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Abstract

Let P be a property of graphs. An ε-test for P is a randomized algorithm which, given the ability

to make queries whether a desired pair of vertices of an input graph G with n vertices are adjacent or

not, distinguishes, with high probability, between the case of G satisfying P and the case that it has

to be modified by adding and removing more than εn2 edges to make it satisfy P . The property P is

called testable, if for every ε there exists an ε-test for P whose total number of queries is independent

of the size of the input graph. Goldreich, Goldwasser and Ron [8] showed that certain individual graph

properties, like k-colorability admit an ε-test. In this paper we make a first step towards a complete

logical characterization of all testable graph properties, and show that properties describable by a very

general type of coloring problem are testable. We use this theorem to prove that first order graph

properties not containing a quantifier alternation of type “∀∃” are always testable, while we show that

some properties containing this alternation are not.

Our results are proven using a combinatorial lemma, a special case of which, that may be of

independent interest, is the following. A graph H is called ε-unavoidable in G if all graphs that differ
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from G in no more than ε|G|2 places contain an induced copy of H. A graph H is called δ-abundant

in G if G contains at least δ|G||H| induced copies of H. If H is ε-unavoidable in G then it is also

δ(ε, |H|)-abundant.

1 Introduction

All graphs considered here are finite, undirected, and have neither loops nor parallel edges; let G denote

the family of all such possible graphs with labeled sets of vertices. In what follows, we use the notation

of [5] except where stated otherwise; in particular, |G| denotes the number of vertices of a graph G ∈ G.

Let P be a property of graphs. A graph G with n vertices is called ε-far from satisfying P if no graph

G̃ with the same vertex set, which differs from G in no more than εn2 places (i.e. can be constructed

from G by adding and removing no more than εn2 edges), satisfies P . An ε-test for P is a randomized

algorithm which, given the quantity n and the ability to make queries whether a desired pair of vertices

of an input graph G with n vertices are adjacent or not, distinguishes with probability at least 2
3 between

the case of G satisfying P and the case of G being ε-far from satisfying P .

The property P is called testable, if for every fixed ε > 0 there exists an ε-test for P whose total

number of queries is bounded only by a function of ε, which is independent of the size of the input

graph. Of course, the probability 2
3 appearing above can be replaced by any constant smaller than 1, by

performing (a constant number of) iterations of the algorithm and giving as output the majority vote.

As to be expected, all properties discussed are invariant with regard to graph isomorphisms. We

assume without loss of generality that every given algorithm queries about all pairs of a randomly chosen

set of vertices (otherwise, every time the algorithm queries about a vertex pair we make it query also

about all pairs containing a vertex of the new pair and a vertex from previous queries). In particular,

we assume that the number of queries a given test makes is a constant independent of the actual input

graph G (by making additional queries at the end if it is smaller than the bound), and, denoting it by

C, conclude that the probability of every given edge of (a randomly permuted) input graph G with n

vertices to be queried by the algorithm is exactly C
(n

2

)−1.

The general notion of property testing was first formulated by Rubinfeld and Sudan [12], who were

motivated mainly by its connection to the study of program checking. In [2] the notion of testability in

the context of regular languages is investigated. The study of the notion of testability for combinatorial

objects, and mainly for labeled graphs, was introduced by Goldreich, Goldwasser and Ron [8], who showed

that all graph properties describable by the existence of a partition of a certain type, and among them

k-colorability, are testable. In [8] the existence of a non-testable NP -graph property was shown too. The

fact that k-colorability is testable is, in fact, implicitly proven already in [11] (see also [1]), using the

Regularity Lemma of Szemerédi [13], but in the context of property testing it is first studied in [8].
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In the present paper we study the testability of first order graph properties. These are properties

that can be formulated by first order expressions about graphs, that is, expressions that contain quan-

tifiers (over vertices), Boolean connectives, equality and adjacency. For example, the graph properties

describable by a first order expression with one existential quantifier and no universal quantifiers are

exactly those of containing a member of some fixed family of graphs as an induced subgraph (these are

trivially testable because such a member can be added to any graph by altering a constant number of

its edges). The graph properties describable by a first order expression with one universal quantifier and

no existential ones are those of not containing a member of some fixed family of graphs as an induced

subgraph; these are among the properties that are proven testable in the following.

Our main result is that all first order graph expressions containing at most one quantifier, as well

as all expressions of the form “There exist x1, . . . , xt such that for all y1, . . . , ys A(x1, . . . , xt, y1 . . . , ys)”,

where A is a quantifier-free first order expression are testable. We call these expressions of type “∃∀”.

On the other hand, we also show that there are first order expressions of type “∀∃”, namely expressions

of the form “For all x1, . . . , xt there exist y1, . . . , ys satisfying B(x1, . . . , xt, y1, . . . , ys)” where B is a

quantifier-free first order expression about graphs, which are non-testable.

Theorem 1.1 All first order properties of type “∃∀” are testable. On the other hand, there exists a first

order property of type “∀∃” which is not testable.

Our main technical lemma is a variant of Szemerédi’s Regularity Lemma. Szemerédi’s Regularity

Lemma plays a role in a wide variety of existential and algorithmic results in Extremal Graph Theory;

see e.g. [10], [7], [1] and their references. The variant proven here may well have additional applications,

besides the ones dealing with testing graph properties.

We note that the expressive power of first order expressions in the context of property testing is far

greater than might be expected. For example, the property of being properly k-colorable for any fixed k,

is not a first order property, but it is shown in the next section that it is equivalent to one, using a notion

of equivalence which is defined there and proven to be appropriate for the purpose of proving testability

results.

The rest of the paper is organized as follows. In Section 2 we introduce some notions about testing,

including a notion of equivalence, and observe that any first order property of type “∃∀” is equivalent

to a certain generalized coloring problem. After laying the required foundations in Section 3, Section

4 contains a statement and proof of a variant of Szemerédi’s Regularity Lemma which is suited for

proving results in the context of induced subgraphs (the context of not necessarily induced subgraphs

corresponds to monotone graph properties). Section 6 contains the proof of the main result, showing

that the aforementioned generalized coloring problem is testable. As a warmup to Section 6, Section 5

contains a proof of a special case of this result that may be of independent interest. In Section 7 we
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describe our non-testable first order property, which is based on the Graph Isomorphism problem. The

final Section 8 contains some concluding remarks and open problems. During the course of the proofs no

attempt is made to optimize the constants involved.

2 Indistinguishability and first order properties

We begin by defining a notion that implies that two given graph properties are equivalent for the purpose

of testing.

Definition 1 Two graph properties P and Q are called indistinguishable if for every ε > 0 there exists

N = N(ε) satisfying the following. For every graph G with n > N vertices satisfying P there exists a

graph G̃ with the same vertex set, differing from G in no more than εn2 places, which satisfies Q; and for

every graph H with n > N vertices satisfying Q there exists a graph H̃ with the same vertex set, differing

from H in no more than εn2 places, which satisfies P .

In other words, P and Q are indistinguishable if for every ε there are only a finite number of graphs

which satisfy one property but are ε-far from satisfying the other property.

Lemma 2.1 If P and Q are indistinguishable graph properties, then P is testable if and only if Q is

testable.

