Today’s Lecture

- Symbol Tables
- Type Checking
Symbol Tables

- Semantic Analysis Phase:
 - Type check AST to make sure each expression has correct type
 - Translate AST into IR trees

- Main data structure used by semantic analysis: symbol table
 - Contains entries mapping identifiers to their bindings (e.g. type)
 - As new type, variable, function declarations encountered, symbol table augmented with entries mapping identifiers to bindings.
 - When identifier subsequently used, symbol table consulted to find info about identifier.
 - When identifier goes out of scope, entries are removed.
Symbol Table Example

```
function f(b:int,
      c:int) =
  (print_int(b+c);
    let
        var j := b
        var a := "x"
    in
        print(a)
        print(j)
    end
  print_int(a)
)

σ₀ = \{a \mapsto int\}

σ₁ = \{b \mapsto int, c \mapsto int, a \mapsto int\}

σ₂ = \{j \mapsto int, b \mapsto int, c \mapsto int, a \mapsto int\}

σ₃ = \{a \mapsto string, j \mapsto int, b \mapsto int, c \mapsto int, a \mapsto int\}

σ₁ = \{b \mapsto int, c \mapsto int, a \mapsto int\}

σ₀ = \{a \mapsto int\}
```
Symbol Table Implementation

- Imperative Style: (side effects)
 - Global symbol table
 - When beginning-of-scope entered, entries added to table using side-effects. (old table destroyed)
 - When end-of-scope reached, auxiliary info used to remove previous additions. (old table reconstructed)

- Functional Style: (no side effects)
 - When beginning-of-scope entered, new environment created by adding to old one, but old table remains intact.
 - When end-of-scope reached, retrieve old table.
Imperative Symbol Tables

Symbol tables must permit fast lookup of identifiers.

- **Hash Tables** - an array of buckets
- **Bucket** - linked list of entries (each entry maps identifier to binding)

Suppose we wish to lookup entry for id i in symbol table:

1. Apply *hash function* to key i to get array element $j \in [0, n-1]$.
2. Traverse bucket in $table[j]$ in order to find binding b.
 (table[x]: all entries whose keys hash to x)
Imperative Symbol Tables

val size = 109 (* prime number *)
type binding = ...
type bucket = (string * binding) list
type table = bucket Array.array
val t:table = Array.array(SIZE, nil)
 (* assume: fun hash(s:string) -> 0 <= j < SIZE *)

exception notFound
fun lookup(s:string) =
 let
 val i = hash(s)
 fun search((s′, b)::rest) = if s = s′ then b
 else search rest
 | search([]) = raise notFound
 in
 search(Array.sub(t,i))
 end
fun insert(s:string, b:binding) =
 let
 val i = hash(s)
 in
 Array.update(t,i,(s,b)::Array.sub(t,i))
 end

Inserts new element at front of bucket.

\[
\text{insert } a \mapsto \text{string}
\]
Imperative Symbol Tables

To restore hash table, pop items off items at front of bucket.

```ml
fun pop(s:string) =
    let
        val i = hash(s)
        val (s', b)::rest = Array.sub(t,i)
    in
        assert(s = s')
        Array.update(t,i,rest)
    end
```
Functional Symbol Tables

Hash tables not efficient for functional symbol tables.

Insert $a \mapsto \text{string} \Rightarrow$ copy array, share buckets:

Old Symbol Table Array

New Symbol Table Array

Not feasible to copy array each time entry added to table.
Functional Symbol Tables

Better method: use *binary search trees (BSTs)*.

