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COS 426, Spring 2004

Curves in Computer Graphics

• Fonts ���
• Animation paths

• Shape modeling

• etc…

Animation
(Angel, Plate 1)

Shell
(Douglas Turnbull, 

CS 426, Fall99)

Implicit curves

An implicit curve in the plane is expressed as:

f(x, y) = 0

Example: a circle with radius r centered at origin:

x2 + y2 - r2 = 0
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Parametric curves

A parametric curve in the plane is expressed as:

x = fx(u)
y = fy(u)

Example: a circle with radius r centered at origin:

x = r cos u
y = r sin u
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Parametric curves

How can we define arbitrary curves?

x = fx(u)
y = fy(u)

Parametric curves

How can we define arbitrary curves?

x = fx(u)
y = fy(u)

Use functions that “blend” control points

x = fx(u) = V0x*(1 - u) + V1x*u
y = fy(u) = V0y*(1 - u) + V1y*u
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Parametric curves

More generally:
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Parametric curves

What B(u) functions should we use?
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Parametric curves

What B(u) functions should we use?
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Parametric curves

What B(u) functions should we use?
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Goals

• Some attributes we might like to have:
� Interpolation
� Continuity
� Predictable control
� Local control

• We’ll satisfy these goals using:
� Piecewise
� Parametric
� Polynomials

Continuity

• Parametric continuity (Cn)
� How many times differentiable is the 

curve at a given point

• Continuity at joints:
� C0 continuity means curve is connected at joint
� C1 continuity means that segments 

share same first derivative at joint
� Cn continuity means that segments 

share same nth derivative at joint
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Parametric Polynomial Curves

• Blending functions are polynomials:

• Advantages of polynomials
� Easy to compute
� Infinitely continuous
� Easy to derive curve properties
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Parametric Polynomial Curves

• Derive polynomial Bi(u) to ensure properties
� Example: interpolation of control vertices
� What about easy of control?
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Piecewise Parametric Polynomial Curves

• Splines:
� Split curve into segments
� Each segment defined by 

blending subset of control vertices

• Motivation:
� Provides control & efficiency
� Same blending function for every segment
� Prove properties from blending functions

• Challenges 
� How choose blending functions?
� How guarantee continuity at joints?
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Piecewise Parametric Polynomial Curves

• Compute polynomial Bi(u) to ensure properties
� Example: interpolation of control vertices

and C2 continuity at joints with cubics
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Cubic Piecewise Parametric Polynomial Curves

• From now on, consider cubic blending functions
� All ideas generalize to higher degrees

• In CAGD, higher-order functions are often used
� Hard to control wiggles

• In graphics, piecewise cubic curves will do
� Smallest degree that allows C2 continuity 

for arbitrary curves

Types of Splines

• Splines covered in this lecture
� Hermite 
� Bezier
� Catmull-Rom
� B-Spline

• There are many others

Each has different blending functions
resulting in different properties

Each has different blending functions
resulting in different properties
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Cubic Hermite Splines

• Definition:
� Each segment defined by 

position and derivative at
two adjacent control vertices

� Blending functions are
cubic polynomials

• Properties:
� Interpolates control points
� C1 continuity at joints
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Cubic Hermite Splines

• Definition:
� Each segment defined by 

position and derivative at
two adjacent control vertices

� Blending functions are
cubic polynomials

• Properties:
� Interpolates control points
� C1 continuity at joints
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P(u) = B0(u)*V0 + B1(u)*V1 + B2(u)*V2+ B3(u)*V 3
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Cubic Hermite Splines

• Blending functions:
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Cubic Hermite Splines

Blending functions:
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Types of Splines

• Splines covered in this lecture
� Hermite 
Ø Bezier
� Catmull-Rom
� B-Spline

• There are many others

Each has different blending functions
resulting in different properties

Each has different blending functions
resulting in different properties

Bezier curves

Blending functions:
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Bézier curves
• Developed simultaneously in 1960 by

