4 N\

3D Polygon Rendering gﬁ

3D Polygon
Rendering Pipeline
Thomas Funkhouser

Princeton University
COS 426, Spring 2004

« Many applications use rendering of 3D polygons
with direct illumination

Ve

3D Polygon Rendering W

¢ Many applications use rendering of 3D polygons
with direct illumination

Ve

Ray Casting Revisited

» For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color of sample based on surface radiance

o | o ° o o | o

° o o

°

oo | o

0 o opeeno
oo o ETE e

°

More efficient algorithms
utilize spatial coherence!

Vs

3D Polygon Rendering

« Many applications use rendering of 3D polygons
with direct illumination

Quake Il
(1d Software) J
4 N\
3D Polygon Rendering Qﬁ

* What steps are necessary to utilize
spatial coherence while drawing
these polygons into a 2D image?

.
oo o T TE e
oo | o

°
o

o o ore
°

Vs

3D Rendering Pipeline (for direct illumination) Ev

3D Primitives

Modeling
Transformation
Lighting
Viewing
Transformation

Pro}ecll(] n

This is a pipelined
sequence of operations
to draw a 3D primitive
into a 2D image

Transf

Clipping

Viewport.
Transformation

Scan,
Conversion

formation

Image Y,

Ve

3D Rendering Pipeline (for direct illumination) v

3D Primitives
Modelng
Transformation
Lighting
Viewing
Transformation
Projection
Transformation
Clipping

Transform into 3D world coordinate system

Viewport
Transformation

Scan
Conversion

Image)

Ve

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation
Lighting
Viewing
Transformation
Prog'ectio n
Transformation
Clipping
Viewport
Transformation

Transform into 3D world coordinate system
llluminate according to lighting and reflectance

Transform into 3D camera coordinate system

Scan
Conversion

I
mage Y,

Ve

3D Rendering Pipeline (for direct illumination) uw

3D Primitives_

Model |ng/\
Transformation

gl Begi n(GL_POLYGON) ;

gl Vertex3f (0.0, 0.0, 0.0);

gl Vertex3f(1.0, 0.0, 0.0);

gl Vertex3f(1.0, 1.0, 1.0);
ransformation

gl Vertex3f(0.0, 1.0, 1.0);

gl End();

Projection
Transformation
Clipping

OpenGL executes steps
of 3D rendering pipeline
for each polygon

Viewport
Transformation

Vs

Scan
Conversion
Image Y,
N

3D Rendering Pipeline (for direct illumination) w

3D Primitives
Modeling
Transformation
Lighting
Viewing -
Transformation
Pru}ection_
Transformation
Clipping
Viewport
Transformation
Scan
Conversion

Image)

Transform into 3D world coordinate system

llluminate according to lighting and reflectance

Vs

3D Rendering Pipeline or directitumination) z?

3D Primitives
Modeling

Transformation
Lighting
Viewing

Prog'ection

Transform into 3D world coordinate system
llluminate according to lighting and reflectance
Transform into 3D camera coordinate system

Transformation | Transform into 2D camera coordinate system

Clipping
Viewport
Transformation

Scan
Conversion

Image Y,

3D Rendering Pipeline (for direct illumination) v

4 2\

3D Primitives
Transform into 3D world coordinate system
llluminate according to lighting and reflectance

Transform into 3D camera coordinate system

Projection

Transformation Transform into 2D camera coordinate system

Clip primitives outside camera’s view

Viewport.
Transformation

Scan,
Conversion

3D Rendering Pipeline (for direct illumination) v

Image Y,

- 2

3D Primitives

Modeling
Transformation
Lighting

Transform into 3D camera coordinate system

Transform into 3D world coordinate system

llluminate according to lighting and reflectance

Transform into 2D camera coordinate system

Clipping Clip primitives outside camera’s view

Vi . . .
Transform into image coordinate system

Ve

3D Rendering Pipeline (for direct illumination) uw

3D Primitives

Modeling
Transformation

Transform into 3D camera coordinate system

Transform into 3D world coordinate system

llluminate according to lighting and reflectance

Tranemeton] Transform into 2D camera coordinate system

Clip primitives outside camera’s view

Vi . . .
Transform into image coordinate system

Scan
Conversion

Image

Vs

3D Rendering Pipeline (for direct illumination) w

3D Primitives

Transform into 3D world coordinate system
llluminate according to lighting and reflectance
Transform into 3D camera coordinate system
Transform into 2D camera coordinate system
Clip primitives outside camera’s view

Vi . . .
Transform into image coordinate system

. Draw pixels (includes texturing, hidden surface, ...)

