COS 521: Advanced Algorithm Design Homework 3

Due: Thu, April 15

Collaboration Policy: You can collaborate in groups of at most two students. Try to solve the problems without referring to any texts. If you do refer to a text, indicate this on your homework, you might not get full credit.

1. We saw that the bottleneck flow algorithm combined with the augmenting path algorithm gave an $O\left(\min \left(m n^{2 / 3}, m^{5 / 2}\right)\right)$ time algorithm for maxflow in a simple graph. Use similar ideas to develop an $O(m \sqrt{n})$ time algorithm for finding a maximum matching in bipartite graphs.
2. A bridge in a graph is an edge whose removal disconnects the graph into two components. Prove that a bridgeless cubic graph (all vertices have degree 3) has a perfect matching.
3. In the last homework we defined a cycle cover for a directed graph $G=(V, A)$. It is a collection of cycles such that each vertex is in exactly one cycle. Show that you can test for and find a cycle cover if one exists using an algorithm for matching.
4. Let A be a totally unimodular matrix. Prove that the polyhedron defined by the inequalities $a \leq A x \leq b$ and $c \leq x \leq d$ is integral for all integral vectors a, b, c, d.
5. A 0,1 matrix is called a consecutive-ones matrix if in each column all the 1 occur consecutively. Show that a consecutive-one matrix is a network matrix.
6. The vertex cover problem asks for the minimum number of vertices that cover all the edges of a graph. Consider the following LP relaxation for the problem on a graph $G=(V, E)$. There is a variable $x(u)$ for each vertex u. The LP is

$$
\min \sum_{u} x(u) \quad \text { s.t } \quad x(u)+x(v) \geq 1 \quad \forall(u, v) \in E \quad \text { and } \quad x(u) \geq 0 \quad \forall u \in V
$$

Prove that the vertices of the polyhedron are half-integral, that is each coordinate is in $\{0,1 / 2,1\}$. Can you show this for all LPs that have only two variables per inequality?

