
Problems to test basic knowledge of undergraduate algorithms.

Problem 1 We are given a set of n intervals on the real line, I1, I2, . . . , In. Each interval Ij is specified as
(`i, ri) where `i is the left end point and ri is the right end point. There is a positive weight wj associated
with Ij . Use dynamic programming to find the maximum weight subset of intervals that do not overlap. You
can assume that the intervals are open intervals. Suppose we allow intervals to overlap but we require that the
maximum number of intervals that can contain any point x on the real line is B for some constant B > 1. Can
you generalize your algorithm to find a maximum weight subset of intervals that satisfy this relaxed condition?
What is the running time of your algorithm?

Problem 2 Lipton and Tarjan showed that for any n vertex planar graph there is a balanced separator of size
O(

√
n). A balanced separator is set of vertices whose removal partitions the graph into two disconnected graphs

each with no more than 2n/3 vertices. They also show that such a separator can be found in polynomial time.
Use these facts to show how to compute a maximum independent set in G in 2O(

√

n) time. An independent set
in a graph is a set of vertices that do not have edge between them.

Hint: Use divide and conquer and dynamic programming.

Problem 3 The classical 0, 1 knapsack problem is the following. We are given a set of n items. Item i has
two positive integers associated with it: a size si and a profit pi. We are also given a knapsack of capacity B.
The goal is to find a maximum profit subset of items that can fit into the knapsack. Use dynamic programming
to obtain an exact algorithm for this problem that runs in O(nB) time. Also obtain an algorithm with running
time O(nP ) where P =

∑n
i=1 pi. Note that both these algorithms are not polynomial time algorithms. Do you

see why?

Now we consider a greedy algorithm for this problem. Assume without loss of generality that the items are
numbered such that s1/p1 ≤ s2/p2 ≤ . . . ≤ sn/pn. The algorithm considers items in this order and places
them in the knapsack until for the first time an item cannot be placed because it would violate the knapsack
capacity. Let pG be the profit of items packed by Greedy when it stops. Suppose for some ε < 1, sj ≤ εB for
1 ≤ j ≤ n. Show that pG ≥ (1 − ε)O where O is the value of an optimum solution.

1