- Functional additions easy.
- Need “less than” ordering to build tree.
 - Each node contains mapping from identifier (key) to binding.
 - Use string comparison for “less than” ordering.
 - For all nodes \(n \in L \), \(\text{key}(n) < \text{key}(l) \)
 - For all nodes \(n \in R \), \(\text{key}(n) \geq \text{key}(l) \)
Functional Symbol Table Example

Lookup:

- $f \rightarrow \text{int}$
- $c \rightarrow \text{int}$
- $d \rightarrow \text{int}$
- $t \rightarrow \text{int}$
- $s \rightarrow \text{int}$
Functional Symbol Table Example

Insert:

insert $z \mapsto \text{int}$, create node z, copy all ancestors of z:

```
f->int
 c->int
 d->int
 t->int
 s->int
```

```
f->int
 t->int
 z->int
```
Issues With Table Implementations

When key value = string
⇒ need to do expensive string compares when doing lookup operation.
Solution: use symbol data structure instead

• Each symbol object associated with integer value.
• All occurrences of same string map onto same symbol (2 different strings map onto different symbols)
• key value = symbol ⇒ do cheap integer comparisons during lookup
Issues With Table Implementations

signature SYMBOL = sig
 eqtype symbol
 val symbol:string -> symbol
 val name:symbol -> string
 type 'a table
 val empty:'a table
 val enter:'a table * symbol * 'a -> 'a table
 val look:'a table * symbol -> 'a option
end

• Implements symbol tables (function) using BSTs.

• Table is polymorphic: each entry maps symbol to binding of type ’a
 – Need type bindings for type symbols.
 – Need value bindings for variable and function symbols.
structure Symbol:SYMBOL =
struct
 type symbol = string * int
 val nextsym = ref 0
fun symbol(name:string) =
 case HashTable.find hashtable name of
 SOME(i) => (name, i)
 | NONE => let
 val i = !nextsym
 in
 nextsym := i + 1;
 HashTable.insert hashtable(name, i);
 (name, i)
 end
Issues With Table Implementations

fun name((s,n)) = s

type 'a table = 'a IntBinaryMap.map
val empty = IntBinaryMap.empty
fun enter(t:'a table, (s,n):symbol, a:'a) =
 IntBinaryMap.insert(t,n,a)
fun look(t:'a table, (s,n):symbol) =
 IntBinaryMap.look(t,n)
end
Environments in Tiger Compiler

Two name spaces (types, variables/functions) \Rightarrow two environments

- **type environment**: maps types symbols to type that it stands for
- **value environment**:
 – Maps variable symbols to their types.
 – Maps function symbols to parameter and result types.
Type Environment

structure Types = struct
 type unique = unit ref
 datatype ty = INT
 | STRING
 | RECORD of (Symbol.symbol * ty) list * unique
 | ARRAY of ty * unique
 | NIL
 | UNIT
 | NAME of Symbol.symbol * ty option ref
end

• In order to distinguish each record type, associate unit ref value with RECORD data constructor
 – Each ref is unique.
 – Can compare it with another unit ref for equality.

• NAME: used when processing mutually-recursive types, placeholder for types whose name is known, but whose definition has yet to be seen.
signature ENV = sig
 type access
 type ty
 datatype enventry = VarEntry of {ty:ty}
 | FunEntry of {formals:ty list, result:ty

val base_tenv: ty Symbol.table
val base_venv: enventry Symbol.table
end

• base_tenv contains ```int'' ⇔ INT, ```string'' ⇔ STRING.
• base_venv contains predefined functions in appendix.
Type Checking

Symbol structure implements functional symbol tables using BSTs.

- type `a table = environment contains mappings from symbol to `a
- val empty:`a table
- val enter:`a table * symbol * `a -> `a table
- val look:`a table * symbol -> `a option
Type Checking

Need 2 environments:

1. *Type environment*: maps type symbol to type that it stands for
 Types.ty - describes bindings for type environment
 ⇒ Types.ty Symbol.table

2. *Value environment*: maps variable symbol to its type
 Maps function symbol to parameter and result types
 Env.enventry - describes bindings for value environment

   ```
   datatype enventry = VarEntry of {ty:Types.ty}
   | FunEntry of {formals:Types.ty list, result:Types.ty}
   ⇒ Env.enventry Symbol.table
   ```