Proof: Without loss of generality we assume that P is testable and show that in this case Q is testable

too. Given ε, we construct an ε-test for Q. According to the assumptions there exists an ε
2 -test for P ,

with success probability at least 2
3 , which makes C = C( ε2) queries on the input graph. By iterating

this algorithm three times and deciding according to the majority vote, we obtain an algorithm with 3C

queries and success probability at least 20
27 .

Let N be such that if a graph G with n > N vertices satisfies Q then there exists a graph G̃ with the

same vertex set satisfying P which differs from G in no more than min{ ε2 ,
2

81C }
(n

2

)
places. Our test is as

follows. If the input graph G has no more than N vertices, we query all its edges and give accurate output

according to whether it satisfies Q. If the graph G has more than N vertices, we use three iterations of

the ε
2 -test for P (each time using a random permutation of the vertex set of G) and output the majority

vote. In this case, if G is ε-far from satisfying Q then it is ε
2 -far from satisfying P and with probability

20
27 >

2
3 the output is correct; and if G satisfies Q then there exists a graph G̃ satisfying P which differs

from G in no more than 2
81C

(n
2

)
places, so with probability at least 1− 2

27 the algorithm does not query

an edge where G and G̃ differ, and thus its output is correct with probability at least 20
27 −

2
27 = 2

3 . 2

This notion of indistinguishability is used in the proofs connecting the combinatorial results to the

testability results. For example, it is easily seen that the property of a graph being properly k-colorable is
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indistinguishable from the property that after isolating k vertices from the graph (by removing all edges

containing them) the graph is properly k-colorable. This in turn is indistinguishable from the first order

property that there exist k vertices v1, . . . , vk such that every other vertex is adjacent to exactly one of

v1, . . . , vk, but no two endvertices of the same edge of G are adjacent to the same vi (so the edges between

v1, . . . , vk and the other vertices encode in fact a proper k-coloring).

The proof in Section 7 of the existence of a non-testable first order graph property is in fact based

on the formulation of a first order property which encodes an isomorphism between two graphs, and is

indistinguishable from the property that the two graphs have any isomorphism.

Let us now define a generalization of the notion of colorability.

Definition 2 Suppose we are given c, and a family (with repetitions) F of graphs, each of which is

provided with a c-coloring (i.e. a function from its vertex set to {1, . . . , c} which is not necessarily a

proper c-coloring in the usual sense).

A c-coloring of a graph G is called an F-coloring if no member of F appears as an induced subgraph

of G with an identical coloring. A graph G is called F-colorable if there exists an F-coloring of it.

For example, if F consists of c copies F1, . . . , Fc of K2, both vertices of each Fi being colored with i,

then F-colorability of a graph G simply means the proper c-colorability of G in the usual sense. On the

other hand, if c = 1 and F is any fixed family of graphs, F-colorability means the property of not having

any member of F as an induced subgraph. Other properties, such as the property of having a coloring

with two colors without any monochromatic triangle, are expressible as instances of F-colorability too.

The following lemma shows the relevance of this notion to first order graph properties of type “∃∀”.

Lemma 2.2 For every first order property P of the form ∃x1, . . . , xt∀y1, . . . , ysA(x1, . . . , xt, y1 . . . , ys)

there exists a family F of (2t+(t2) + 1)-colored graphs, each with at most max{2, t + 1, s} vertices, such

that the property P is indistinguishable from the property of being F-colorable.

Proof: Given the property ∃x1, . . . , xt∀y1, . . . , ysA(x1, . . . , xt, y1 . . . , ys), we define F as follows. We

assume that A(x1, . . . , xt, y1 . . . , ys) allows us to restrict our attention to cases where x1, . . . , xt, y1 . . . , ys

are all assigned distinct values (otherwise there exists a property satisfying this which is identical to P

for all graphs with at least s+ t vertices, and the graphs with a smaller number of vertices do not matter

for the purpose of proving indistinguishability). For the simplicity of the presentation we use the color

set

{(0, 0)} ∪ {(a, b)|1 ≤ a ≤ 2(t2), 1 ≤ b ≤ 2t}.

For what follows we also use an enumeration of the 2(t2) possible graphs with t vertices u1, . . . , ut, and an

enumeration of the 2t possible adjacency relations of a vertex v to t vertices u1, . . . , ut. We impose upon
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the coloring of G the following restrictions. Note that each of them is expressible by forbidding certain

induced subgraphs with given colorings.

• The color (0, 0) appears at most t times in the coloring of G (simply disallow all possible graphs

with t+ 1 vertices which are all colored with this color).

• For 1 ≤ a < a′ ≤ 2(t2) and 1 ≤ b, b′ ≤ 2t, at most one of the colors (a, b) and (a′, b′) appears in the

coloring (so G is in fact colored by the set {(0, 0)} ∪ {(a, b)|1 ≤ b ≤ 2t} for some fixed a).

• Suppose that K is a graph with vertices w1, . . . , ws, which are colored with (a, b1), . . . , (a, bs) re-

spectively for some a > 0. In order to decide if such a K is to be disallowed, we consider the

graph L with vertices u1, . . . , ut, v1, . . . , vs and the following edges. The edges within u1, . . . , ut are

defined in correspondence to a (using the enumeration of all graphs with t labeled vertices), and

for 1 ≤ j ≤ s the edges between vj and u1, . . . , ut are defined in correspondence to bj (using the

enumeration of all possible adjacencies of a vertex to t other vertices). The subgraph of L induced

by v1, . . . , vs is made identical to K where vi plays the role of wi. Having thus defined L, we disallow

the coloring of K where wi is colored by (a, bi) for 1 ≤ i ≤ s, if and only if A(u1, . . . , ut, v1, . . . , vs)

is false in relation to L.

We now claim that the property P is indistinguishable from the property of being F-colorable. If a

graph G satisfies P , then there exist vertices u1, . . . , ut of G such that ∀y1, . . . , ysA(u1, . . . , ut, y1 . . . , ys)

is satisfied over G where y1, . . . , ys range over all vertices other than u1, . . . , ut. We let 1 ≤ a ≤
(t
2

)
correspond to the subgraph of G spanned by u1, . . . , ut. We color u1, . . . , ut by (0, 0), and we color

every other vertex v of G with (a, bv), where 1 ≤ bv ≤ 2t corresponds to the adjacency relations of v to

u1, . . . , ut. This is clearly seen to be an F-coloring of G.

On the other hand, we show that given an F-coloring of G, we can modify G by adding and removing

no more than tn edges to get a graph G̃ which satisfies P (so we can choose N(ε) = 2tε−1 + 1 for the

definition of indistinguishability). Given an F-coloring of G, we first modify it so there are exactly t

vertices colored with (0, 0) (if there are less than t, we just choose additional vertices arbitrarily and

recolor them with (0, 0)). Denote these vertices by u1, . . . , ut. Remember that all colors appearing in the

given coloring apart from (0, 0) share the same first coordinate, and denote it by a.

