Subdivision Surfaces

Thomas Funkhouser
Princeton University
COS 426, Spring 2004

Surfaces

• What makes a good surface representation?
 ◦ Accurate
 ◦ Concise
 ◦ Intuitive specification
 ◦ Local support
 ◦ Affine invariant
 ◦ Arbitrary topology
 ◦ Guaranteed continuity
 ◦ Natural parameterization
 ◦ Efficient display
 ◦ Efficient intersections

H&B Figure 10.46

Modeling

• How do we ...
 ◦ Represent 3D objects in a computer?
 ◦ Construct 3D representations quickly/easily?
 ◦ Manipulate 3D representations efficiently?

Different representations for different types of objects

3D Object Representations

• Raw data
 ◦ Voxel
 ◦ Point cloud
 ◦ Range image
 ◦ Polygons

• Solids
 ◦ Octree
 ◦ BSP tree
 ◦ CSG
 ◦ Sweep

3D Object Representations

• Raw data
 ◦ Voxel
 ◦ Point cloud
 ◦ Range image
 ◦ Polygons

• Solids
 ◦ Octree
 ◦ BSP tree
 ◦ CSG
 ◦ Sweep

• Surfaces
 ◦ Mesh
 ◦ Subdivision
 ◦ Parametric
 ◦ Implicit

• High-level structures
 ◦ Scene graph
 ◦ Skeleton
 ◦ Application specific

• High-level structures
 ◦ Scene graph
 ◦ Skeleton
 ◦ Application specific

H&B Figure 10.46

Surfaces

H&B Figure 10.46
Subdivision
- How do you make a smooth curve?

![Image](image1)

Key Questions
- How refine mesh?
 - Aim for properties like smoothness
- How store mesh?
 - Aim for efficiency for implementing subdivision rules

![Image](image2)

Loop Subdivision Scheme
- How position new vertices?
 - Choose locations for new vertices as weighted average of original vertices in local neighborhood

![Image](image3)

Subdivision Surfaces
- Coarse mesh & subdivision rule
 - Define smooth surface as limit of sequence of refinements

![Image](image4)

Loop Subdivision Scheme
- How refine mesh?
 - Refine each triangle into 4 triangles by splitting each edge and connecting new vertices

![Image](image5)

Loop Subdivision Scheme
- Rules for extraordinary vertices and boundaries:
 - a. Mark for odd vertices
 - b. Mark for even vertices

![Image](image6)
Loop

• How to choose β?
 - Analyze properties of limit surface
 - Interested in continuity of surface and smoothness
 - Involves calculating eigenvalues of matrices
 - Original Loop
 $$\beta = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{4} \left(\frac{1}{n} + \frac{1}{2} \cos \frac{2\pi}{n} \right)^2 \right)$$
 - Warren
 $$\beta = \left\{ \begin{array}{ll}
 \frac{1}{n} & n > 3 \\
 \frac{1}{3} & n = 3
 \end{array} \right.$$
Key Questions

• How refine mesh?
 • Aim for properties like smoothness

• How store mesh?
 • Aim for efficiency for implementing subdivision rules

Polygon Meshes

• Mesh Representations
 • Independent faces
 • Vertex and face tables
 • Adjacency lists
 • Winged-Edge

Independent Faces

• Each face lists vertex coordinates
 • Redundant vertices
 • No topology information

Vertex and Face Tables

• Each face lists vertex references
 • Shared vertices
 • Still no topology information

Adjacency Lists

• Store all vertex, edge, and face adjacencies
 • Efficient topology traversal
 • Extra storage

Partial Adjacency Lists

• Can we store only some adjacency relationships and derive others?
Triangle Meshes

- Relevant properties:
 - Exactly 3 vertices per face
 - Any number of faces per vertex

- Useful adjacency structure for Loop subdivision:
 - Do not represent edges explicitly
 - Faces store refs to vertices and neighboring faces
 - Vertices store refs to adjacent faces and vertices

Assignment 3

- Edit coarse mesh while display subdivided mesh

Assignment 3

- Store hierarchy of meshes
 - Full triangle mesh at every level
 - Vertices references to counterparts
 - One level up and one level down
 - Enables efficient re-positioning of mesh vertices after interactive dragging
Summary

- Advantages:
 - Simple method for describing complex surfaces
 - Relatively easy to implement
 - Arbitrary topology
 - Local support
 - Guaranteed continuity
 - Multiresolution

- Difficulties:
 - Intuitive specification
 - Parameterization
 - Intersections