Max Flow, Min Cut

Minimum cut

Maximum flow

Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics

Bipartite matching

Princeton University - COS 226 - Algorithms and Data Structures - Spring 2004 - Kevin Wayne - http://www.Princeton EDU/~cos226

Maximum Flow and Minimum Cut

Max flow and min cut.
. Two very rich algorithmic problems.
. Cornerstone problems in combinatorial optimization.
« Beautiful mathematical duality.

Nontrivial applications / reductions.
» Network connectivity.

. Bipartite matching.

. Data mining.

. Open-pit mining.

. Airline scheduling.

» Image processing.

. Project selection.

. Baseball elimination.

. Network reliability.

. Security of statistical data.
. Distributed computing.

. Egalitarian stable matching.
. Distributed computing.

« Many many more . . .

Soviet Rail Network, 1955

Source: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Minimum Cut Problem

Network: abstraction for material FLOWING through the edges.
. Directed graph.
. Capacities on edges.
. Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

10 4 10
source = 5 3 8 =\é|>/ 10 & sink
capacity =» 15 4 6 15 10

Cuts

A cut is a node partition (S, T) such that sisin Sand tisin T.
. capacity(S, T) = sum of weights of edges leaving S.

15 15 10

8 ® 10 ®

4 6 15 10

Capacity = 30
\‘@ 30 @ pectly

Cuts

A cut is a node partition (S, T) such that sisin Sand tisin T.
. capacity(S, T) = sum of weights of edges leaving S.

»®
15 10
=G 10 ®
15 10
o Capacity = 62

Minimum Cut Problem

A cut is a hode partition (S, T) such that sisin Sand tisin T.
. capacity(S, T) = sum of weights of edges leaving S.

Min cut problem. Find an s-t cut of minimum capacity.

10 4 15 15 10
5 4’?‘\ : ?) /g>
3 5 4 N5 10

Capacity = 28
\}; 50 e

) 4

Maximum Flow Problem

Network: abstraction for material FLOWING through the edges.
. Directed graph.
. Capacities on edges.
. Source node s, sink node t.

same input as min cut problem

Max flow problem. Assign flow to edges so as to:
. Equalize inflow and outflow at every intermediate vertex.
. Maximize flow sent from s to t.

10 4 10
source = 5 3 8 =\é|,/ 10 & sink
capacity = 15 4 6 15 10

Flows

A flow f is an assignment of weights to edges so that:
. Capacity: 0< f(e) <u(e).
. Flow conservation: flow leaving v = flow entering v.

=»

exceptatsort

capacity = 15
flow =» 0

Value = 4

Flows

A flow f is an assignment of weights to edges so that:
. Capacity: 0< f(e) <u(e).
. Flow conservation: flow leaving v = flow entering v.
1t

exceptatsort

4 4 15 150 10
3 8 \L .
5 3 8 »>(6 10

\ 1 T 10

capacity = 15 4
I = 11 l l
flow 11 Value = 24
4 30 7

Maximum Flow Problem

Max flow problem: find flow that maximizes net flow into sink.

9
2 9 NG
10 1 9
10 40 15 50 10
4 l 8 \L 9
5—»? 8 »(6 10—
\ 4 T 10

capacity = 15 4
flow = 14 l 14 l
4 30 7

Value = 28

Flows and Cuts

Observation 1. Let f be a flow, and let (S, T) be any s-t cut. Then, the
net flow sent across the cut is equal o the amount reaching ¥.

6
9 ®
10 0 6
10 4 4 15 15 0 10
4 8 8
5 —»Q) 8 ® 10 ®
0 10
10
15 40 6 150 10
10 Value = 24

Flows and Cuts

Observation 1. Let f be a flow, and let (S, T) be any s-t cut. Then, the
net flow sent across the cut is equal o the amount reaching t.

6

9 »(5)

0 6

15 15 0 10

8 8

8 >(6 10 ®

0 10

10 Value = 24
30 »(7

Flows and Cuts

Observation 1. Let f be a flow, and let (S, T) be any s-t cut. Then, the
net flow sent across the cut is equal o the amount reaching ¥.

