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The Front End:

1. assumes the presence of an infinite number of registers to hold temporary variables.

2. introduces inefficiencies in the source to IR translation.

3. does a direct translation of programmer’s code.

4. does not create pseudo-assembly tuned to the target architecture.

� Not scheduled for machines with non-unit latency.

� Not scheduled for wide-issue machines.

Computer Science 320
Prof. David Walker

- 1 -



The Back End

The Back End:

1. Maps infinite number of virtual registers to finite number of real registers � register
allocation

2. Removes inefficiencies introduced by front-end � optimizer

3. Removes inefficiencies introduced by programmer � optimizer

4. Adjusts pseudo-assembly composition and order to match target machine � sched-
uler

Research and development in back end is growing rapidly.

� EPIC Architectures

� Binary re-optimization

� Runtime optimization

� Optimizations requiring additional hardware support
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Optimization

for i := 0 to 10
do a[i] = x;

ADDI r1 = r0 + 0

LOOP:
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
MUL r4 = r3 * r1
ADD r5 = r2 + r4
LOAD r6 = M[FP + x]
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP

Loop invariant code removal...
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Register Allocation

for i := 0 to 10
do a[i] = x;

ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
MUL r4 = r3 * r1
ADD r5 = r2 + r4
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP

Uses 6 virtual registers, only have 5 real registers...
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Scheduling
1 ADDI r1 = r0 + 0
2 LOAD r2 = M[FP + A]
3 ADDI r3 = r0 + 4
4 LOAD r4 = M[FP + X]

LOOP:
1 MUL r5 = r3 * r1
2
3 ADD r5 = r2 + r5
4 STORE M[r5] = r4
5 ADDI r1 = r1 + 1
6 BRANCH r1 <= 10, LOOP

1 ADDI r1 = r0 + 0
2 LOAD r2 = M[FP + A]
3 ADDI r3 = r0 + 4
4 LOAD r4 = M[FP + X]

LOOP:
1 MUL r5 = r3 * r1
2 ADDI r1 = r1 + 1
3 ADD r5 = r2 + r5
4 STORE M[r5] = r4
5 BRANCH r1 <= 10, LOOP

Multiply instruction takes 2 cycles...
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Control Flow Analysis

Register AllocationOptimization Scheduling

Control Flow Analysis Dataflow Analysis

� Control Flow Analysis determines the how instructions are fetched during execution.

� Control Flow Analysis precedes dataflow analysis.

� Dataflow analysis determines how data flows among instructions.

� Dataflow analysis precedes optimization, register allocation, and scheduling.
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Control Flow Analysis

Control Flow Analysis determines the how instructions are fetched during execution.

� Control Flow Graph - graph of instructions with directed edge �� � �� iff �� can be
executed immediately after ��.
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Control Flow Analysis Example

r1 = 0

LOOP:
r1 = r1 + 1
r2 = r1 & 1
BRANCH r2 == 0, ODD
r3 = r3 + 1
JUMP NEXT

ODD:
r4 = r4 + 1

NEXT:
BRANCH r1 <= 10, LOOP
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Basic Blocks
� Basic Block - run of code with single entry and exit.

� Control flow graph of basic blocks more convenient.

� Determine by the following:

1. Find leaders:

(a) First statement
(b) Targets of conditional and unconditional branches
(c) Instructions that follow branches

2. Basic blocks are leader up to, but not including next leader.
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Basic Block Example

r1 = 0

LOOP:
r1 = r1 + 1
r2 = r1 & 1
BRANCH r2 == 0, ODD

r3 = r3 + 1
JUMP NEXT

ODD:
r4 = r4 + 1

NEXT:
BRANCH r1 <= 10, LOOP
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Domination Motivation

Constant Propagation:

r2 = r1 + 5

r1 = 4

r1 = 4

r2 = r1 + 5 r2 = 9

r2 = 9
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Domination
� Assume every Control Flow Graph (CFG) has start node �� with no predecessors.

� Node � dominates node � if every path of directed edges from �� to � must go
through �.

� Every node dominates itself.

� Consider:
d

n

...
........

p_kp_3p_2p_1

� If � dominates each of the ��, then � dominates �.

� If � dominates �, then � dominates each of the ��.
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Dominator Analysis
� If � dominates each of the ��, then � dominates �.

� If � dominates �, then � dominates each of the ��.