To define G̃ from G the adjacencies between u1, . . . , ut and all the vertices of G are redefined as

follows. The subgraph of G induced by u1, . . . , ut is made to correspond to a. Every vertex v different

from u1, . . . , ut is colored with (a, bv) for some 1 ≤ bv ≤ 2t; the adjacencies between v and u1, . . . , ut are

then made to correspond to bv. It is now easily seen that for every v1, . . . , vs different from u1, . . . , ut the

proposition A(u1, . . . , ut, v1, . . . , vs) holds in G̃, so G̃ satisfies P . 2
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The property of a graph being F-colorable, for any fixed finite family F of vertex colored graphs, is

shown to be testable at the end of Section 6 as a corollary of a combinatorial result. In fact, something

a little stronger than testability is proven, since the given algorithm has one-sided error probability – for

F-colorable graphs it gives the correct answer with probability 1.

3 Partitions and regularity

For every two nonempty disjoint vertex sets A and B of a graph G, we define e(A,B) to be the number of

edges of G between A and B. The edge density of the pair is defined by d(A,B) = e(A,B)
|A||B| ; for convenience

we also use the notation d2(A,B) = (d(A,B))2. We say that the pair A,B is γ-regular, if for any

two subsets A′ of A and B′ of B, satisfying |A′| ≥ γ|A| and |B′| ≥ γ|B|, their edge density satisfies

|d(A′, B′)− d(A,B)| < γ.

One simple yet useful property of regularity is that it is somewhat preserved when moving to subsets,

as the following trivial lemma shows.

Lemma 3.1 If A,B is a γ-regular pair with density δ, and A′ ⊂ A and B′ ⊂ B satisfy |A′| ≥ ε|A| and

|B′| ≥ ε|B| for some ε ≥ γ, then A′, B′ is a max{2, ε−1}γ-regular pair with density at least δ − γ and at

most δ + γ. 2

The following lemma shows how the existence of regular pairs implies the existence of many induced

subgraphs of a fixed type. Many similar lemmas have been proven in previous works; for completeness

we present a self contained proof of this one.

Lemma 3.2 For every 0 < η < 1 and k there exist γ = γ3.2(η, k) and δ = δ3.2(η, k) with the following

property.

Suppose that H is a graph with vertices v1, . . . , vk, and that V1, . . . , Vk is a k-tuple of disjoint vertex

sets of G such that for every 1 ≤ i < i′ ≤ k the pair Vi, Vi′ is γ-regular, with density at least η if vivi′ is

an edge of H, and with density at most 1 − η if vivi′ is not an edge of H. Then, at least δ
∏k
i=1 |Vi| of

the k-tuples w1 ∈ V1, . . . , wk ∈ Vk span (induced) copies of H where each wi plays the role of vi.

Proof: Without loss of generality assume that H is the complete graph; otherwise, for each i < i′ such

that vivi′ is not an edge of H, exchange all edges and non-edges of G between Vi and Vi′ and regard vivi′

as an edge of H. Assume also η < 1. The proof is by induction on k. The case k = 1 is trivial. Supposing

that we know that γ3.2(η, k − 1) and δ3.2(η, k − 1) exist for all η, we show that we can choose

γ = γ3.2(η, k) = min{ 1
2k − 2

,
1
2
ηγ3.2(

1
2
η, k − 1)}
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and

δ = δ3.2(η, k) =
1
2

(η − γ)k−1δ3.2(
1
2
η, k − 1).

For each 1 < i ≤ k, the number of vertices of V1 which have less than (η − γ)|Vi| neighbors in Vi is

less than γ|V1|, because otherwise these would constitute a counter example to the regularity of V1, Vi.

Therefore, at least (1 − (k − 1)γ)|V1| ≥ 1
2 |V1| of the vertices of V1 have at least (η − γ)|Vi| neighbors in

Vi for all i > 1.

For each such vertex w1 of V1, let V ′i denote the set of its neighbors in Vi. Since γ ≤ 1
2η, Lemma 3.1

ensures that for each 1 < i < i′ ≤ k, the pair V ′i , V
′
i′ is γ

η−γ ≤ 2η−1γ-regular and with density at least

η − γ ≥ 1
2η. The induction hypothesis now guarantees at least

δ3.2(
1
2
η, k − 1)

k∏
i=2

|V ′i | ≥ (η − γ)k−1δ3.2(
1
2
η, k − 1)

k∏
i=2

|Vi|

possible choices of w2 ∈ V2, . . . , wk ∈ Vk such that the induced subgraph spanned by w1, . . . , wk is

complete, so the lemma follows from the existence of at least 1
2 |V1| choices of such a w1. 2

A partition A = {Vi|1 ≤ i ≤ k} of the vertex set of a graph is called an equipartition if |Vi| and |Vi′ |
differ by no more than 1 for all 1 ≤ i < i′ ≤ k (so in particular each Vi has one of two possible sizes). A

refinement of such an equipartition A is an equipartition of the form B = {Vi,j |1 ≤ i ≤ k, 1 ≤ j ≤ l} such

that Vi,j is a subset of Vi for every 1 ≤ i ≤ k and 1 ≤ j ≤ l.
The order |A| of an equipartition A is the number of sets in it (k in the above notation). The index

of the equipartition A above is defined by

ind(A) = k−2
∑

1≤i<i′≤k
d2(Vi, Vi′).

The Regularity Lemma of Szemerédi can be formulated as follows.

Lemma 3.3 ([13]) For every m and ε > 0 there exists a number T = T3.3(m, ε) with the following

property.

If G is a graph with n ≥ T vertices, and A is an equipartition of the vertex set of G with an order

not exceeding m, then there exists a refinement B of A of order k, where m ≤ k ≤ T , for which all pairs

of sets but at most ε
(k

2

)
of them are ε-regular.

The original formulation of the lemma allows also for an exceptional set with up to εn vertices outside

of this equipartition, but one can first apply the original formulation with a somewhat smaller parameter

instead of ε and then evenly distribute the exceptional vertices among the sets of the partition to obtain

this formulation.

T3.3(m, ε) may and is assumed to be monotone nondecreasing in m and monotone nonincreasing in ε.

We also assume similar monotonicity properties for other functions appearing here, and assume that the
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number of vertices n of the graph G is large enough (as a function of the other parameters) even when

this is not mentioned explicitly. The following corollary, some versions of which appear in various papers

applying the Regularity Lemma, is useful to what follows.

Corollary 3.4 For every l and γ there exists δ = δ3.4(l, γ) such that for every graph G with n ≥ δ−1

vertices there exist disjoint vertex sets W1, . . . ,Wl satisfying:

• |Wi| ≥ δn.

• All
( l
2

)
pairs are γ-regular.

• Either all pairs are with densities at least 1
2 , or all pairs are with densities less than 1

2 .

Proof: We set δ = 1
2(T3.3(r,min{r−1, γ}))−1, with r to be chosen later. We obtain through Lemma 3.3

an equipartition A = {Vi|1 ≤ i ≤ k} of the vertices of G with k ≥ r and |Vi| ≥ δn for 1 ≤ i ≤ k (the

assumption on n guarantees that this holds for the sets with the smaller size as well), with all pairs of

sets but at most min{r−1, γ}
(k

2

)
< (r − 1)−1

(k
2

)
of them being min{r−1, γ} ≤ γ-regular.

In particular, by Turán’s Theorem (see [5]) there exist i1, . . . , ir such that all pairs taken from

Vi1 , . . . , Vir are regular. We choose r in a manner that Ramsey’s Theorem (see [5]) ensures the exis-

tence of j1, . . . , jl such that either all pairs taken from Vij1 , . . . , Vijl are with densities at least 1
2 , or all

these pairs are with densities less than 1
2 . Setting Wt = Vijt for 1 ≤ t ≤ l we arrive at the required result.

