COS 521: Advanced Algorithm Design Homework 1
 Due: Tue, Mar 9

Collaboration Policy: You may collaborate with other students on problems 3 and 4. You must do problems 1 and 2 on your own. Collaboration is limited to discussion of ideas only, and you should write up the solutions entirely on your own and list your collaborators as well as cite any references you may have used.

1. Definition 0.1 A family of hash functions $H=\{h: M \rightarrow N\}$ is said to be a perfect hash family if for each set $S \subseteq M$ of size $s \leq n$, there exists a hash function $h \in H$ that is perfect for S.
Assuming that $n=s$, show that any perfect hash family must have size $2^{\Omega(s)}$.
2. Consider the following generalization of perfect hash functions.

Definition 0.2 Let $b_{i}(h, S)=\mid\{x \in S \mid h(x)=i\}$. A hash function h is b-perfect for S if $b_{i}(h, S) \leq b$ for each i. A family of hash functions $H=\{h: M \rightarrow N\}$ is said to be $a b$-perfect hash family if for each $S \subseteq M$ of size s there exists a hash function $h \in H$ that is b-perfect for S.

Show that there exists a b-perfect hash family H such that $b=O(\log n)$ and $|H| \leq m$, for any $m \geq n$.
3. Give an algorithm to find an intial basic feasible solution for the Simplex algorithm. (Hint: Use the Simplex algorithm itself).
4. Consider the following optimization problem with robust conditions:

$$
\min \left\{c^{T} x: x \in \Re^{n} ; A x \geq b \text { for any } A \in F\right\}
$$

where $b \in \Re^{m}$ and F is a set of $m \times n$ matrices:

$$
F=\left\{A ; \forall i, j ; a_{i j}^{\min } \leq a_{i j} \leq a_{i j}^{\max }\right\} .
$$

(a) Considering F as a polytope in $\Re^{m \times n}$, what are the vertices of F ?
(b) Show that instead of conditions for all $A \in F$, it is enough to consider the vertices of F. Write the resulting linear program. What is its size? Is this poynomial in the size of the inpu, namely m, n and the sizes of $b, c, a_{i j}^{\min }$ and $a_{i j}^{\max }$?
(c) Derive a more efficient description of the linear program: Write the conditions on x given by one row of A, for all choices of A. Formulate the condition as a linear program. Use duality and formulate the original problem as a linear program. What is the size of this one? Is this polynomial in the size of the input?