- Draw pixels (includes texturing, hidden surface, ...)
Image)
-
Transformations
p(x.y,2)

3D Object Coordinates Transformations map points from

one coordinate system to another

Modeling

Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

3D Camera
Coordinates

3D Object
— Coordinates
Projection
Transformation

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates 3D World

Coordinates

Image

p
Viewing Transformations

p'(X.y)

p(x.y,2)

3D Object Coordinates

Modeling
Transformation

3D World Coordinates
Viewing
Transformation

3D Camera Coordinates

Viewing Transformations

Pro}ection_
Transformation

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

p'(X.y)

-
Camera Coordinates ﬁ

« Canonical coordinate system
o Convention is right-handed (looking down -z axis)
o Convenient for projection, clipping, etc.

Camera up vector
y 4 mapstoY axis

Camera right vector
maps to X axis

>

X

Camera back vector
maps to Z axis
(pointing out of page) "z

J

e A
Finding the viewing transformationgg

« We have the camera (in world coordinates)
* We want T taking objects from world to camera

pC=T pW

« Trick: find T taking objects in camera to world

psz—ipC

X a b c dfx

yi_|e f g hiy

Z17li] ok 1|z

w m n o p|w

2 y

p
Viewing Transformations

p(xy.2)

3D Object Coordinates

Modeling

Transformation

3D World Coordinates
Viewing
Transformation
3D Camera Coordinates Viewing Transformations

Pro#ectlorg
Transformation

2D Screen Coordinates

Viewport
Transformation
2D Image Coordinates

p'(x.y")

-~

Viewing Transformation W

* Mapping from world to camera coordinates
o Eye position maps to origin
o Right vector maps to X axis
o Up vector maps to Y axis " back

o Back vector maps to Z axis right

z .
View
plane

y i

X

Camera

World

Vs

Finding the Viewing Transformation;w;

« Trick: map from camera coordinates to world
o Origin maps to eye position
o Z axis maps to Back vector
o Y axis maps to Up vector
o X axis maps to Right vector

X R U, B, E.|x
4 = Ry u y By Ey y
z R, U, B, E|z
w R, U, B, E,|w

» This matrix is T"1 so we invertitto get T ... easy!

Vs

Projection

* General definition:
o Transform points in n-space to m-space (m<n)

* In computer graphics:
o Map 3D camera coordinates to 2D screen coordinates

Vs

Taxonomy of Projections

Planar geometric

projections
Parallel Perspective
Orthographic Oblique One-point

Top

(plan) Cabinet

Two-point

Ve

Front Axonometric cayalier Three-point
elevation
Side
elevation + Other
Isometric

Other FVFHP Figure 6.13

N

Parallel Projection W

« Center of projection is at infinity
o Direction of projection (DOP) same for all points

Angel Figure 5.4

4 2\
Taxonomy of Projections gﬁ
Planar geometric
projections
Perspective
Orthographic Obliqgue One-point
Top ! Do
(plan) Cabinet Two-point
Front Axonometric cayalier Three-point
elevation
Side
elevation Other
Isometric
Other FVFHP Figure 6.10|
J
Vs

Orthographic Projections

J

Ve

Obligue Projections

» DOP not perpendicular to view plane

i =45 4=45
Cavalier Cabinet
0,
(DOP a =45) (DOP o = 63.4")

* DOP perpendicular to view plane

Top Side

Angel Figure 5.5
J

Vs

Parallel Projection View Volume gga

H&B Figure 12.24]
J

Parallelpiped
View Volume

H&B Figure 12.30|

J

(N
Parallel Projection Matrix ﬁgﬁ
« General parallel projection transformation:
1 0 Lcosp Ofx,
|0 1 Lsing 0]y,
z| o0 0 o0fz
w,| |0 O 0 1)1
J
(N
Perspective Projection W
* Map points onto “view plane” along “projectors”
emanating from “center of projection” (COP)
' Angel Figure 53
-

~
Perspective Projection View VO|UITI£§

Frustum
View Volume

\

EHR!