2

The proof of the Regularity Lemma uses the defect form of the Schwarz Inequality, which is also used

in what follows.

Lemma 3.5 (see [13]) For all sequences of nonnegative numbers X1, . . . , Xn, if for some m < n

m∑
k=1

Xk =
m

n

n∑
k=1

Xk + α,

then
n∑
k=1

X2
k ≥

1
n

(
n∑
k=1

Xk

)2

+
α2n

m(n−m)

(α need not be positive).

The following is an immediate implication with regards to partitions of vertex pairs.

Corollary 3.6 Suppose that A and B are two disjoint sets of vertices of G, and {Aj |1 ≤ j ≤ l} and

{Bj |1 ≤ j ≤ l} are their two respective partitions to sets of equal sizes, such that at least εl2 of the

possible j, j′ satisfy |d(A,B)− d(Aj , Bj′)| ≥ 1
2ε. Then,∑

1≤j,j′≤l
d2(Aj , Bj′) > l2(d2(A,B) +

1
8
ε3).
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Proof: Under the above conditions, either at least 1
2εl

2 of the pairs j, j′ are such that d(Aj , Bj′) −
d(A,B) ≥ 1

2ε, or at least 1
2εl

2 are such that d(Aj , Bj′)− d(A,B) ≤ −1
2ε. We use Lemma 3.5 with n = l2,

m = 1
2εl

2, and α satisfying |α| ≥ 1
4ε

2l2 to obtain

∑
1≤j,j′≤l

d2(Aj , Bj′) ≥ l2d2(A,B) +
1
16ε

4l6

1
2ε(1−

1
2ε)l

4
> l2(d2(A,B) +

1
8
ε3)

as required. 2

The following lemma shows that if the index of an equipartition A is not smaller by much than the

index of its refinement B, then most of the densities of the pairs of B are close to the densities of the

corresponding pairs of A.

Lemma 3.7 Suppose that A = {Vi|1 ≤ i ≤ k} and its refinement B = {Vi,j |1 ≤ i ≤ k, 1 ≤ j ≤ l} satisfy

ind(B)− ind(A) ≤ 1
64ε

4 for some ε, and that the number of vertices of the graph is n > 512ε−4kl. Then,

for all possible i < i′ but at most ε
(k

2

)
of them, |d(Vi, Vi′)− d(Vi,j , Vi′,j′)| < ε holds for all but a maximum

of εl2 of the possible j, j′.

Proof: Supposing the contrary and assuming ε < 1 and k > 1, we show that the index of B is larger than

that of A by more than 1
64ε

4. If not all of the sets of B are of exactly the same size, let V ′i,j be Vi,j for sets of

the smaller size, and V ′i,j be Vi,j minus an arbitrarily chosen vertex for sets of the larger size. Defining also

V ′i =
⋃

1≤j≤l V
′
i,j , we define two new partitions B′ = {V ′i,j |1 ≤ i ≤ k, 1 ≤ j ≤ l} and A′ = {V ′i |1 ≤ i ≤ k}

of a large induced subgraph of G (for each of these new partitions all its sets are of the same size). The

assumption on n implies that |d(Vi, Vi′) − d(V ′i , V
′
i′)| <

1
256ε

4 and |d(Vi,j , Vi′,j′) − d(V ′i,j , V
′
i′,j′)| <

1
256ε

4

hold for all i, j, i′, j′. In particular, |ind(A) − ind(A′)| < 1
128ε

4 and |ind(B) − ind(B′)| < 1
128ε

4 hold, and

for more than ε
(k

2

)
of the possible i < i′ the inequality |d(V ′i , V

′
i′) − d(V ′i,j , V

′
i′,j′)| > ε − 2

256ε
4 > 1

2ε holds

for at least εl2 of the possible j, j′. Using Corollary 3.6, we obtain

ind(B′) ≥ k−2l−2
∑

1≤i<i′≤k
1≤j,j′≤l

d2(V ′i,j , V
′
i′,j′) > k−2l−2(l2

∑
1≤i<i′≤k

d2(V ′i , V
′
i′) + ε

(
k

2

)
l2

1
8
ε3) ≥ ind(A′) +

1
32
ε4.

This implies ind(B)− ind(A) ≥ ind(B′)− ind(A′)− 2
128ε

4 > 1
64ε

4, completing the proof. 2

4 A lemma suitable for finding induced subgraphs

The following lemma, which can be considered a variant of the Regularity Lemma, is suited for dealing

with induced subgraphs to be found in G.

Lemma 4.1 For every integer m and function 0 < E(r) < 1 there exists a number S = S4.1(m, E) with

the following property.
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If G is a graph with n ≥ S vertices, then there exists an equipartition A = {Vi|1 ≤ i ≤ k} and a

refinement B = {Vi,j |1 ≤ i ≤ k, 1 ≤ j ≤ l} of A that satisfy:

• |A| = k ≥ m but |B| = kl ≤ S.

• For all 1 ≤ i < i′ ≤ k but at most E(0)
(k

2

)
of them the pair Vi, Vi′ is E(0)-regular.

• For all 1 ≤ i < i′ ≤ k, for all 1 ≤ j, j′ ≤ l but at most E(k)l2 of them the pair Vi,j , Vi′,j′ is

E(k)-regular.

• All 1 ≤ i < i′ ≤ k but at most E(0)
(k

2

)
of them are such that for all 1 ≤ j, j′ ≤ l but at most E(0)l2

of them |d(Vi, Vi′)− d(Vi,j , Vi′,j′)| < E(0) holds.

Proof: We may assume that m > 1 and that E(r) is monotone nonincreasing. For convenience, let

ε = E(0). We define

T (1) = T3.3(m, ε),

and for i > 1 we define by induction

T (i) = T3.3(T (i−1), 2E(T (i−1))(T (i−1))−2).

We show that S = 512ε−4T (64ε−4+1) satisfies the required property.

Given G, define A1 to be an equipartition of order at least m but not greater than T (1), such that

all pairs but at most ε
(|A1|

2

)
of them are ε-regular. Define by induction for i > 1 the equipartition

Ai to be a refinement of Ai−1, of order not greater than T (i), such that all of the pairs but at most

2E(T (i−1))(T (i−1))−2
(|Ai|

2

)
≤ 2E(T (i−1))(|Ai−1|)−2

(|Ai|
2

)
are 2E(T (i−1))(T (i−1))−2 < E(T (i−1))-regular.

Let us now choose the minimum i such that ind(Ai)− ind(Ai−1) ≤ 1
64ε

4. There certainly exists such

an 1 < i ≤ 64ε−4 + 1 since the indices of the partition series are all between 0 and 1. We set A = Ai−1

and B = Ai, and appropriately k = |Ai−1| = |A| and l = k−1|Ai| = |A|−1|B|. We claim that A and B are

the required partitions.

It is clear that B is a refinement of A and that they both satisfy the requirements with regards to their

respective orders. It is also clear (by the assumption E(r) ≤ E(0) = ε) that A satisfies the requirement

regarding the regularity of its pairs. Since all but at most 2E(k)k−2
(kl

2

)
< E(k)l2 of all the pairs of B are

E(k)-regular, the condition regarding the regularity of pairs of B in the formulation of the lemma follows.

