
The Front End

Back End
Target

Lexer Parser
Source

Stream of
Tokens

Abstract
Syntax Tree Semantic

Analysis
IR Trees Canon-

icalizer
IR Trees Instruction

Selection
Assembly
Pseudo-

The Front End:

1. assumes the presence of an infinite number of registers to hold temporary variables.

2. introduces inefficiencies in the source to IR translation.

3. does a direct translation of programmer’s code.

4. does not create pseudo-assembly tuned to the target architecture.

� Not scheduled for machines with non-unit latency.

� Not scheduled for wide-issue machines.

Computer Science 320
Prof. David Walker

- 1 -

The Back End

The Back End:

1. Maps infinite number of virtual registers to finite number of real registers � register
allocation

2. Removes inefficiencies introduced by front-end � optimizer

3. Removes inefficiencies introduced by programmer � optimizer

4. Adjusts pseudo-assembly composition and order to match target machine � sched-
uler

Research and development in back end is growing rapidly.

� EPIC Architectures

� Binary re-optimization

� Runtime optimization

� Optimizations requiring additional hardware support

Computer Science 320
Prof. David Walker

- 2 -

Optimization

for i := 0 to 10
do a[i] = x;

ADDI r1 = r0 + 0

LOOP:
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
MUL r4 = r3 * r1
ADD r5 = r2 + r4
LOAD r6 = M[FP + x]
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP

Loop invariant code removal...
Computer Science 320
Prof. David Walker

- 3 -

Register Allocation

for i := 0 to 10
do a[i] = x;

ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
MUL r4 = r3 * r1
ADD r5 = r2 + r4
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP

Uses 6 virtual registers, only have 5 real registers...

Computer Science 320
Prof. David Walker

- 4 -

Scheduling
1 ADDI r1 = r0 + 0
2 LOAD r2 = M[FP + A]
3 ADDI r3 = r0 + 4
4 LOAD r4 = M[FP + X]

LOOP:
1 MUL r5 = r3 * r1
2
3 ADD r5 = r2 + r5
4 STORE M[r5] = r4
5 ADDI r1 = r1 + 1
6 BRANCH r1 <= 10, LOOP

1 ADDI r1 = r0 + 0
2 LOAD r2 = M[FP + A]
3 ADDI r3 = r0 + 4
4 LOAD r4 = M[FP + X]

LOOP:
1 MUL r5 = r3 * r1
2 ADDI r1 = r1 + 1
3 ADD r5 = r2 + r5
4 STORE M[r5] = r4
5 BRANCH r1 <= 10, LOOP

Multiply instruction takes 2 cycles...

Computer Science 320
Prof. David Walker

- 5 -

Control Flow Analysis

Register AllocationOptimization Scheduling

Control Flow Analysis Dataflow Analysis

� Control Flow Analysis determines the how instructions are fetched during execution.

� Control Flow Analysis precedes dataflow analysis.

� Dataflow analysis determines how data flows among instructions.

� Dataflow analysis precedes optimization, register allocation, and scheduling.

Computer Science 320
Prof. David Walker

- 6 -

Control Flow Analysis

Control Flow Analysis determines the how instructions are fetched during execution.

� Control Flow Graph - graph of instructions with directed edge �� � �� iff �� can be
executed immediately after ��.

Computer Science 320
Prof. David Walker

- 7 -

Control Flow Analysis Example

r1 = 0

LOOP:
r1 = r1 + 1
r2 = r1 & 1
BRANCH r2 == 0, ODD
r3 = r3 + 1
JUMP NEXT

ODD:
r4 = r4 + 1

NEXT:
BRANCH r1 <= 10, LOOP

Computer Science 320
Prof. David Walker

- 8 -

Basic Blocks
� Basic Block - run of code with single entry and exit.

� Control flow graph of basic blocks more convenient.

� Determine by the following:

1. Find leaders:

(a) First statement
(b) Targets of conditional and unconditional branches
(c) Instructions that follow branches

2. Basic blocks are leader up to, but not including next leader.

Computer Science 320
Prof. David Walker

- 9 -

Basic Block Example

r1 = 0

LOOP:
r1 = r1 + 1
r2 = r1 & 1
BRANCH r2 == 0, ODD

r3 = r3 + 1
JUMP NEXT

ODD:
r4 = r4 + 1

NEXT:
BRANCH r1 <= 10, LOOP

Computer Science 320
Prof. David Walker

- 10 -

Domination Motivation

Constant Propagation:

r2 = r1 + 5

r1 = 4

r1 = 4

r2 = r1 + 5 r2 = 9

r2 = 9

Computer Science 320
Prof. David Walker

- 11 -

Domination
� Assume every Control Flow Graph (CFG) has start node �� with no predecessors.

� Node � dominates node � if every path of directed edges from �� to � must go
through �.

� Every node dominates itself.

� Consider:
d

n

...
........

p_kp_3p_2p_1

� If � dominates each of the ��, then � dominates �.

� If � dominates �, then � dominates each of the ��.
Computer Science 320
Prof. David Walker

- 12 -

Dominator Analysis
� If � dominates each of the ��, then � dominates �.

� If � dominates �, then � dominates each of the ��.