T __ 2~} Projection

. Reference
ront Point

4)
Taxonomy of Projections gﬁ
Planar geometric
projections
Parallel
Orthographic Obliqgue One-point
TOD . i
(plan) Cabinet Two-point
Front Axonometric Gayajier Three-point
elevation
Side
elevation Other
Isometric
Other FVFHP Figure 6.10|
J
s

H&B Figure 12.30

Perspective Projection

¢ How many vanishing points?

3-Point 2-Point 1-Point

Perspective Perspective Perspective

Angel Figure 5.1
J

4)
Perspective Projection Qﬁ
« Compute 2D coordinates from 3D coordinates
with similar triangles
*y.2) ’
Z (0,0,0) 2

What are the coordinates
of the point resulting from
projection of (x,y,z) onto -y
the view plane?

()
Perspective Projection gnﬁ
e Compute 2D coordinates from 3D coordinates

with similar triangles
(xy.2) 2 Y
z ,
(xD/z, yDIz)) View
Plane
-y
J

4 N
Perspective Projection Matrix W
e 4x4 matrix representation?

X =xDlz X=X
Ys f ch/ Z y': ycC
=D z=2
w, =1 wW=z/D
Xs ? 27?2 7?|%
Ys|_|? ?2 2 2| Y.
z | |??27?°?z
W, ??2?7?1
J
(h
Taxonomy of Projections gwg
Planar geometric
projections
Parallel Perspective
Orthographic Obliqgue One-point

Top Cabinet Two-point
(plan)
Front Axonometric cayalier Three-point
elevation
Side
elevation Other
Isometric

Other FVFHP Figure 6 1/0

-

Perspective Projection Matrix gﬁ
¢ 4x4 matrix representation?
X =xD/z
Ys=Yy.D/z
S = D
w, =1

x| 222 7%
Yo l_|?2 2 2 2|v.
1?2 2?2 2?2 ?
z, 2?2 2z
w| 1?2?2271

p
Perspective Projection Matrix
¢ 4x4 matrix representation?
X =xD/z X'=
Ys = ch/Zc y':))(/cC
Zs :_D ZI:ZC
w, =1 wW=z/D
X1 0 0 0]
Ys|=[0 1 0 0|y
z|7|0 0 1 0fgz
w,| [0 0 1D 01
e N
Perspective vs. Parallel Qﬁ

* Perspective projection
+ Size varies inversely with distance - looks realistic
— Distance and angles are not (in general) preserved
— Parallel lines do not (in general) remain parallel _~

« Parallel projection ¥
+ Good for exact measurements
+ Parallel lines remain parallel
— Angles are not (in general) preserved
— Less realistic looking

Ve

Classical Projections

Front elevation

Isometric

=

One-point perspective

Three-point perspeciive

Angel Figure 5.3
J

Ve

N
3D Rendering Pipeline or directitumination) Q

3D Primitives

Modeling
Transformation

Lighting

Viewing
Transformation
Prog'ectio n
Transformation

Clipping

Viewport
Transformation

Scan.
Conversion

Image

3D World Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

3D Modeling Coordinates

2D Image Coordinates

2D Image Coordinates

Vs

2D Rendering Pipeline

2D Primitives

Clipping

Viewport
Transformation
Scan
Conversion

Image

Clip portions of geometric primitives
residing outside the window

Transform the clipped primitives
from screen to image coordinates

Fill pixels representing primitives
in screen coordinates

-
Viewing Transformations Summary;v;

¢ Camera transformation
o Map 3D world coordinates to 3D camera coordinates
o Matrix has camera vectors as rows

* Projection transformation
o Map 3D camera coordinates to 2D screen coordinates
o Two types of projections:
» Parallel
» Perspective

Vs

(rorslarlon]

(o]

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

Scan.
Conversion

2D Image Coordinates

Image

Vs

2D Rendering Pipeline

2D Primitives

Clip portions of geometric primitives
residing outside the window

Clipping

Transform the clipped primitives
from screen to image coordinates

Viewport
Transformation
Scan_
Conversion

Fill pixels representing primitives
in screen coordinates

Image

Vs

Clipping gnﬁ

« Avoid drawing parts of primitives outside window
o Window defines part of scene being viewed
o Must draw geometric primitives only inside window

Screen Coordinates

Ve

Clipping gﬁ

Ve

Clipping

« Avoid drawing parts of primitives outside window
o Window defines part of scene being viewed
o Must draw geometric primitives only inside window

» Avoid drawing parts of primitives outside window
o Points
o Lines
o Polygons
o Circles
o etc.

