Computer Animation

Thomas Funkhouser
Princeton University
COS 426, Spring 2004

Computer Animation

• What is animation?
 ◦ Make objects change over time according to scripted actions

• What is simulation?
 ◦ Predict how objects change over time according to physical laws

Outline

• Principles of animation
• Articulated figures
• Keyframe animation

Principles of Traditional Animation

• Squash and stretch
• Slow In and out
• Anticipation
• Exaggeration
• Follow through and overlapping action
• Timing
• Staging
• Straight ahead action and pose-to-pose action
• Arcs
• Secondary action
• Appeal

Angel Plate 1

Principles of Traditional Animation

• Squash and stretch
• Slow In and out
• Anticipation
• Exaggeration
• Follow through and overlapping action
• Timing
• Staging
• Straight ahead action and pose-to-pose action
• Arcs
• Secondary action
• Appeal

Disney

Lasseter '87
Principles of Traditional Animation

- Squash and stretch
- *Slow In and out*
- Anticipation
- Exaggeration
- Follow through and overlapping action
- Timing
- Staging
- Straight ahead action and pose-to-pose action
- Arcs
- Secondary action
- Appeal

Diary

Principles of Traditional Animation

- Slow In and Out

Watt Figure 13.5

Principles of Traditional Animation

- Squash and stretch
- Slow In and out
- Anticipation
- Exaggeration
- Follow through and overlapping action
- Timing
- Staging
- Straight ahead action and pose-to-pose action
- Arcs
- Secondary action
- Appeal

Diary

Principles of Traditional Animation

- Anticipation (and squash & stretch)

Lasseter ‘87

Example: Roadrunner

Warner Brothers
Computer Animation

- Animation pipeline
 - 3D modeling
 - Motion specification
 - Motion simulation
 - Shading, lighting, & rendering
 - Postprocessing

Example: Luxo Jr.

Outline

- Principles of animation
- Articulated figures
- Keyframe animation

Articulated Figures

- Character poses described by set of rigid bodies connected by "joints"

Articulated Figures

- Well-suited for humanoid characters

Articulated Figures

- Joints provide handles for moving articulated figure
Example: Robot

Articulated Figures

• Inbetweening
 ◦ Compute joint angles between keyframes

Outline

• Principles of animation
• Articulated figures
• Keyframe animation

Keyframe Animation

• Define character poses at specific time steps called “keyframes”

Keyframe Animation

• Interpolate variables describing keyframes to determine poses for character in between

Keyframe Animation

• Inbetweening:
 ◦ Linear interpolation - usually not enough continuity
Keyframe Animation

- Inbetweening:
 - Spline interpolation - maybe good enough

H&B Figure 16.11

Keyframe Animation

- Inbetweening:
 - Cubic spline interpolation - maybe good enough
 - May not follow physical laws

Lasseter '87

Keyframe Animation

- Inbetweening:
 - Cubic spline interpolation - maybe good enough
 - May not follow physical laws

Lasseter '87

Keyframe Animation

- Inbetweening:
 - Inverse kinematics or dynamics

Rose et al. '96

Example: Walk Cycle

- Articulated figure:

Watt & Watt

Example: Walk Cycle

- Hip joint orientation:

Watt & Watt
Example: Walk Cycle

- Knee joint orientation:

(Watt & Watt)

Example: Walk Cycle

- Ankle joint orientation:

(Watt & Watt)

Example: Robot

(Mihai Parparita, COS 426, Princeton University, 2003)

Example: Ice Skating

(Mao Chen, Zaijin Guan, Zhiyan Liu, Xiaohu Qu, CS426, Fall98, Princeton University)

Example: Red’s Dream

(Pixar)

Challenges of Animation

- Temporal aliasing
- Motion blur
Temporal Aliasing

- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Temporal Aliasing

- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Temporal Aliasing

- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Temporal Aliasing

- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Motion Blur

- Composite weighted images of adjacent frames
 - Remove parts of signal under-sampled in time

Summary

- Animation requires ...
 - Modeling
 - Scripting
 - Inbetweening
 - Lighting, shading
 - Rendering
 - Image processing