The Front End:

1. assumes the presence of an infinite number of registers to hold temporary variables.
2. introduces inefficiencies in the source to IR translation.
3. does a direct translation of programmer’s code.
4. does not create pseudo-assembly tuned to the target architecture.
 - Not scheduled for machines with non-unit latency.
 - Not scheduled for wide-issue machines.
The Back End

The Back End:

1. Maps infinite number of virtual registers to finite number of real registers → register allocation
2. Removes inefficiencies introduced by front-end → optimizer
3. Removes inefficiencies introduced by programmer → optimizer
4. Adjusts pseudo-assembly composition and order to match target machine → scheduler

Research and development in back end is growing rapidly.

- EPIC Architectures
- Binary re-optimization
- Runtime optimization
- Optimizations requiring additional hardware support
for $i := 0$ to 10
do $a[i] = x$;

ADDI $r1 = r0 + 0$

LOOP:
LOAD $r2 = M[FP + a]$
ADDI $r3 = r0 + 4$
MUL $r4 = r3 \times r1$
ADD $r5 = r2 + r4$
LOAD $r6 = M[FP + x]$
STORE $M[r5] = r6$

ADDI $r1 = r1 + 1$
BRANCH $r1 <= 10, LOOP$

Loop invariant code removal...
Register Allocation

\[
\text{for } i := 0 \text{ to 10} \\
\quad \text{do } a[i] = x; \\
\text{ADDI } r1 = r0 + 0 \\
\text{LOAD } r2 = M[FP + a] \\
\text{ADDI } r3 = r0 + 4 \\
\text{LOAD } r6 = M[FP + x] \\
\]

\[
\text{LOOP:} \\
\text{MUL } r4 = r3 \times r1 \\
\text{ADD } r5 = r2 + r4 \\
\text{STORE } M[r5] = r6 \\
\text{ADDI } r1 = r1 + 1 \\
\text{BRANCH } r1 \leq 10, \text{ LOOP} \\
\]

Uses 6 virtual registers, only have 5 real registers...
Scheduling

1. ADDI r1 = r0 + 0
2. LOAD r2 = M[FP + A]
3. ADDI r3 = r0 + 4
4. LOAD r4 = M[FP + X]

LOOP:
1. MUL r5 = r3 * r1
2. ADD r5 = r2 + r5
3. STORE M[r5] = r4
4. ADDI r1 = r1 + 1
5. BRANCH r1 <= 10, LOOP

1. ADDI r1 = r0 + 0
2. LOAD r2 = M[FP + A]
3. ADDI r3 = r0 + 4
4. LOAD r4 = M[FP + X]

 LOOP:
1. MUL r5 = r3 * r1
2. ADDI r1 = r1 + 1
3. ADD r5 = r2 + r5
4. STORE M[r5] = r4
5. BRANCH r1 <= 10, LOOP

Multiply instruction takes 2 cycles...
Control Flow Analysis

- Control Flow Analysis determines the how instructions are *fetched* during execution.
- Control Flow Analysis precedes dataflow analysis.
- Dataflow analysis determines how data flows among instructions.
- Dataflow analysis precedes optimization, register allocation, and scheduling.
Control Flow Analysis

Control Flow Analysis determines the how instructions are fetched during execution.

- *Control Flow Graph* - graph of instructions with directed edge $I_i \rightarrow I_j$ iff I_j can be executed immediately after I_i.
Control Flow Analysis Example

\[
\begin{align*}
 r1 &= 0 \\
 \text{LOOP:} & \\
 r1 &= r1 + 1 \\
 r2 &= r1 \& 1 \\
 \text{BRANCH } r2 &= 0, \text{ ODD} \\
 r3 &= r3 + 1 \\
 \text{JUMP NEXT} & \\
 \text{ODD:} & \\
 r4 &= r4 + 1 & \\
 \text{NEXT:} & \\
 \text{BRANCH } r1 &= 10, \text{ LOOP}
\end{align*}
\]
Basic Blocks

- *Basic Block* - run of code with single entry and exit.
- Control flow graph of basic blocks more convenient.
- Determine by the following:
 1. Find *leaders*:
 (a) First statement
 (b) Targets of conditional and unconditional branches
 (c) Instructions that follow branches
 2. Basic blocks are leader up to, but not including next leader.
Basic Block Example

\[
\begin{align*}
\text{r1} & = 0 \\
\text{LOOP:} & \\
& \quad \text{r1} = \text{r1} + 1 \\
& \quad \text{r2} = \text{r1} \& 1 \\
& \quad \text{BRANCH} \quad \text{r2} == 0, \text{ ODD} \\
& \quad \text{r3} = \text{r3} + 1 \\
& \quad \text{JUMP} \quad \text{NEXT} \\
\text{ODD:} & \\
& \quad \text{r4} = \text{r4} + 1 \\
\text{NEXT:} & \\
& \quad \text{BRANCH} \quad \text{r1} \leq 10, \text{ LOOP}
\end{align*}
\]
Domination Motivation

Constant Propagation:

\[r_1 = 4 \]
\[r_2 = r_1 + 5 \]
\[r_2 = 9 \]
Domination

- Assume every Control Flow Graph (CFG) has start node s_0 with no predecessors.
- Node d dominates node n if every path of directed edges from s_0 to n must go through d.
- Every node dominates itself.
- Consider:

```
d
```
```
p_1 \quad p_2 \quad p_3 \quad \ldots \quad p_k
```
```
n
```
- If d dominates each of the p_i, then d dominates n.
- If d dominates n, then d dominates each of the p_i.
Dominator Analysis

