Summary of Optimization Material

We’ve looking at a variety of different analysis techniques and optimization techniques over the last couple of weeks:

- Chapter 17.1-17.3: Data-flow analysis and optimizations
 - Liveness analysis, reaching definition analysis
 - Constant propagation, copy propagation, common sub expression elimination, constant folding,...

- Chapter 18.1-18.3: Dominators, loops, analysis and optimizations
 - Loop invariant analysis and statement hoisting
 - Induction variable analysis, strength reduction and elimination.

- Chapter 19.1, 19.3 (not conditional constant propagation): Static Single Assignment (SSA), a pervasive intermediate representation for advanced optimization
Motivating SSA

- Many optimizations need to find all use-sites for each definition, and all definition-sites for each use.
 - Constant propagation must refer to the definition-site of the unique reaching definition.
 - Copy propagation, common sub-expression elimination...
- Information connecting all use-sites to corresponding definition-sites can be stored as *def-use chains* and/or *use-def chains*.
- *def-use chains*: for each definition d of r, list of pointers to all uses of r that d reaches.
- *use-def chains*: for each use u of r, list of pointers to all definitions of r that reach u.
Use-Def Chains, Def-Use Chains Example

1: \(r_1 = 5 \)

2: \(r_3 = 1 \)

3: branch \(r_3 > r_1 \), 6:

4: \(r_3 = r_3 + 1 \)

5: goto 3:

6: \(r_4 = 10 \)

7: \(r_1 = r_1 + r_4 \)

8: \(M[r_3] = r_1 \)
Static Single Assignment (SSA):

- improvement on def-use chains
- each temporary has only one definition in program
- for each use \(u \) of \(r \), only one definition of \(r \) reaches \(u \)

\[
\begin{align*}
 r_1 &= 5 \\
 r_1 &= r_1 + 1 \\
 r_2 &= r_1 + 1 \\
 r_3 &= r_1 - 1
\end{align*}
\]
Static Single Assignment

Static Single Assignment Advantages:

- Dataflow analysis and code optimization is simplified and made more efficient.
- Less space required to represent def-use chains. Def-use chains require space proportional to uses * defs for each variable.
- Eliminates unnecessary relationships:

\[
\begin{align*}
\text{for } i = 1 \text{ to } N & \text{ do } A[i] = 0 \\
\text{for } i = 1 \text{ to } M & \text{ do } B[i] = 1
\end{align*}
\]

 - No reason why both loops should be forced to use same register to hold index register.
 - SSA renames second \(i \) to a new temporary which may lead to better register allocation/optimization.
Static Single Assignment

```c
int f(int i, int j) {
    int x, y;
    switch (i) {
        case 0: x = 3; break;
        case 1: x = 7; break;
        case 2: x = 4; break;
        default: x = 17; break;
    }
    switch (j) {
        case 0: y = x+1; break;
        case 1: y = x+7; break;
        case 2: y = x+3; break;
        default: y = x+33; break;
    }
    return y;
}
```

Building def-use chains costs quadratic space whereas SSA encodes def-use information in linear space.
Conversion to SSA Form

Easy to convert basic blocks into SSA form:

- Each definition modified to define brand-new register, instead of redefining old one.
- Each use of register modified to use most recently defined version.

\[
\begin{align*}
 r_1 &= r_3 + r_4 \\
 r_2 &= r_1 - 1 \\
 r_1 &= r_4 + r_2 \\
 r_2 &= r_5 \times 4 \\
 r_1 &= r_1 + r_2
\end{align*}
\]

This is easy for straight-line programs but complex control flow introduces problems.
Conversion to SSA Form

\[r1 = 5 \]

\[r2 = r1 + 1 \]

\[r3 = r2 + 1 \]

\[r3 = r2 - 1 \]

\[r4 = r3 \times 4 \]

Use \(\phi \) functions.
Conversion to SSA Form

- ϕ-functions enable the use of $r3$ to be reached by exactly one definition of $r3$.

- $r3'' = \phi(r3, r3')$:
 - $r3'' = r3$ if control enters from left
 - $r3'' = r3'$ if control enters from right

- Can implement ϕ-functions as set of move operations on each incoming edge.

