the property that it does

not contain more than two vertices from any one of the essential copies of H.

If this property holds, then each edge spanned by S is contained in a different essential copy

of H. Therefore, each edge has probability 1/|E(H)| of being in F ′
1, and these probabilities are

mutually independent. Similarly, each such edge has probability 1/|E(H)| of being in F ′
2 and these

probabilities are also mutually independent. It follows that sampling a digraph G from D1, and

looking at the induced digraph on a set S with the above property, has exactly the same distribution

as sampling a digraph G from D2, and looking at the induced digraph on S.

To complete the proof we have to show that no deterministic algorithm can distinguish between

the distributions D1 and D2 with constant probability. To this end, it is clearly enough to show

that with probability 1 − o(1), any deterministic algorithm that looks at a digraph spanned by less

than (1/ε)c
′ log 1/ε vertices, has exactly the same probability of seeing any digraph regardless of the

distribution from which the digraph was chosen. By the discussion in the previous paragraph, this

can be proved by establishing that, with high probability, a small set of vertices does not contain

2



three vertices from the same essential copy of H. For a fixed ordered set of three vertices in S,

consider the event that they all belong to the same copy of H. The first two vertices determines all

the vertices of one of these copies uniquely. Now, the conditional probability that the third vertex

is also a vertex of the same copy is h/|V (F )| ≤ h/m. By the union bound, the probability that the

required property is violated, assuming |S| = D, is at most

hD3/m ≤ hD3εc log 1/ε.

This quantity is o(1) as long as D = o((1/ε)
c

3
log 1/ε), where here we applied the lower bound on

the size of m given in (3). Therefore, if the algorithm has query complexity o((1/ε)c
′ log 1/ε) for

some absolute positive constant c′, it has probability 1 − o(1) of looking at a subset on which the

distributions D1 and D2 are identical, thus, the probability that it distinguishes between D1 and D2

is o(1).

A slightly more complicated argument then the above can give two distributions D1 and D2,

such that the graphs in D1 are always ε-far from being induced H-free, while the graphs in D2 are

always H-free. The idea is to first partition the m|X| essential copies of H into groups of size |E(H)|
assuming for simplicity that |E(H)| divides m|X|. To create D1, we randomly pick from each group

of |E(H)| copies of H a single copy, and delete all its edges. To create D2, we do exactly the same

as we did in the proof of Theorem 4. It is easy to appropriately modify the proof above in order

to show that any deterministic algorithm with query complexity o((1/ε)c log 1/ε) can not distinguish

between D1 and D2. As this argument has no qualitative advantage, we described the simpler one

given above.

3