Viewing
Window

Ve

Line Clipping

* Find the part of a line inside the clip window

P7

P, ~p
p,— "4 8

Py Pg/

Before Clipping

Viewing
Window
J
Point Clipping
* Is point (x,y) inside the clip window?
wy2 inside =
(x >= wxl) &&
xy) (x <= wx2) &&
. (y >= wyl) &&
(y <= wy2);
wyl
WXl wx2
Window
J
N\
Line Clipping Qﬁ
* Find the part of a line inside the clip window
Py
P,B
p— T4

Ps

P’s

After Clipping

r

Cohen Sutherland Line Clipping %

« Use simple tests to classify easy cases first

Py

P, ~p
P, _——"P, 8

P, Pg /
P, PQ/

-
Cohen Sutherland Line Clipping

¢ Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

P7

Bit 4

4)

Cohen Sutherland Line Clipping @'@%

* Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

P?

Bit 4

-

-
Cohen Sutherland Line Clipping &

¢ Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

P;

P, NS p
PS/P4 8

P, Pe P1o
Py P, |

Bit 1 Bit 2)

Bit 4

Vs

~
Cohen Sutherland Line Clipping @

¢ Classify some lines quickly by AND of bit codes
representing regions of two endpoints (must be 0)

Pz

Bit 4

Vs

Cohen-Sutherland Line Clipping @E

» Compute interesections with window boundary for
lines that can’t be classified quickly

P:

Bit 4

P,—0000 ' *

P, P,

Bit 1 Bit 2)

10

r

-
Cohen-Sutherland Line Clipping g%

« Compute interesections with window boundary for
lines that can't be classified quickly

P;
Bit 4
N b
P. ——P, 8
/ Ps P1o
Bit 3
/-
Py v
Bit 1 Bit 2 Y,

-

Cohen-Sutherland Line Clipping

« Compute interesections with window boundary for
lines that can't be classified quickly

P7

Bit 4

Bit 1 Bit 2)

-

Cohen-Sutherland Line Clipping gwg

» Compute interesections with window boundary for
lines that can’t be classified quickly

P
\\ Bit 4
N
p ——P, Pg
3
P, Pio
Bit 3
P's P, e
Bit 1 Bit 2)

4)

Cohen-Sutherland Line Clipping gﬁ

« Compute interesections with window boundary for
lines that can't be classified quickly

Bit 4

Bit 1 Bit 2)

p
Cohen-Sutherland Line Clipping

« Compute interesections with window boundary for
lines that can't be classified quickly

P

Bit 4

Bit 1 Bit 2)

p
Cohen-Sutherland Line Clipping gga

» Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

Bit 1 Bit 2)

11

r

-
Cohen-Sutherland Line Clipping g%

« Compute interesections with window boundary for
lines that can't be classified quickly

P,)
\' Bit 4
N~
——P Pg
=3 4
Ps P1o
Bit 3
P
v
Bit 1 Bit 2 Y,

-

Cohen-Sutherland Line Clipping

« Compute interesections with window boundary for
lines that can't be classified quickly

P,
Bit 4
PYH
Ps—0000 ' *
Pg P10
Bit 3
P
v
Bit 1 Bit 2)

-

Cohen-Sutherland Line Clipping gwg

» Compute interesections with window boundary for
lines that can’t be classified quickly

P,

Bit 4

P
P,—0500 ¢
3
P, Pio

= Bit 3

5 Py
Bit 1 Bit 2 Yy,

4)

Cohen-Sutherland Line Clipping gﬁ

« Compute interesections with window boundary for
lines that can't be classified quickly
P
Bit 4
PVH
P:a/PA
Ps P10
Bit 3
P
v
Bit 1 Bit 2)

p
Cohen-Sutherland Line Clipping

« Compute interesections with window boundary for
lines that can't be classified quickly

Bit 4

Bit 1 Bit 2)

p
Cohen-Sutherland Line Clipping gga

» Compute interesections with window boundary for
lines that can’t be classified quickly

Bit 4

Bit 1 Bit 2)

12

Vs

~

Cohen-Sutherland Line Clipping g%

« Compute interesections with window boundary for
lines that can't be classified quickly