� Bézier (at Renault) 
� deCasteljau (at Citroen)

• Curve Q(u) is defined by nested interpolation:

Vi’s are control points
{V0, V1, …, Vn} is control polygon
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Q(u)

Basic properties of Bézier curves

• Endpoint interpolation:

• Convex hull: 
� Curve is contained within convex hull of control polygon

• Symmetry

0)0( VQ =

nVQ =)1(

},...,{by  defined )1(      },...,{by  defined )( 00 VVuQVVuQ nn −≡

Explicit formulation

• Let’s indicate level of nesting with superscript j:

• An explicit formulation of Q(u) is given by:

• Case n=2:
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More properties

• General case: Bernstein polynomials

• Degree: is a polynomial of degree n

• Tangents:
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Matrix form

Bézier curves may be described in matrix form:
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Display

Q: How would you draw it using line segments?

A: Recursive subdivision!
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Display

Pseudocode for displaying Bézier curves:

procedure Display({Vi}):
if {V i} flat within ε
then

output line segment V0Vn

else
subdivide to produce {Li} and {Ri}
Display({Li})
Display({Ri})

end if
end procedure

Flatness

Q: How do you test for flatness?

A: Compare the length of the control polygon
to the length of the segment between endpoints

ε+<
−

−+−+−
1

||

||||||

03

231201

VV

VVVVVV

V0

V1

V2

V3

Splines
• For more complex curves, piece together Béziers

• We want continuity across joints:
� Positional (C0) continuity
� Derivative (C1) continuity

• Q: How would you satisfy continuity constraints?

• Q: Why not just use higher-order Bézier curves?

• A: Splines have several of advantages:

• Numerically more stable

• Easier to compute

• Fewer bumps and wiggles

Types of Splines

• Splines covered in this lecture
� Hermite 
� Bezier
Ø Catmull-Rom
� B-Spline

• There are many others

Each has different blending functions
resulting in different properties

Each has different blending functions
resulting in different properties

Catmull-Rom splines

• Properties
� Interpolate control points
� Have C0 and C1 continuity

• Derivation
� Start with joints to interpolate
� Build cubic Bézier between each joint
� Endpoints of Bézier curves are obvious

• What should we do for the other 
Bézier control points?

Catmull-Rom Splines

• Catmull & Rom use:
� half the magnitude of the vector between adjacent CP’s

• Many other formulations work, for example:

� Use an arbitrary constant τ times this vector
� Gives a “tension” control 
� Could be adjusted for each joint
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Matrix formulation

Convert from Catmull-Rom CP’s to Bezier CP’s:

Exercise: Derive this matrix.
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Properties

• Catmull-Rom splines have these attributes:

� C1 continuity

� Interpolation

� Locality of control

� No convex hull property

(Proof left as an exercise.)

Types of Splines

• Splines covered in this lecture
� Hermite 
� Bezier
� Catmull-Rom
Ø B-Spline

• There are many others

Each has different blending functions
resulting in different properties

Each has different blending functions
resulting in different properties

B-Splines
• Properties:

� Local control
� C2 continuity
� Cubic polynomials

• Constraints:
� Three continuity conditions at each joint j

» Position of two curves same
» Derivative of two curves same
» Second derivatives same

� Local control
» Each joint affected by 4 

control vertices

• Give up interpolation :)
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B-Splines

• Blending functions:
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B-Splines

Blending functions:
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Matrix formulation for B-splines

• Grind through some messy math to get:
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Summary

• Splines: mathematical way to express curves

• Motivated by “loftsman’s spline”
� Long, narrow strip of wood/plastic
� Used to fit curves through specified data points
� Shaped by lead weights called “ducks”
� Gives curves that are “smooth” or “fair”

• Have been used to design:
� Automobiles
� Ship hulls
� Aircraft fuselage/wing

What’s next?

• Use curves to create parameterized surfaces

• Surface of revolution

• Swept surfaces

• Surface patches

Demetri Terzopoulos Przemyslaw Prusinkiewicz 