_— =
o O
G"O O O

6
44 150 10
|

4 8 8
5 8 :? 10
° 10 0 10
15 40 6 150 10

10 Value = 24
30 >

Flows and Cuts

Observation 2. Let f be a flow, and let (S, T) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity =30 = Flow value < 30

9 ®

15 15 10

30 @)

Max Flow and Min Cut

Observation 3. Let f be a flow, and let (S, T) be an s-t cut whose capacity
equals the value of f. Then f is a max flow and (S, T) is a min cuft.

Cut capacity =28 = Flow value <28

9 Flow value = 28
9

Max-Flow Min-Cut Theorem

Max-flow min-cut theorem. (Ford-Fulkerson, 1956): In any network,
the value of max flow equals capacity of min cut.

. Proof TOU: we find flow and cut such that Observation 3 applies.

Min cut capacity = 28 < Max flow value = 28

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.

Flow Flow value = O

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
. Greedy algorithm: repeat until you get stuck.

flow Flow value = 10

2

0p capacity
4 0 4
X 10 4 x10 X 10
10— (2 13 »3) 10 —

Bottleneck capacity of path = 10

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
. Greedy algorithm: repeat until you get stuck.
. Fails: need to be able to "backtrack."

flow Flow value = 10

3

00 capacity
4 0 4
X 10 4 ®10 X 10
10— (2 13 >3) 10 —

Flow value = 14

20

Residual Graph

Original graph. flow = f(e)

. Flow f(e). 6
ow f(e) @ 17 =@

capacity = u(e)

. Edgee=v-w

Residual edge.
. Edge e =v-worw-v.

. "Undo" flow sent. residual capacity = u(e) - f(e)

Residual graph. @ 1 »(w

. All the edges that have — 6

Sfl"iCﬂy pOSH’iVC residual CGPGC“’Y. residual capacity = f(e)

21

Augmenting Paths

Augmenting path = path in residual graph.
. Increase flow along forward edges.
. Decrease flow along backward edges.

/v@\ 1
residual 4 4
@4 ’ %
10 @ 10 D+— 10

3
%a
45 .
5 4

4 4
10 4 w6 10
1o—>@/ 13 RO 10 >:)

original

22

Augmenting Paths

Observation 4. If augmenting path, then not yet a max flow.
Q. If noaugmenting path, is it a max flow?

@éw—@éi 10%

% 5 Flow value = 14
e 4 X 4
original 4 45 4
10 4 w6 10
10—»@/ 13 RO 10

residual

23

Ford-Fulkerson Augmenting Path Algorithm

Ford-Fulkerson algorithm. Generic method for solving max flow.

while (there exists an augmenting path) {
Find augmenting path P E
Compute bottleneck capacity of P

Augment flow along P

}

Questions.
. Does this lead to a maximum flow? yes
. How do we find an augmenting path? s-t path in residual graph
. How many augmenting paths does it take?
. How much effort do we spending finding a path?

24

Max-Flow Min-Cut Theorem

Augmenting path theorem. A flow f is a max flow if and only if there
are no augmenting paths.

Max-flow min-cut theorem. The value of the max
flow is equal to the capacity of the min cuft.

We prove both simultaneously by showing the following are equivalent:
(i) fisamax flow.
(i) There is no augmenting path relative to f.
(iii) There exists a cut whose capacity equals the value of f.

(i) = (ii) equivalent to not (ii) = not (i), which was Observation 4

(i) = (iii)) next slide
(i) = () this was Observation 3

25

Proof of Max-Flow Min-Cut Theorem

(ii) = (iii). If there is no augmenting path relative to f, then there
exists a cut whose capacity equals the value of f.