- In practice, ϕ-functions are just used as notation.
Conversion to SSA Form - Simple Approach

Can insert \(\phi \)-functions for each register at each node with more than two predecessors.

\[
\begin{align*}
 r_1 &= 5 \\
 r_2 &= r_1 + 1 \\
 r_3 &= r_2 + 1 \\
 r_4 &= r_3 \times r_1
\end{align*}
\]

We can do better...
Conversion to SSA Form

Path-Convergence Criterion: Insert a ϕ-function for a register r at node z of the flow graph if ALL of the following are true:

1. There is a block x containing a definition of r.
2. There is a block $y \neq x$ containing a definition of r.
3. There is a non-empty path P_{xz} of edges from x to z.
4. There is a non-empty path P_{yz} of edges from y to z.
5. Paths P_{xz} and P_{yz} do not have any node in common other than z.
6. The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

Assume CFG entry node contains implicit definition of each register:

- $r =$ actual parameter value
- $r =$ undefined

ϕ-functions are counted as definitions.
Conversion to SSA Form

Solve path-convergence iteratively:

WHILE (there are nodes \(x, y, z \) satisfying conditions 1-6) &&
 (\(z \) does not contain a \(phi \)-function for \(r \)) DO:
 insert \(r = \phi(r, r, \ldots, r) \) (one per predecessor) at node \(z \).

- Costly to compute.
- Since definitions dominate uses, use domination to simplify computation.

Use *Dominance Frontier*...pgs 433,434
Static Single Assignment Example

Insert \(\phi \)-functions:

1: \(r1 = 1 \)

2: \(r2 = 1 \)

3: \(r3 = 0 \)

4: \(\text{branch } r3 < 100 \)

5: \(\text{branch } r2 < 20 \)

6: \(\text{return } r2 \)

7: \(r2 = r1 \)

8: \(r3 = r3 + 1 \)

9: \(r2 = r3 \)

10: \(r3 = r3 + 2 \)

11: \(\)
Static Single Assignment Example

Rename Variables:

1. traverse dominator tree, renaming different definitions of r to $r_1, r_2, r_3...$
2. rename each regular use of r to most recent definition of r
3. rename ϕ-function arguments with each incoming edge’s unique definition
Static Single Assignment Example

Rename Variables:

1:
 \[r1 = 1 \]

2:
 \[r2 = 1 \]

3:
 \[r3 = 0 \]

4:
 \[\text{branch } r3 < 100 \]

5:
 \[\text{branch } r2 < 20 \]

6:
 \[\text{return } r2 \]

7:
 \[r2 = r1 \]

8:
 \[r3 = r3 + 1 \]

9:
 \[r2 = r3 \]

10:
 \[r3 = r3 + 2 \]

11:

Computer Science 320
Prof. David Walker
Dominance Property of SSA

Dominance property of SSA form: definitions dominate uses

- If x is i^{th} argument of ϕ-function in node n, then definition of x dominates i^{th} predecessor of n.
- If x is used in non-ϕ statement in node n, then definition of x dominates n.
Dead Code Elimination

Given \(d: t = x \ op \ y \)

- \(t \) is live at end of node \(d \) if there exists path from end of \(d \) to use of \(t \) that does not go through definition of \(t \).

- if program not in SSA form, need to perform liveness analysis to determine if \(t \) live at end of \(d \).

- if program is in SSA form:
 - cannot be another definition of \(t \)
 - if there exists use of \(t \), then path from end of \(d \) to use exists, since definitions dominate uses.
 * every use has a unique definition
 * \(t \) is live at end of node \(d \) if \(t \) is used at least once
Dead Code Elimination

Algorithm:

WHILE (for each temporary \(t \) with no uses \&\&
statement defining \(t \) has no other side-effects) DO
delete statement definition \(t \)

1: \(r1 = 5 \)

2: \(r2 = 10 \)

3: branch \(r3 > r2 \)

4: \(r2' = r2 + 15 \)

5: \(r4 = r3 + X \)

6: \(r2'' = \phi (r2', r2) \)

7: \(M[r4] = r2'' \)
Simple Constant Propagation

Given $d: \mathfrak{t} = c$, c is constant

Given $u: x = t \text{ op } b$

- if program not in SSA form:
 - need to perform reaching definition analysis
 - use of \mathfrak{t} in u may be replaced by c if d reaches u and no other definition of \mathfrak{t} reaches u

- if program is in SSA form:
 - d reaches u, since definitions dominate uses, and no other definition of \mathfrak{t} exists on path from d to u
 - d is only definition of \mathfrak{t} that reaches u, since it is the only definition of \mathfrak{t}.
 - any use of \mathfrak{t} can be replaced by c
 - any ϕ-function of form $v = \phi(c_1, c_2, ..., c_n)$, where $c_i = c$, can be replaced by $v = c$
Simple Constant Propagation

2: \[r_2 = 10 \]

3: \[\text{branch } r_3 > r_2 \]

4: \[r_2' = r_2 + 15 \]

5: \[r_4 = r_3 + X \]

6: \[r_2'' = \Phi (r_2', r_2) \]

7: \[M[r_4] = r_2'' \]