Env structure contains predefined type and value environments:

- **base_tenv** contains `int` → INT, `string` → STRING.
- **base_venv** contains predefined functions in appendix.
Type Checking Expressions

Semant structure: performs type-checking of ASTs

type venv = Env.enventry Symbol.table

type tenv = Types.ty Symbol.table

type expty = {exp: Translate.exp, ty: Types.ty}

• Will be implementing four primary functions

val transProg: Absyn.exp -> Translate.exp
val transExp: venv * tenv * Absyn.exp -> expty
val transDec: venv * tenv * Absyn.dec ->
 {venv: venv, tenv: tenv}
val transTy: tenv * Absyn.ty -> Types.ty

• For now, not concerned with translation into IR code, so use () for every
 Translate.exp value:

structure Translate = struct
 type exp = unit
end
fun transProg(t) = let
 val {exp, ty} = transExp(Env.base_venv, Env.base_tenv) t
in
 exp
end

structure A = Absyn

fun checkInt({exp, ty}, pos) =
 (if ty = Types.INT then ()
 else ErrorMsg.error pos "int required";
 exp)
General Structure of \texttt{transExp}

\begin{verbatim}
fun transExp(venv, tenv) = let
 fun trexp(A.IntExp...) = ...
 | trexp(A.OpExp...) = ...
 | ...
in
 trexp
end
\end{verbatim}

Suppose we want to type-check $e_1 + e_2$

- Both e_1, e_2 must be ints
- Type of expression is \texttt{INT}

\begin{verbatim}
fun transExp(venv, tenv) = let
 fun trexp(A.OpExp{left, oper = A.PlusOp, right, pos}) =
 (checkInt(trexp(left), pos);
 checkInt(trexp(right), pos);
 {exp = (), ty = Types.INT})
end
\end{verbatim}
General Structure of transExp

Type-check ‘while’ expression:

$$\begin{align*}
\text{trexp}(\text{A.WhileExp}\{\text{test}, \text{body}, \text{pos}\}) &= \\
&= (\text{checkInt}(\text{trexp(}\text{test})\text{)}\text{, pos}); \\
&\quad \text{checkUnit}(\text{trexp(}\text{body})\text{, pos}); \\
&\quad \{\text{exp} = (), \text{ty} = \text{Types.UNIT}\})
\end{align*}$$
Type Checking Variables

\[
\text{trexp}(A.\text{VarExp}\,(v)) = \text{trvar}(v)
\]
...
and \(\text{trvar}(A.\text{SimpleVar}(id,\ \text{pos})) = \)
\[
\begin{cases}
\text{SOME} (\text{Env. VarEntry}\{\text{ty}\}) &\rightarrow \{\text{exp=()},\ \text{ty} = \text{actual}_\text{ty}(\text{ty})\} \\
\text{NONE} &\rightarrow (\text{ErrorMsg}\ .\ \text{error}\ \text{pos} \\
& ("\text{undefined var}\") \ ^ \ \text{Symbol}\ .\ \text{name}(id)); \\
& \{\text{exp=()},\ \text{ty} = \text{Types. INT}\} \\
\end{cases}
\]

- Type in VarEntry may be NAME type, NAME used as placeholder when processing mutually recursive types.
Type Checking Variables

- Type returned by trexp must be *actual* type that is not a NAME
 $\text{actual_ty}(t)$ skips past all NAMEs in t until underlying type reached.