Proof.
. Let f be a flow with no augmenting paths.
. Let S be set of vertices reachable from s in residual graph.
- S contains s; since no augmenting paths, S does not contain t
- all edges e leaving S in original network have f(e) = u(e)
- all edges e entering S in original hetwork have f(e) = 0

fl = X fle)- Xfle)
eoutof S einto S
= XY ule)
eoutof S

capacity(S, T)

residual network

Max Flow Network Implementation

Edge in original graph may correspond to 1 or 2 residual edges.
. May need to traverse edge e = v-w in forward or reverse direction.
. Flow = f(e), capacity = u(e).
. Insert two copies of each edge, one in adjacency list of v and one in w.

public class Edge {

private int v, w; // from, to

private int cap; // capacity from v to w
private int flow; // flow from v to w
public Edge(int v, int w, int cap) { ... }

public int cap() { return cap; }
public int flow() { return flow; }

public boolean from(int v) { return this.v == v; }
public int other (int v) { return from(v) ? this.w : this.v; }
public int capRto (int v) { return from(v) ? flow : cap - flow; }

public void addflowRto(int v, int d) { flow += from(v) ? -d : d; }

27

Ford-Fulkerson Algorithm: Implementation

Ford-Fulkerson main loop.

// while there exists an augmenting path, use it
while (augpath()) {

// compute bottleneck capacity
int bottle = INFINITY;
for (int v =¢t; v !'=s; v = ST(v))
bottle = Math.min (bottle, pred[v].capRto(v)) ;

// augment flow
for (int v =¢t; v !'=s; v = ST(v))
pred[v] .addflowRto (v, bottle) ;

// keep track of total flow sent from s to t
value += bottle;

Ford-Fulkerson Algorithm: Analysis

Assumption: all capacities are integers between 1 and U.

Invariant: every flow value and every residual capacities remain an
integer throughout the algorithm.

Theorem: the algorithm terminates in at most | f * | <V U iterations.

‘
not polynomial
in input size!
Corollary: if U =1, then algorithm runs in < V iterations.

Integrality theorem: if all arc capacities are integers, then there
exists a max flow f for which every flow value is an integer.

29

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

100

100

Original Network

100

100

30

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

1 4
X 0
100 100
1
1R
0 1 X
100 100

Original Network

31

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

Original Network

32

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

4
1 x 1
100 100
0
1X
X1 1
100 100
v

Original Network

33

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

1 1
100 100
10
1 1
100 100

Original Network

200 iterations possible!

34

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.
. Clever choices lead to polynomial algorithms.
. Optimal choices for real world problems ?2??

Design goal is to choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting path with:
. Fewest number of arcs.
» Max bottleneck capacity.

Edmonds-Karp (1972)
(shortest path)
(fattest path)

35

Shortest Augmenting Path

Shortest augmenting path.
. Easy to implement with BFS.
. Finds augmenting path with fewest number of arcs.

while (!q.isEmpty()) {
int v = g.dequeue() ;
IntIterator i = G.neighbors (v) ;
while (i.hasNext()) {
Edge e = i.next();
int w = e.other (v) ;
if (e.capRto(w) > 0) { // is v-w a residual edge?
if (wt[w] > wt[v] + 1) {
wt[w] = wt[v] + 1;
pred[w] = e;
g.enqueue (w) ;

// keep track of shortest path

}
}

return (wt[t] < INFINITY) ; // is there an augmenting path?

36

Shortest Augmenting Path Analysis

Length of shortest augmenting path increases monotonically.
. Strictly increases after at most E augmentations.
. At most E V total augmenting paths.
. O(E? V) running time.

37

Fattest Augmenting Path

Fattest augmenting path.
. Finds augmenting path whose bottleneck capacity is maximum.
. Delivers most amount of flow fo sink.
. Solve using Dijkstra-style (PFS) algorithm.

12 X 10

© 10 @

residual capacity

if (wt[w] < Math.min(wt[v], e.capRto(w)) {
wt[w] = Math.min(wt[v], e.capRto(w)) ;
pred[w] = v;

Finding a fattest path. O(E log V) per augmentation with binary heap.
Fact. O(E log U) augmentations if capacities are between 1 and U.