Finally, Lemma 3.7 shows that most densities of the pairs of B differ from the corresponding densities of

the pairs of A by less than ε, as in the formulation of the last condition of this lemma. 2

Three comments:

• It is important to what follows that the function E(r) and not a constant is used in the formulation

of this lemma.
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• By using the algorithmic version of the Regularity Lemma from [1], one could obtain an algorithmic

version of this variant.

• The function S4.1(m, E) is a fast growing function – even for moderate functions E(r), it is expressible

in terms of the WOW function (a tower of towers) of a polynomial in E(0) and m.

In what follows, we need the following corollary.

Corollary 4.2 For every m and 0 < E(r) < 1 there exist S = S4.2(m, E) and δ = δ4.2(m, E) with the

following property.

If G is a graph with n ≥ S vertices then there exist an equipartition A = {Vi|1 ≤ i ≤ k} of G and an

induced subgraph G′ of G, with an equipartition A′ = {V ′i |1 ≤ i ≤ k} of the vertices of G′, that satisfy:

• S ≥ k ≥ m.

• V ′i ⊂ Vi for all i ≥ 1, and |V ′i | ≥ δn.

• In the equipartition A′, all pairs are E(k)-regular.

• All but at most E(0)
(k

2

)
of the pairs 1 ≤ i < i′ ≤ k are such that |d(Vi, Vi′)− d(V ′i , V

′
i′)| < E(0).

Proof: We may assume E(r) ≤ E(0). Put ε = E(0). Define E ′ by E ′(r) = min{E(r), 1
4ε,

1
2

(r+2
2

)−1}, set

S = S4.1(m, E ′), and δ = 1
2(S4.1(m, E ′))−1. Use Lemma 4.1 on G, finding the appropriate partitions

A = {Vi|1 ≤ i ≤ k} and B = {Vi,j |1 ≤ i ≤ k, 1 ≤ j ≤ l}.
Now choose randomly, independently and uniformly 1 ≤ ji ≤ l for each 1 ≤ i ≤ k. Clearly, with

probability more than 1
2 , all the pairs Vi,ji , Vi′,ji′ are E(k)-regular. Moreover, the expected number of

pairs 1 ≤ i < i′ ≤ k for which |d(Vi, Vi′)− d(V ′i , V
′
i′)| ≥ ε is no more than 1

4ε
(k

2

)
+ 1

4ε
(k

2

)
= 1

2ε
(k

2

)
, so with

probability at least 1
2 no more than ε

(k
2

)
of the pairs satisfy this.

Therefore, there exists a choice of j1, . . . , jk such that all pairs Vi,ji , Vi′,ji′ are E(k)-regular, and all but

at most ε
(k

2

)
of them satisfy |d(Vi, Vi′)−d(Vi,ji , Vi′,ji′ )| < ε. Defining G′ as the induced subgraph spanned

by
⋃

1≤i≤k Vi,ji , and A′ by setting V ′i = Vi,ji we arrive at the required result. 2

5 Unavoidability and abundance of induced subgraphs

In the context of induced subgraphs, a graph H is called ε-unavoidable in G if no adding and removing

of up to ε|G|2 edges of G results in G not having an induced subgraph isomorphic to H. H is called

δ-abundant if G contains at least δ|G||H| (distinct) induced subgraphs isomorphic to H.

It is trivial that a certain degree of abundance implies a certain degree of unavoidability. The following

application of the results of the previous section shows that in the context of induced subgraphs, a certain

degree of unavoidability also implies a certain degree of abundance.
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Theorem 5.1 For every l and ε there exists δ = δ(l, ε), such that for any graph H with l vertices, if H

is ε-unavoidable in a graph G, then it is also δ-abundant in G.

Proof: We assume ε < 1 and let n = |G|. We set

δ = δ3.2(
1
6
ε, l)(βδ4.2(m,min{1

6
ε, α}))l

with m = 7ε−1, and α and β to be chosen later (for the quantities of Corollary 4.2 we use here the

constant function E(r) = min{1
6ε, α}).

We apply Corollary 4.2 to G, to find A = {Vi|1 ≤ i ≤ k}, G′ and A′ = {V ′i |1 ≤ i ≤ k}, that satisfy

m ≤ k ≤ S4.2(m,min{1
6ε, α}) and |V ′i | ≥ δ4.2(m,min{1

6ε, α})n, ensuring also that all pairs of A′ are in

particular α-regular and the densities of no more than 1
6ε
(k

2

)
of them differ from those of the corresponding

pairs of A by more than 1
6ε.

Choosing β = δ3.4(l, γ3.2(1
6ε, l)) and α = βγ3.2(1

6ε, l), we use Corollary 3.4 on the subgraph induced

by G on each V ′i to obtain the appropriate Wi,1, . . . ,Wi,l, all of size at least β|V ′i |. Note by Lemma 3.1

that in particular for every i, j, i′, j′ the pair Wi,j ,Wi′,j′ is γ3.2(1
6ε, l)-regular, and its density differs from

that of V ′i , V
′
i′ by no more than 1

6ε.

Define G̃ to be the graph obtained from G by adding and removing the following edges:

• For 1 ≤ i < i′ ≤ k such that |d(Vi, Vi′) − d(V ′i , V
′
i′)| >

1
6ε, for all v ∈ Vi and v′ ∈ Vi′ the pair vv′

becomes an edge if d(V ′i , V
′
i′) ≥

1
2 , and becomes a non-edge otherwise. This changes less than 2

6ε
(n

2

)
edges (for n large enough) because there are no more than 1

6ε
(k

2

)
such 1 ≤ i < i′ ≤ k.

• For 1 ≤ i < i′ ≤ k such that d(V ′i , V
′
i′) <

2
6ε, all edges between Vi and Vi′ are removed. For all

1 ≤ i < i′ ≤ k such that d(V ′i , V
′
i′) > 1 − 2

6ε, all non-edges between Vi and Vi′ become edges. This

changes no more than 3
6ε
(n

2

)
edges in addition to those changed by the previous condition.

• If for a fixed i all densities of pairs from Wi,1, . . . ,Wi,l are less than 1
2 , all edges within the vertices

of Vi are removed. Otherwise, all the above mentioned densities are at least 1
2 (by the choice of the

Wi,j through Corollary 3.4), in which case all non-edges within Vi become edges. This changes less

than 1
6ε
(n

2

)
edges by the choice of m above.

By the ε-unavoidability of H in G, G̃ still contains an induced subgraph isomorphic to H, denote

its vertices by v1, . . . , vl. Choosing i1, . . . , il such that vj ∈ Vij for all 1 ≤ j ≤ l, we finally note that

Wi1,1, . . . ,Wil,l satisfy the regularity and density conditions (over G, not G̃) required for Lemma 3.2 to

ensure the existence of δnl = δ|G||H| induced subgraphs isomorphic to H. 2
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6 Graphs which are far from being colorable

This section is devoted to a generalization of the result of the previous section, using the notion of F-

colorability defined in Section 2. We fix a family (with repetitions) F of graphs, each of which is provided

with some c-coloring of its vertices, i.e. a function from its vertex set to {1, . . . , c}. Recall that a graph

G is called F-colorable if there exists a c-coloring of G such that no member of F appears as an induced

subgraph of G with an identical coloring.