 - $\text{Types.NAME}(\text{sym}, \text{ref SOME}(t)) \equiv t$
 - $\text{Types.NAME}(a, \text{ref SOME}(\text{Types.NAME}(b, \text{ref SOME}(\text{Types.INT})))) \equiv \text{Types.INT}$
 (OK for record types to have NAME components)

- $\text{trvar}(\text{A.SubscriptVar(var, exp, pos)}) =$

- Make sure exp is of type $\text{T.INT} \rightarrow (\text{apply trexp})$

- Make sure var is of type $\text{T.ARRAY}(t, u) \rightarrow (\text{apply trvar})$

- Result type = t
Type Checking Declarations

Declarations modify environments, appear only in \texttt{LET} expressions.

\[
\text{trexp}(\texttt{A.LetExp}\{\texttt{decs, body, pos}\}) = \\
\text{let} \\
\quad \text{val} \{\texttt{venv=venv'}, \texttt{tenv=tenv'}\} = \texttt{transDecs(venv,tenv,decs)} \\
\quad \text{in} \\
\quad \texttt{transExp(venv', tenv') body} \\
\text{end}
\]
Var Declarations

var x := exp

fun transDec(venv, tenv,
 A.VarDec{name, escape, typ=NONE, init, pos}) =
 let
 val {exp,ty} = transExp(venv,tenv) init
 in
 if ty=Types.NIL then
 (ErrorMsg.error pos "var type must be record";
 {tenv=tenv,
 venv=Symbol.enter(venv,name,
 Env.VarEntry{ty=Types.INT})})
 else
 {tenv=tenv,
 venv=Symbol.enter(venv,name,Env.VarEntry{ty=ty})}
 end
Type Declarations

Consider non-recursive type decs:

\[
| \text{transDec}(\text{venv}, \text{tenv}, \text{A.TypeDec}\{\text{name,ty,pos}\}) = \\
\quad \{\text{venv}=\text{venv}, \text{tenv}=\text{Symbol.enter}(\text{tenv}, \text{name}, \\
\quad \quad \text{transTy}(\text{tenv}, \text{ty}))\} \\
\]

\text{transTy} translates \text{Absyn.ty} into \text{Types.ty}
(e.g. \text{Absyn.ArrayTy} \rightarrow \text{Types.ARRAY})
Function Declarations

function f(a:int) = body

1. Look up ‘int’ in \texttt{tenv} \rightarrow \texttt{Types.INT}

2. \texttt{venv’} = venv + f \mapsto \texttt{Env.FunEntry \{ formals = [Types.INT], result = Types.UNIT \}}

3. \texttt{venv’’} = venv’ + a \mapsto \texttt{Env.VarEntry \{ ty = Types.INT \}}

4. Type-check body in \{tenv, venv’’\} using \texttt{transExp}

5. Return \{tenv, venv’\} for use in processing expressions which refer to f
Recursive Declarations

Consider type declaration: \texttt{type list = \{first:int, rest:list\}}

When \texttt{transTy} translates A.RecordTy corresponding to record, will encounter undefined type ‘list’.

Solution: use two passes:

1. Put all type “headers” into type environment, but ignore “bodies” (RHS) - use \texttt{Types.NAME} to represent headers.

2. Call \texttt{transTy} on body, give it new type environment
 Assign result into reference variable of \texttt{NAME}
Recursive Declaration Example

type list = {first:int, rest:list}

After pass 1:
list ↦ Types.NAME(list, ref NONE)

After pass 2:
list ↦ Types.NAME(list, ref SOME)
Types.RECORD([(first, Types.INT),(rest, Types.NAME(list, ref SOME))], ref())

- transTy must stop as soon as it finds a NAME type.
- If behavior like actual_ty, would encounter NONE when skipping past NAME types.
Recursive Function Declaration Example

Mutually-recursive function declarations handled similarly.

function f1(a:int):int = f2(a)
function f2(b:int):int = f1(b)

Pass 1:
Put all function headers into value environment, but ignore bodies.

\[
\begin{align*}
f1 & \mapsto \text{Env.FunEntry}\{\text{formals}=[\text{Types.INT}], \text{result}=\text{Types.INT}\} \\
f2 & \mapsto \text{Env.FunEntry}\{\text{formals}=[\text{Types.INT}], \text{result}=\text{Types.INT}\}
\end{align*}
\]

Pass 2:
Process function bodies in new value environment.
For each body, enter VarEntry’s for each formal parameter.