38

Choosing an Augmenting Path

Choosing an augmenting path.
. Any path will do = wide latitude in implementing Ford-Fulkerson.
. Generic priority first search.
. Some choices lead to good worst-case performance.
- shortest augmenting path
- fattest augmenting path
- variation on a theme: PFS
. Average case not well understood.

Research challenges.

. Practice: solve max flow problems on real networks in linear time.
. Theory: prove it for worst-case networks.

39

History of Worst-Case Running Times

Discoverer Method

Asymptotic Time

Dantzig Simplex
1955 Ford, Fulkerson Augmenting path EVUt
1970 Edmonds-Karp Shortest path E2V
1970 Edmonds-Karp Max capacity E logU(E+Vlog V)t
1970 Dinitz Improved shortest path E V2
1972 | Edmonds-Karp, Dinitz Capacity scaling E2logut
1973 Dinitz-Gabow Improved capacity scaling EVlogU f
1974 Karzanov Preflow-push V3
1983 Sleator-Tarjan Dynamic trees E Vlog V
1986 Goldberg-Tarjan FIFO preflow-push EV log (V2/ E)
1997 6oldberg-Rao Length function Sf,s"l’gg(‘(/\jz/ /E%)Ic;gguu**

T Arc capacities are between 1 and U.

40

An Application

Jon placement. Alice Adobe
. . Adobe Alice
. Companies make job offers. Applo iy
. Students have job choices. HP Dave
Bob Apple
Adobe Alice
Can we fill every job? Apple Bob
Yahoo Dave
Carol HP
Can we employ every student? HP Alice
mploy 4 IBM Carol
Sun Frank
Dave IBM
Adobe Carol
Alice-Adobe EI_Apple . Eliza
iza un
Bob-Yahoo IBM Carol
Carol-HP Sun Eliza
Yahoo Frank
Dave—Apple Frank Yahoo
Eliza-IBM :P E?b
un iza
Frank-Sun Yahoo Frank

41

Bipartite Matching

Bipartite matching.

. Input: undirected and bipartite graph 6.

. Set of edges M is a matching if each vertex appears at most once.
« Max matching: find a max cardinality matching.

Matching M
1-B, 3-A, 4-E

42

Bipartite Matching

Bipartite matching.

. Input: undirected and bipartite graph G.

. Set of edges M is a matching if each vertex appears at most once.
» Max matching: find a max cardinality matching.

\<@
@ ® Matching M
/ 1-A, 2-B, 3-C, 4-D

©

®
©

©
@

43

Bipartite Matching

Reduces to max flow.
. Create a directed graph G'.
. Direct all arcs from L to R, and give infinite (or unit) capacity.
. Add source s, and unit capacity arcs from s to each node in L.
. Add sink t, and unit capacity arcs from each node in R to t.

R
Q

44

Bipartite Matching: Proof of Correctness

Claim. Matching in G of cardinality k induces flow in G' of value k.
. Given matching M = { 1-B, 3-a, 4-E } of cardinality 3.
. Consider flow f that sends 1 unit along each of 3 paths:
s-1-B-t s-3-A-t s-4-E-t.
. fisaflow, and has cardinality 3.

45

Bipartite Matching: Proof of Correctness

Claim. Flow f of value k in G' induces matching of cardinality k in 6.
. By infegrality theorem, there exists 0/1 valued flow f of value k.
. Consider M = set of edges from L to R with f(e) = 1.

- each node in L and R incident to at most one edge in M
- |M| =k

46

Reduction

Reduction.
. Given an instance of bipartite matching.
. Transform it to a max flow problem.
. Solve max flow problem.
. Transform max flow solution to bipartite matching solution.

Issues.
. How expensive is transformation? OE +V)
. Is it better to solve problem directly? O(E V¥/?) bipartite matching

Bottom line: max flow is an extremely rich problem-solving model.

. Many important practical problems reduce to max flow.
. We know good algorithms for solving max flow problems.

47