If c = 1 and F = {H}, being ε-far from being F-colorable means having H as an ε-unavoidable

induced subgraph. The following is a generalization of Theorem 5.1.

Theorem 6.1 For every ε > 0, c and l there exist δ = δ(c, l, ε) and C = C(c, l, ε) with the following

property.

If F is a family of c-colored graphs, each with l vertices, and G is a graph which is ε-far from being

F-colorable, then there exists a graph H with no more than C vertices, which is not F-colorable, and is

also δ-abundant in G.

For the proof of Theorem 6.1, we need the following simple lemma to help us construct the graph H.

Lemma 6.2 For every c and l there exists a bipartite graph L = L6.2(c, l) with a bipartition to the classes

U1 and U2 of size p = p6.2(c, l) each, satisfying the following. Suppose that X1, . . . , Xl′ for some l′ are

disjoint sets of vertices of a graph G of size p each, such that for any 1 ≤ i < i′ ≤ l′ the bipartite subgraph

between Xi and Xi′ is isomorphic to L, and suppose that H is a graph with the vertex set {w1, . . . , wl}
and that i1, . . . , il are integers between 1 and l′.

If X ′1, . . . , X
′
l′ satisfy X ′i ⊂ Xi and |X ′i| ≥ 1

cp, there exist x1 ∈ X ′i1 , . . . , xl ∈ X
′
il

, all different, such

that for all 1 ≤ s < s′ ≤ l if is 6= is′ then xsxs′ is an edge of G if and only if wsws′ is an edge of H.

Proof: For the purpose here we use the fact that regular pairs with specified density ranges are known

to exist, for example by considering random bipartite graphs for an appropriate p (a better bound on p

can be obtained by a direct proof without using regularity, but for the purpose here this is sufficient).

We take an L which makes U1, U2 a min{1
5 , (2cl)

−1γ3.2(1
5 , l)}-regular pair with density between 2

5 and
3
5 . Given X ′1, . . . , X

′
l′ , choose arbitrarily vertex sets {Yi,j |1 ≤ i ≤ l′, 1 ≤ j ≤ l}, all disjoint, such that

Yi,j ⊂ X ′i and |Yi,j | ≥ (2cl)−1p. Given H and i1, . . . , il, Lemma 3.2 (together with Lemma 3.1) guarantees

in particular the existence of x1 ∈ Yi1,1, . . . , xl ∈ Yil,l satisfying the required properties. 2

Proof of Theorem 6.1: We first show how to construct H after finding in G a certain structure in a

similar manner to what was done in the proof of Theorem 5.1. Then, the two required properties of H

are proven.
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We assume that ε < 1 and that n = |G| is large enough. We set

C = pS4.2(7ε−1, E)

using p = p6.2(c, l), and defining

E(r) = min{1
6
ε, δ3.4(p, γ3.2(

1
6
ε, pr))γ3.2(

1
6
ε, pr)}.

δ in the formulation of the theorem is to be chosen later.

We apply Corollary 4.2 to G, to find A = {Vi|1 ≤ i ≤ k}, G′ and A′ = {V ′i |1 ≤ i ≤ k}, that

satisfy 7ε−1 ≤ k ≤ 1
pC, |V ′i | ≥ δ4.2(7ε−1, E)n, and the regularity and density properties guaranteed by the

corollary with regards to E(r).

We use Corollary 3.4 on the subgraph of G induced by each V ′i to obtain Wi,1, . . . ,Wi,p, with all pairs

being γ3.2(1
6ε, pk)-regular, and either all of the densities being at least 1

2 or all of them being less than 1
2 .

Note that now all pairs Wi,j ,Wi′,j′ are γ3.2(1
6ε, pk)-regular.

G̃ is defined to be the graph obtained from G by adding and removing edges according to what follows.

H is a graph with a vertex set {ui,j |1 ≤ i ≤ k, 1 ≤ j ≤ p}, whose edges are also specified here.

• For 1 ≤ i < i′ ≤ k such that |d(Vi, Vi′) − d(V ′i , V
′
i′)| >

1
6ε, for all v ∈ Vi and v′ ∈ Vi′ the pair vv′

becomes an edge if d(V ′i , V
′
i′) ≥

1
2 , and becomes a non-edge otherwise. In the first case, all pairs

ui,jui′,j′ for 1 ≤ j, j′ ≤ p are edges of H. In the second case, all these pairs are non-edges of H.

• For 1 ≤ i < i′ ≤ k such that d(V ′i , V
′
i′) <

2
6ε, all edges between Vi and Vi′ are removed, and all pairs

ui,jui′,j′ for 1 ≤ j, j′ ≤ p are non-edges of H. For all 1 ≤ i < i′ ≤ k such that d(V ′i , V
′
i′) > 1− 2

6ε, all

non-edges between Vi and Vi′ become edges, and all pairs ui,jui′,j′ for 1 ≤ j, j′ ≤ p are edges of H.

• For 1 ≤ i < i′ ≤ k such that none of the above holds, the edges of G̃ between Vi and Vi′ remain

exactly those of G. The edges of H between {ui,1, . . . , ui,p} and {ui′,1, . . . , ui′,p} are then chosen to

make the bipartite graph between these sets a copy of L6.2(c, l).

• If for a fixed i all densities of pairs from Wi,1, . . . ,Wi,p are less than 1
2 , all edges within the vertices

of Vi are removed. Otherwise, all the above mentioned densities are at least 1
2 , in which case all non-

edges within Vi become edges. In the second case, all pairs of vertices of H from {ui,j |1 ≤ j ≤ p}
are edges of H. In the first case, all these pairs are non-edges of H.

Since G is ε-far from being F-colorable, G̃ is not F-colorable. We set

δ = δ3.2(
1
6
ε, C)(δ3.4(p, γ3.2(

1
6
ε, C))δ4.2(7ε−1, E))C .

We are now ready to prove that H satisfies the required properties.
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Claim 1 The constructed H is not F-colorable.

Proof: Suppose that we are given a coloring C of H. We define a coloring D of G̃ as follows. For every

1 ≤ i ≤ k, we choose a color a which appears at least 1
cp times among the colors of {ui,1, . . . , ui,p} supplied

by C, and color all v ∈ Vi with a; defining Xi = {ui,1, . . . , ui,p}, we also define X ′i ⊂ Xi to consist of those

vertices of Xi which are colored a.

Since G̃ is not F-colorable, there exists in F a graph F with a coloring K which appears with the same

colors in the coloring D of G̃. Denote its vertices by v1, . . . , vl, and choose i1, . . . , il such that vs ∈ Vis
for all 1 ≤ s ≤ l. Since |X ′i| ≥ 1

cp for all i, the construction of H (by Lemma 6.2) ensures the existence

of vertices x1 ∈ X ′i1 , . . . , xl ∈ X
′
il

by which a copy of F is spanned from H, and for which the colorings C
and K agree. Thus C is not an F-coloring of H. 2

Claim 2 The constructed H is δ-abundant in G.

Proof: This follows from Lemma 3.2, since the Wi,j satisfy

|Wi,j | > ((δ3.2(
1
6
ε, pk))−1δ)1/Cn

and also satisfy the required regularity and density conditions over G. 2

Given c and a fixed finite family F of c-colored graphs, it is now easy to show that the property of

being F-colorable is testable.