Ve

~

Cohen-Sutherland Line Clipping gﬁ

« Compute interesections with window boundary for
lines that can't be classified quickly

1001 0001 0101
S Bit 4
P’S
1000 P,—0000 ' * 0100
PG
= Bit 3
1010 ® 0010 0110
Bit 1 Bit 2)

Vs

Polygon Clipping

1001 0001 0101
S Bit 4
PYB
P
1000 P;—0000 * 0100
Ps P10
Bit 3
P’S PQ
1010 0010 0110
Bit 1 Bit 2 Y,
e A
Clipping g
» Avoid drawing parts of primitives outside window
o Points
o Lines
o Polygons
o Circles
o etc.
2D Screen Coordinates
J
e A

.

Polygon Clipping

* Find the part of a polygon inside the clip window?

[]

VAN

« Find the part of a polygon inside the clip window?

=
[

- A

Before Clipping

Vs

Sutherland Hodgeman Clipping gga

After Clipping

* Clip to each window boundary one at a time

.
L]

VAN

-

13

r

~

Sutherland Hodgeman Clipping

¢ Clip to each window boundary one at a time

[]

VAN

-

-

Sutherland Hodgeman Clipping

¢ Clip to each window boundary one at a time

[]

VAN

/1O

-

Clipping to a Boundary

» Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary
P2
Py
Window
Boundary Inside

Outside

Ps

-

Sutherland Hodgeman Clipping gﬁ

~

¢ Clip to each window boundary one at a time

[]

VAN

-

Vs

Sutherland Hodgeman Clipping

¢ Clip to each window boundary one at a time

[]

VAN

-

Vs

Clipping to a Boundary Qﬁ

« Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary
PZ
Py
Window
Boundary Inside

Outside

P

14

s

Clipping to a Boundary

« Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Window

Boundary Inside

Outside

[
-

-

Clipping to a Boundary

« Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Window

Boundary Inside

Outside

ey
)

-

Clipping to a Boundary

» Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary
P2
Py
Window
Boundary p’ Inside

Outside
Ps

-

Clipping to a Boundary gﬁ

« Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary
Window
Boundary /\\ Inside
u Outside

Vs

Clipping to a Boundary

« Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

S
N

Window
Boundary Inside

Outside

Vs

Clipping to a Boundary .

« Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P,
Py

Window
Boundary p’ p» Inside

Outside

o)

w

Ps

15

e A
Clipping to a Boundary ﬁ

« Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P,
Py

Window
Boundary p’ p _Inside

Outside

-
Viewport Transformation

» Transform 2D geometric primitives from
screen coordinate system (normalized device
coordinates) to image coordinate system (pixels)

Screen Image
-_—— e e ——

—
O
!
\‘/

Viewport

-
Summary of Transformations

p(xy.2)

3D Object Coordinates
Modeling transformation

Modeling

Transformation

3D World Coordinates
Viewing
Transformation

3D Camera Coordinates Viewing transformations

Projection
Transformation

2D Screen Coordinates

Viewport transformation

Viewport
Transformation

2D Image Coordinates

p'(X.y)

-
2D Rendering Pipeline

2D Primitives
P Clip portions of geometric primitives
Clippin -) ;
pRIng residing outside the window
Transform the clipped primitives
Transformation from screen to image coordinates
Fill pixels representing primitives
Conversion in screen coordinates
Image

-
Viewport Transformation

* Window-to-viewport mapping

wy2 Window w2 Viewport
./ \.
(wx,wy) (vx,vy)
wyl

VXle————» VX2

Image Coordinates

WXle———> WX2

Screen Coordinates

vx = vx1 + (wx - wxl) * (vx2 - vx1l) / (w2 - wxl);
vy = vyl + (wy - wyl) * (vy2 - vyl) / (w2 - wl);

p
Summary

3D Primitives
3D Modeling Coordinates

Modeling
Transformation

3D World Coordinates

3D World Coordinates

Viewing

3D Camera Coordinates

Pro}ection
Transformation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

Viewing
Window

Scan
Conversion

2D Image Coordinates

Image

16

Ve

Next Time

3D Primitives
3D Modeling Coordinates

Modeling
Transformation

3D World Coordinates

3D World Ct

Viewing
Transformation

3D Camera Coordinates

Projectio
Transformation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewport.
Transformation

2D Image Coordinates

can.
Conversion

2D Image Coordinates

Image

Scan Conversion!

17

