

Kinematics

Thomas Funkhouser Princeton University C0S 426, Spring 2004

Overview

- Kinematics
 - Considers only motion
 - Determined by positions, velocities, accelerations
- Dynamics
 - Considers underlying forces
 - Compute motion from initial conditions and physics

• Two links connected by rotational joints $\Theta_2 \qquad \text{"End-Effector"}$

Summary of Kinematics

- · Forward kinematics
 - Specify conditions (joint angles)
 - Compute positions of end-effectors
- · Inverse kinematics
 - o "Goal-directed" motion
 - Specify goal positions of end effectors
 - Compute conditions required to achieve goals

Inverse kinematics provides easier specification for many animation tasks, but it is computationally more difficult

Overview

- Dynamics
 - Considers underlying forces
 - Compute motion from initial conditions and physics

Dynamics

· Simulation of physics insures realism of motion

Lasseter '87

Spacetime Constraints

- · Animator specifies constraints:
 - What the character's physical structure is
 - » e.g., articulated figure
 - What the character has to do » e.g., jump from here to there within time t
 - $_{\circ}\,$ What other physical structures are present » e.g., floor to push off and land
 - How the motion should be performed » e.g., minimize energy

Spacetime Constraints

- Computer finds the "best" physical motion satisfying constraints
- Example: particle with jet propulsion
 - x(t) is position of particle at time t
 - o f(t) is force of jet propulsion at time t
 - o Particle's equation of motion is:

$$mx'' - f - mg = 0$$

 Suppose we want to move from a to b within t₀ to t₁ with minimum jet fuel:

Minimize
$$\int_{t_0}^{t_1} |f(t)|^2 dt$$
 subject to $x(t_0) = a$ and $x(t_1) = b$
Witkin & Kass `8

Spacetime Constraints

• Discretize time steps:

$$x'_{i} = \frac{x_{i} - x_{i-1}}{h}$$
$$x''_{i} = \frac{x_{i+1} - 2x_{i} + x_{i-1}}{h^{2}}$$

$$m\left(x''_{i} = \frac{x_{i+1} - 2x_{i} + x_{i-1}}{h^{2}}\right) - f_{i} - mg = 0$$

Minimize $h\sum_{i}|f_{i}|^{2}$ subject to $x_{0}=a$ and $x_{1}=b$

Spacetime Constraints

- · Advantages:
 - Free animator from having to specify details of physically realistic motion with spline curves
 - Easy to vary motions due to new parameters and/or new constraints
- · Challenges:
 - Specifying constraints and objective functions
 - Avoiding local minima during optimization

Other physical simulations: Rigid bodies Soft bodies Cloth Liquids Gases etc.

Hot Gases

Summary

- Kinematics
 - Forward kinematics
 - » Animator specifies joints (hard)
 - » Compute end-effectors (easy assn 4!)
 - Inverse kinematics
 - » Animator specifies end-effectors (easier)
 - » Solve for joints (harder)
- Dynamics
 - Space-time constraints
 - » Animator specifies structures & constraints (easiest)
 - » Solve for motion (hardest)
 - Also other physical simulations