Corollary 6.3 For every c, a family F of c-colored graphs, and ε, there exists an ε-test for the property

of being F-colorable, which makes a constant number of queries.

Proof: From Theorem 6.1 we know the existence of C and δ, such that for every graph G which is ε-far

from being F-colorable, there exists a graph with C vertices which is not F-colorable and is δ-abundant

in G. In particular, for a uniformly random choice of C vertices of G, with probability at least C!δ they

span a subgraph of G which is not F-colorable.

The ε-test is designed as follows. Choosing a constant D such that (1 − C!δ)D ≤ 1
3 , we choose a

uniformly random set of DC vertices of G, query about all
(DC

2

)
pairs of the chosen set, and check

whether the induced subgraph of G spanned by this set is F-colorable. If G is F-colorable, this induced

subgraph of G is also F-colorable (with probability 1). If G is ε-far from being F-colorable, the choice of

C and D ensures that with probability at least 2
3 the induced subgraph produced from the queries is not

F-colorable. 2

Proof of the first part of Theorem 1.1: Immediate from Lemma 2.2 and Corollary 6.3. 2
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7 Non-testable first order properties

In the following, whenever a cycle of G is mentioned, it means a subgraph of G (not necessarily an induced

subgraph) which is isomorphic to that cycle.

The vertices u1, u2, u3, u4, u5, u6 of a graph G are said to span an arrow in this order if the subgraph

of G spanned by them contains exactly the edges u1u2, u2u3, u3u4, u4u5, u5u6, u1u3, u2u4, u2u6. The term

“arrow” does not refer to the graphical representation of this subgraph but to the fact that its only

automorphism is the identity, which allows us to say that the arrow “points” from u1 to u5. It has also

some additional properties which are used below.

We now formulate a graph property in terms of a graph isomorphism, next show that it is equivalent

to some first order property, and then that it is non-testable.

Definition 3 A graph G with n vertices is said to satisfy property I if n = 6s for some s, and G consists

of 4s isolated vertices and two vertex disjoint (isomorphic) copies of some graph H with s vertices which

has no triangles or pentagons (i.e. cycles of size 3 or 5).

Lemma 7.1 There exists a first order property of type “∀∃” which is indistinguishable from I.

Proof: We define a first order property of graphs in terms of the following restrictions. Note that the

first restriction is of type “∀∃”, while all other restrictions are of type “∀”. Thus their conjunction is a

first order property of type “∀∃”.

• For every vertex x there exist vertices y1, y2, y3, y4, y5 such that the subgraph of G induced by

{x, y1, . . . , y5} is an arrow in some order.

• If x1, . . . , x6 span an arrow in this order, then x2, x3, x4 and x6 do not have any neighbor in G

outside of x1, . . . , x6 (this condition is equivalent to disallowing all induced subgraphs with vertices

u1, . . . , u7 such that u1, . . . , u6 span an arrow in this order and u7 is adjacent to a subset of them

including at least one of u2, u3, u4, u6).

• If x1, . . . , x6 span an arrow in this order, then neither x1 nor x5 are part of any triangle or pentagon

(i.e. a cycle of size 3 or 5), except those which are contained in {x1, . . . , x6}. Moreover, there is no

cycle of size 6 or less which contains both x1 and x5 and is not contained in {x1, . . . , x6}.

• If x1, . . . , x6 and x7, . . . , x12 span arrows in the respective orders, then x7 is not a neighbor of x5,

x11 is not a neighbor of x1, and finally x7 is a neighbor of x1 if and only if x11 is a neighbor of x5.

Claim 1 If a graph G with n vertices satisfies these conditions, then n = 6s for some s and the vertex

set of G can be partitioned into s sets of size 6 such that each of them spans an arrow.
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Proof: The first condition implies that every vertex of G is contained in some (induced) arrow, so it is

sufficient to prove that every two arrows are vertex disjoint. An arrow contains a cycle u1u2u6u5u4u3u1

of length 6. Thus if u1, . . . , u6 span an arrow (in this order), there is no other arrow which contains

both u1 and u5 because they are not both contained in any other such cycle. Since u2, u3, u4, u6 have

no neighbors outside of u1, . . . , u6, no arrow can contain any of them without containing both u1 and

u5 because of its 2-connectedness. Finally, no arrow can contain one of the vertices u1 and u5 without

containing any of u2, u3, u4, u6 because this would make this vertex a part of a triangle or a pentagon

which is not contained in {u1, . . . , u6}. 2

Claim 2 If a graph G with n = 6s vertices satisfies the above conditions, and the vertices of G are

relabeled u1, . . . , un such that for every 1 ≤ i ≤ s the vertices u6i−5, . . . , u6i span an arrow in this order,

then the subgraph H induced by {u6i−5|1 ≤ i ≤ s} and the subgraph H ′ induced by {u6i−1|1 ≤ i ≤ s} are

isomorphic and have no edges between them.

Proof: The last condition guarantees that there are no edges between H and H ′, and also that by

mapping the vertex u6i−5 to the vertex u6i−1 for every 1 ≤ i ≤ s one gets an isomorphism between H

and H ′. 2

Returning to the proof of the lemma, let us first assume that G satisfies the conditions above, and

that its vertices are relabeled u1, . . . , un as in Claim 2 above. We modify G by removing all edges among

u6i−5, . . . , u6i for every fixed i. This changes G in 8s = 4
3n places. The resulting graph contains (by

Claim 2) two isomorphic induced subgraphs H and H ′ with s vertices each and no other edges, with H

and H ′ being also triangle and pentagon free. Thus I is satisfied.

On the other hand, if G satisfies I, we relabel its vertices by u1, . . . , un such that the subgraph induced

by {u6i−5|1 ≤ i ≤ s} and the subgraph induced by {u6i−1|1 ≤ i ≤ s} are isomorphic by the mapping

which takes u6i−5 to u6i−1, and G contains no edges not contained in one of these graphs. Remember also

that G contains no triangles or pentagons. We then modify G by placing 8 edges among u6i−5, . . . , u6i

for each fixed i, so that u6i−5, . . . , u6i span an arrow in the modified graph in that order. The modified

graph satisfies the first order property defined above (for every fixed i the distance between u6i−5 and

u6i−1 is now 3 so none of these pairs would become a part of a single cycle of size 6 or less which is not

contained in the corresponding arrow). 2

We say that a graph H and a graph H ′ with s vertices each are ε-apart if no graph which differs from

H in no more than εs2 places is isomorphic to H ′. In the following we use the existence of many graphs

which are mutually far apart. This is a consequence of the following simple lemma.

Lemma 7.2 There exist constants ε = ε7.2 and S = S7.2 such that every graph H with s > S (labeled)

vertices is ε-far from all other graphs with the same vertex set but at most 2s
2/5 of them.
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Proof: Choose ε < 1
2 so that ( eε )

ε < 21/10, and choose S > ε−1 so that for every s > S the inequality

ss < 2s
2/10 holds. Now the number of graphs which are not ε-apart from a given graph H with s vertices

is bounded by

s!
εs2∑
i=0

((s
2

)
i

)
< s!