� ������ = set of nodes that dominate node �.

� 	 = set of all nodes.

� Computation:

1. ������� � ����.

2. for � � 	 � ���� do ������ � 	
3. while (changes to any ������ occur) do

4. for � � 	 � ���� do

5. ������ � ��� �
�

����������������
�

.
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Dominator Analysis Example

1

2

3 4

5 6

7

11

8

9

10 12

Node ������ ������ �������

1 1
2 1-12
3 1-12
4 1-12
5 1-12
6 1-12
7 1-12
8 1-12
9 1-12
10 1-12
11 1-12
12 1-12
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Immediate Dominator
� Immediate dominator used in constructing dominator tree.

� Dominator Tree:

– efficient representation of dominator information

– used for other types of analysis (e.g. control dependence)

� �� is root of dominator tree.

� Each node � dominates only its descendants in tree.

� Every node � (� 	� ��) has exactly one immediate dominator �������.

� ������� 	� �

� ������� dominates �

� ������� does not dominate any other dominator of �.

� Last dominator of � on any path from �� to � is �������.
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Immediate Dominator Example

1

2

3 4

5 6

7
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8

9

10 12

Node ������ �������

1 1
2 1,2
3 1,2,3
4 1,2,4
5 1,2,5
6 1,2,4,6
7 1,2,7
8 1,2,5,8
9 1,2,5,8,9
10 1,2,5,8,9,10
11 1,2,7,11
12 1,2,12
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Post-Domination
� Assume every Control Flow Graph (CFG) has exit node 
 with no successors.

� Node � post-dominates node � if every path of directed edges from � to 
 must go
through �.

� Every node post-dominates itself.

� Derivation of post-dominator and immediate post-dominator analysis analogous to
dominator and immediate dominator analysis.

� Post-dominators will be useful in computing control dependence.

� Control dependence will be useful in many future optimizations.
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Loop Optimizations
� Large fraction of execution time is spent in loops.

� Effective loop optimization is extremely important.

� First step in loop optimization � find the loops.

� A loop is a set of CFG nodes � such that:

1. there exists a header node � in � that dominates all nodes in �.

– there exists a path of directed edges from � to any node in �.
– � is the only node in � with predecessors not in �.

2. from any node in �, there exists a path of directed edges to �.

� A loop is a single entry, multiple exit region.
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Examples of Loops
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Back Edges

1
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� Back-edge - flow graph edge from node � to node � such
that � dominates �

� Each back-edge has a corresponding natural loop.
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Natural Loops

1

2

3 4

5 6

7

11

8

9

10 12

� Natural loop of back-edge 
�
 ��:

– has a loop header �.

– set of nodes � such that � dominates 
 � � and there
is a path from 
 to � not containing �.

� A node � may be header of more than one natural loop.

� Natural loops may be nested.
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Loop Optimization
� Compiler should optimize inner loops first.

– Programs typically spend most time in inner loops.

– Optimizations may be more effective � loop invariant code removal.

� Convenient to merge natural loops with same header.

� These merged loops are not natural loops.

� Not all cycles in CFG are loops of any kind (more later).
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Loop Optimization

Loop invariant code motion

� An instruction is loop invariant if it computes the same value in each iteration.

� Invariant code may be hoisted outside the loop.

ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
MUL r4 = r3 * r1
ADD r5 = r2 + r4
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP
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Loop Optimization
� Induction variable analysis and elimination - � is an induction variable if only

definitions of � within loop increment/decrement � by loop-invariant value.

� Strength reduction - replace expensive instructions (like multiply) with cheaper
ones (like add).

ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
MUL r4 = r3 * r1
ADD r5 = r2 + r4
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP
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Non-Loop Cycles

Examples:
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Non-Loop Cycles
� Loops are instances of reducible flow graphs.

– Each cycle of nodes has a unique header.

– During reduction, entire loop becomes a single node.

� Non-Loops are instances of irreducible flow graphs.

– Analysis and optimization is more efficient on reducible flow graphs.

– Irreducible flow graphs occur rarely in practice.

� Use of structured constructs (e.g. if-then, if-then-else, while, repeat, for) leads
to reducible flow graphs.

� Use of goto’s may lead to irreducible flow graphs.

– Irreducible flow graphs can be made reducible by node-splitting.
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Node Splitting
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