- If d dominates each of the p_i, then d dominates n.
- If d dominates n, then d dominates each of the p_i.
- $Dom[n] =$ set of nodes that dominate node n.
- $N =$ set of all nodes.
- Computation:
 1. $Dom[s_0] = \{s_0\}$.
 2. $\textbf{for } n \in N - \{s_0\} \textbf{ do } Dom[n] = N$
 3. $\textbf{while }$ (changes to any $Dom[n]$ occur) $\textbf{ do }$
 4. $\textbf{for } n \in N - \{s_0\} \textbf{ do }$
 5. $Dom[n] = \{n\} \cup (\cap_{p \in \text{pred}[n]} Dom[p])$.
Dominator Analysis Example

<table>
<thead>
<tr>
<th>Node</th>
<th>$Dom[n]$</th>
<th>$Dom[n]$</th>
<th>$IDom[n]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Immediate Dominator

- Immediate dominator used in constructing *dominator tree*.
- Dominator Tree:
 - efficient representation of dominator information
 - used for other types of analysis (e.g. control dependence)
- s_0 is root of dominator tree.
- Each node d dominates only its descendants in tree.
- Every node n ($n \neq s_0$) has exactly one immediate dominator $IDom[n]$.
 - $IDom[n] \neq n$
 - $IDom[n]$ dominates n
 - $IDom[n]$ does not dominate any other dominator of n.
- Last dominator of n on any path from s_0 to n is $IDom[n]$.
Immediate Dominator Example

<table>
<thead>
<tr>
<th>Node</th>
<th>$Dom[n]$</th>
<th>$IDom[n]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,2,3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,2,4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1,2,5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1,2,4,6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1,2,7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1,2,5,8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1,2,5,8,9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1,2,5,8,9,10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1,2,7,11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1,2,12</td>
<td></td>
</tr>
</tbody>
</table>
Post-Domination

- Assume every Control Flow Graph (CFG) has exit node x with no successors.
- Node p post-dominates node n if every path of directed edges from n to x must go through p.
- Every node post-dominates itself.
- Derivation of post-dominator and immediate post-dominator analysis analogous to dominator and immediate dominator analysis.
- Post-dominators will be useful in computing control dependence.
- Control dependence will be useful in many future optimizations.
Loop Optimizations

- Large fraction of execution time is spent in loops.
- Effective loop optimization is extremely important.
- First step in loop optimization → find the loops.
- A loop is a set of CFG nodes S such that:
 1. there exists a header node h in S that dominates all nodes in S.
 - there exists a path of directed edges from h to any node in S.
 - h is the only node in S with predecessors not in S.
 2. from any node in S, there exists a path of directed edges to h.
- A loop is a single entry, multiple exit region.
Examples of Loops
Back Edges

- **Back-edge** - flow graph edge from node \(n \) to node \(h \) such that \(h \) dominates \(n \)

- Each back-edge has a corresponding *natural loop*.
Natural Loops

- Natural loop of back-edge \(\langle n, h \rangle \):
 - has a loop header \(h \).
 - set of nodes \(X \) such that \(h \) dominates \(x \in X \) and there is a path from \(x \) to \(n \) not containing \(h \).
- A node \(h \) may be header of more than one natural loop.
- Natural loops may be nested.
Loop Optimization

- Compiler should optimize inner loops first.
 - Programs *typically* spend most time in inner loops.
 - Optimizations may be more effective → loop invariant code removal.

- Convenient to merge natural loops with same header.
- These merged loops are not natural loops.
- Not all cycles in CFG are loops of any kind (more later).
Loop Optimization

Loop invariant code motion

- An instruction is loop invariant if it computes the same value in each iteration.
- Invariant code may be hoisted outside the loop.

```
ADDI  r1 = r0 + 0
LOAD  r2 = M[FP + a]
ADDI  r3 = r0 + 4
LOAD  r6 = M[FP + x]

LOOP:
MUL    r4 = r3 * r1
ADD    r5 = r2 + r4
STORE  M[r5] = r6

ADDI  r1 = r1 + 1
BRANCH r1 <= 10, LOOP
```
Loop Optimization

- **Induction variable analysis and elimination** - \(i \) is an induction variable if only definitions of \(i \) within loop increment/decrement \(i \) by loop-invariant value.

- **Strength reduction** - replace expensive instructions (like multiply) with cheaper ones (like add).

```
ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
MUL r4 = r3 * r1
ADD r5 = r2 + r4
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP
```
Non-Loop Cycles

Examples:
Non-Loop Cycles

• Loops are instances of reducible flow graphs.
 – Each cycle of nodes has a unique header.
 – During reduction, entire loop becomes a single node.

• Non-Loops are instances of irreducible flow graphs.
 – Analysis and optimization is more efficient on reducible flow graphs.
 – Irreducible flow graphs occur rarely in practice.
 * Use of structured constructs (e.g. if-then, if-then-else, while, repeat, for) leads to reducible flow graphs.
 * Use of goto’s may lead to irreducible flow graphs.
 – Irreducible flow graphs can be made reducible by node-splitting.
Node Splitting