(
s2

εs2

)
< ss(

e

ε
)εs

2
< 2s

2/5

as required. 2

The following simple lemma about bipartite graphs follows from standard bounds for binomial distri-

bution (see e.g. [3], Appendix A).

Lemma 7.3 There exists T = T7.3 such that for every t > T , at least 1
22t

2
of the possible bipartite graphs

with two given (labeled) classes U1 and U2 of size t each have minimum degree more than 1
3 t, and are

such that for every subset X of U1∪U2 with size between 1
3 t and t there are more than 1

18 t
2 edges between

X and (U1 ∪ U2)−X. 2

We can now prove the existence of two graphs which are far apart and satisfy some other properties,

and yet have the same statistics for small induced subgraphs.

Proposition 7.4 For every D there exist two bipartite graphs H = H7.4(D) and H ′ = H ′7.4(D), both

with a bipartition into two classes of size t = t7.4(D) each, and satisfying the properties appearing in

the formulation of Lemma 7.3, which are ε7.2-apart, and yet every possible graph with D vertices occurs

exactly the same number of times as an induced subgraph in each of them.

Proof: Clearly there are less than 2(D2) possible graphs with D vertices, and each appears less than sD

times in a graph with s vertices. Defining the constant E = 2(D2), we note that there are no more than

(sD)E = 2DE log s possible appearance counts for all such graphs. We choose s = 2t > max{S7.2, 2T7.3}
such that

1
2

2t
2

= 2s
2/4−1 > 2DE log s2s

2/5 = 2s
2/5+DE log s

holds. The existence of the required H and H ′ with s = 2t vertices each follows now from the pigeonhole

principle and the previous lemmas. 2

Corollary 7.5 Property I is not testable.

Proof: We show that there exists no ε-test for I where ε = 1
36 min{1

2ε7.2,
1
72}. Assuming that there exists

such a test, we may assume (see Section 1) that it queries about all pairs from a uniformly random subset

of size D chosen from the vertex set of the input graph, and gives output according to the resulting

induced subgraph.
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Let G be a graph with 12t = 12t7.4(D) vertices which consists of a vertex disjoint union of 8t isolated

vertices and two copies of H7.4(D). Let G′ be a graph with 12t vertices which consists of a vertex disjoint

union of 8t isolated vertices, a copy of H7.4(D), and a copy of H ′7.4(D).

The given ε-test would have precisely the same output probabilities for both G and G′, because both

contain the same number of each possible graph with D vertices as induced subgraphs. However, G

satisfies I (remember that H has in particular no triangles or pentagons) while G′ is ε-far from satisfying

I (because H and H ′ are ε7.2-apart, while their other properties prevent modifying G′ by exchanging

many of the vertices between the copy of H and the copy of H ′). This is a contradiction. 2

Proof of the second part of Theorem 1.1: Immediate from Lemma 7.1 and Corollary 7.5. 2

8 Concluding remarks and open problems

Monotone first order properties

We call a first order property P monotone (nondecreasing) if it is of the form

∀x1,1, . . . , x1,t1∃x2,1, . . . , x2,t2∀x3,1, . . . , x3,t3 . . .∃x2s,1, . . . , x2s,t2sA(x1,1, . . . , x2s,t2s)

where A(x1,1, . . . , x2s,t2s) is a quantifier free expression about graphs which is monotone (i.e. if it holds

for some assignment of its variables with respect to a graph G then it also holds for the same assignment

with respect to any graph containing G). We assume without loss of generality that it is enough to

restrict the range of the variables to the case where they are all assigned distinct values. The expressive

power of these properties is far less than that of general first order properties, as shown in the following.

Proposition 8.1 Every monotone first order property is indistinguishable from some monotone first

order property of type “∀”.

Proof: Given the property P defined by ∀x1,1, . . . , x1,t1 . . .∃x2s,1, . . . , x2s,t2sA(x1,1, . . . , x2s,t2s) with A be-

ing monotone, we write A in terms of all the (labeled) subgraphs which x1,1, . . . , x1,t1 , . . . , x2s,1, . . . , x2s,t2s

are allowed to induce. We construct the property Q defined by

∀x1,1, . . . , x1,t1 , x3,1, . . . , x3,t3 , . . . , x2s−1,1, . . . , x2s−1,t2s−1B(x1,1, . . . , x2s−1,t2s−1),

where B states that the subgraph induced by x1,1, . . . , x1,t1 , x3,1, . . . , x3,t3 , . . . , x2s−1,1, . . . , x2s−1,t2s−1 is a

restriction of one of the subgraphs, allowable by A for x1,1, . . . , x1,t1 , . . . , x2s,1, . . . , x2s,t2s , to the corre-

sponding subset of the variables. Q is clearly a monotone first order property of type “∀”.

Clearly a graph that satisfies P satisfies also Q. On the other hand, given a graph G which satisfies

Q, consider the graph G̃ obtained from G by choosing arbitrarily
∑2s
i=1 ti vertices of G and connecting
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them to themselves as well as to all other vertices of G (this adds less than
∑2s
i=1 tin edges). It is now

easy to see that G̃ satisfies P . 2

In particular, all first order monotone properties are testable (the argument for first order monotone

nonincreasing properties is analogous). In fact, proving the testability of these properties is much easier

than proving testability of general “∃∀” properties, since the Regularity Lemma can be used directly

without having to resort to Corollary 4.2.

Allowing more queries

It may be interesting to define a notion of testability which uses more than a constant number of queries,

and use it to further classify various graph properties (in which case it might be no longer legitimate to

assume that the queries are about all pairs of a randomly chosen set of vertices, e.g. when the number of

allowable queries is Θ(n)).

It seems that a test for the graph isomorphism problem in particular needs a lot of queries (an

Ω(
√

log n) bound follows in fact from analyzing the proof in the previous section); it would be interesting

to find the exact order of magnitude of the number of queries required for testing it. An Ω(
√
n) bound

on the number of queries follows from analyzing the behavior of a tester on one input constructed using

two random graphs, and another input constructed using two copies of the same random graph.

The constants involved

The bound on the number of queries C of the ε-test described in Section 6 is huge. It is in fact a tower

of towers in both ε−1 and the number of variables participating in the given first order expression.

For monotone first order expressions the bound is expressible by the tower function instead (since the

Regularity Lemma can be used directly in this case), but this is still extremely large. Moreover, it cannot

be avoided as long as the full version of the Regularity Lemma is required for the proofs, as follows from

the main result of [9]. For properties shown testable in [8], ε-testers whose number of queries is polynomial

in ε−1 are given. However, it is worth noting that using the number theoretic construction of Behrend [4]

we can show that any one-sided error ε-test for some simple properties, like being triangle-free, requires

a number of queries which cannot be bounded by a polynomial in ε−1 (by the existence of graphs which

are ε-far from being triangle-free and yet do not contain too many distinct triangles).

It would be interesting to find a different proof for the testability of properties of type “∃∀” (or even

a subclass of them such as the monotone “∀” properties), without using the Regularity Lemma, as it

might give a better bound on the number of queries an ε-test makes.
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Further characterization of testable graph properties

Finally, it would be very interesting to give a classification of all testable graph properties. At the moment

this seems to be very difficult; many of the properties proven in [8] to be testable do not have one-sided

tests, so the notion of F-colorability presented here does not cover them.
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