� ������ = set of nodes that dominate node �.

� 	 = set of all nodes.

� Computation:

1. ������� � ����.

2. for � � 	 � ���� do ������ � 	
3. while (changes to any ������ occur) do

4. for � � 	 � ���� do

5. ������ � ��� �
�

����������������
�

.

Computer Science 320
Prof. David Walker

- 13 -

Dominator Analysis Example

1

2

3 4

5 6

7

11

8

9

10 12

Node ������ ������ �������

1 1
2 1-12
3 1-12
4 1-12
5 1-12
6 1-12
7 1-12
8 1-12
9 1-12
10 1-12
11 1-12
12 1-12

Computer Science 320
Prof. David Walker

- 14 -

Immediate Dominator
� Immediate dominator used in constructing dominator tree.

� Dominator Tree:

– efficient representation of dominator information

– used for other types of analysis (e.g. control dependence)

� �� is root of dominator tree.

� Each node � dominates only its descendants in tree.

� Every node � (� 	� ��) has exactly one immediate dominator �������.

� ������� 	� �

� ������� dominates �

� ������� does not dominate any other dominator of �.

� Last dominator of � on any path from �� to � is �������.

Computer Science 320
Prof. David Walker

- 15 -

Immediate Dominator Example

1

2

3 4

5 6

7

11

8

9

10 12

Node ������ �������

1 1
2 1,2
3 1,2,3
4 1,2,4
5 1,2,5
6 1,2,4,6
7 1,2,7
8 1,2,5,8
9 1,2,5,8,9
10 1,2,5,8,9,10
11 1,2,7,11
12 1,2,12

Computer Science 320
Prof. David Walker

- 16 -

Post-Domination
� Assume every Control Flow Graph (CFG) has exit node
 with no successors.

� Node � post-dominates node � if every path of directed edges from � to
 must go
through �.

� Every node post-dominates itself.

� Derivation of post-dominator and immediate post-dominator analysis analogous to
dominator and immediate dominator analysis.

� Post-dominators will be useful in computing control dependence.

� Control dependence will be useful in many future optimizations.

Computer Science 320
Prof. David Walker

- 17 -

Loop Optimizations
� Large fraction of execution time is spent in loops.

� Effective loop optimization is extremely important.

� First step in loop optimization � find the loops.

� A loop is a set of CFG nodes � such that:

1. there exists a header node � in � that dominates all nodes in �.

– there exists a path of directed edges from � to any node in �.
– � is the only node in � with predecessors not in �.

2. from any node in �, there exists a path of directed edges to �.

� A loop is a single entry, multiple exit region.

Computer Science 320
Prof. David Walker

- 18 -

Examples of Loops

Computer Science 320
Prof. David Walker

- 19 -

Back Edges

1

2

3 4

5 6

7

11

8

9

10 12

� Back-edge - flow graph edge from node � to node � such
that � dominates �

� Each back-edge has a corresponding natural loop.

Computer Science 320
Prof. David Walker

- 20 -

Natural Loops

1

2

3 4

5 6

7

11

8

9

10 12

� Natural loop of back-edge
�
 ��:

– has a loop header �.

– set of nodes � such that � dominates
 � � and there
is a path from
 to � not containing �.

� A node � may be header of more than one natural loop.

� Natural loops may be nested.

Computer Science 320
Prof. David Walker

- 21 -

Loop Optimization
� Compiler should optimize inner loops first.

– Programs typically spend most time in inner loops.

– Optimizations may be more effective � loop invariant code removal.

� Convenient to merge natural loops with same header.

� These merged loops are not natural loops.

� Not all cycles in CFG are loops of any kind (more later).

Computer Science 320
Prof. David Walker

- 22 -

Loop Optimization

Loop invariant code motion

� An instruction is loop invariant if it computes the same value in each iteration.

� Invariant code may be hoisted outside the loop.

ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
MUL r4 = r3 * r1
ADD r5 = r2 + r4
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP

Computer Science 320
Prof. David Walker

- 23 -

Loop Optimization
� Induction variable analysis and elimination - � is an induction variable if only

definitions of � within loop increment/decrement � by loop-invariant value.

� Strength reduction - replace expensive instructions (like multiply) with cheaper
ones (like add).

ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
MUL r4 = r3 * r1
ADD r5 = r2 + r4
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP

Computer Science 320
Prof. David Walker

- 24 -

Non-Loop Cycles

Examples:

Computer Science 320
Prof. David Walker

- 25 -

Non-Loop Cycles
� Loops are instances of reducible flow graphs.

– Each cycle of nodes has a unique header.

– During reduction, entire loop becomes a single node.

� Non-Loops are instances of irreducible flow graphs.

– Analysis and optimization is more efficient on reducible flow graphs.

– Irreducible flow graphs occur rarely in practice.

� Use of structured constructs (e.g. if-then, if-then-else, while, repeat, for) leads
to reducible flow graphs.

� Use of goto’s may lead to irreducible flow graphs.

– Irreducible flow graphs can be made reducible by node-splitting.

Computer Science 320
Prof. David Walker

- 26 -

Node Splitting

Computer Science 320
Prof. David Walker

- 27 -

