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Maximum Flow and Minimum Cut

Max flow and min cut.
. Two very rich algorithmic problems.
. Cornerstone problems in combinatorial optimization.
« Beautiful mathematical duality.

Nontrivial applications / reductions.
» Network connectivity.

. Bipartite matching.

. Data mining.

. Open-pit mining.

. Airline scheduling.

» Image processing.

. Project selection.

. Baseball elimination.

. Network reliability.

. Security of statistical data.
. Distributed computing.

. Egalitarian stable matching.
. Distributed computing.

« Many many more . . .

Soviet Rail Network, 1955

Source: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Minimum Cut Problem

Network: abstraction for material FLOWING through the edges.
. Directed graph.
. Capacities on edges.
. Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.
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Cuts

A cut is a node partition (S, T) such that sisin Sand tisin T.
. capacity(S, T) = sum of weights of edges leaving S.
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Cuts

A cut is a node partition (S, T) such that sisin Sand tisin T.
. capacity(S, T) = sum of weights of edges leaving S.
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Minimum Cut Problem

A cut is a hode partition (S, T) such that sisin Sand tisin T.
. capacity(S, T) = sum of weights of edges leaving S.

Min cut problem. Find an s-t cut of minimum capacity.
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Maximum Flow Problem

Network: abstraction for material FLOWING through the edges.
. Directed graph.
. Capacities on edges.
. Source node s, sink node t.

same input as min cut problem

Max flow problem. Assign flow to edges so as to:
. Equalize inflow and outflow at every intermediate vertex.
. Maximize flow sent from s to t.
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Flows

A flow f is an assignment of weights to edges so that:
. Capacity: 0< f(e) <u(e).
. Flow conservation: flow leaving v = flow entering v.
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Flows

A flow f is an assignment of weights to edges so that:
. Capacity: 0< f(e) <u(e).
. Flow conservation: flow leaving v = flow entering v.
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Maximum Flow Problem

Max flow problem: find flow that maximizes net flow into sink.
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Flows and Cuts

Observation 1. Let f be a flow, and let (S, T) be any s-t cut. Then, the
net flow sent across the cut is equal o the amount reaching ¥.

6
9 ®
10 0 6
10 4 4 15 15 0 10
4 8 8
5 —»Q) 8 ® 10 ®
0 10
10
15 40 6 150 10
10 Value = 24




Flows and Cuts

Observation 1. Let f be a flow, and let (S, T) be any s-t cut. Then, the
net flow sent across the cut is equal o the amount reaching t.
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Flows and Cuts

Observation 1. Let f be a flow, and let (S, T) be any s-t cut. Then, the
net flow sent across the cut is equal o the amount reaching ¥.
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Flows and Cuts

Observation 2. Let f be a flow, and let (S, T) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity =30 = Flow value < 30
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Max Flow and Min Cut

Observation 3. Let f be a flow, and let (S, T) be an s-t cut whose capacity
equals the value of f. Then f is a max flow and (S, T) is a min cuft.

Cut capacity =28 = Flow value <28
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Max-Flow Min-Cut Theorem

Max-flow min-cut theorem. (Ford-Fulkerson, 1956): In any network,
the value of max flow equals capacity of min cut.

. Proof TOU: we find flow and cut such that Observation 3 applies.

Min cut capacity = 28 < Max flow value = 28

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.

Flow Flow value = O

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
. Greedy algorithm: repeat until you get stuck.
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Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
. Greedy algorithm: repeat until you get stuck.
. Fails: need to be able to "backtrack."

flow Flow value = 10
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Residual Graph

Original graph. flow = f(e)

. Flow f(e). 6
ow f(e) @ 17 =@

capacity = u(e)

. Edgee=v-w

Residual edge.
. Edge e =v-worw-v.

. "Undo" flow sent. residual capacity = u(e) - f(e)

Residual graph. @ 1 »(w

. All the edges that have — 6

Sfl"iCﬂy pOSH’iVC residual CGPGC“’Y. residual capacity = f(e)
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Augmenting Paths

Augmenting path = path in residual graph.
. Increase flow along forward edges.
. Decrease flow along backward edges.

/v@\ 1
residual 4 4
@4 ’ %
10 @ 10 D+— 10

3
%a
45 .
5 4

4 4
10 4 w6 10
1o—>@/ 13 RO 10 >:)

original

22

Augmenting Paths

Observation 4. If augmenting path, then not yet a max flow.
Q. If noaugmenting path, is it a max flow?
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Ford-Fulkerson Augmenting Path Algorithm

Ford-Fulkerson algorithm. Generic method for solving max flow.

while (there exists an augmenting path) {
Find augmenting path P E
Compute bottleneck capacity of P

Augment flow along P

}

Questions.
. Does this lead to a maximum flow? yes
. How do we find an augmenting path?  s-t path in residual graph
. How many augmenting paths does it take?
. How much effort do we spending finding a path?
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Max-Flow Min-Cut Theorem

Augmenting path theorem. A flow f is a max flow if and only if there
are no augmenting paths.

Max-flow min-cut theorem. The value of the max
flow is equal to the capacity of the min cuft.

We prove both simultaneously by showing the following are equivalent:
(i) fisamax flow.
(i) There is no augmenting path relative to f.
(iii) There exists a cut whose capacity equals the value of f.

(i) = (ii) equivalent to not (ii) = not (i), which was Observation 4

(i) = (iii)) next slide
(i) = () this was Observation 3
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Proof of Max-Flow Min-Cut Theorem

(ii) = (iii). If there is no augmenting path relative to f, then there
exists a cut whose capacity equals the value of f.

Proof.
. Let f be a flow with no augmenting paths.
. Let S be set of vertices reachable from s in residual graph.
- S contains s; since no augmenting paths, S does not contain t
- all edges e leaving S in original network have f(e) = u(e)
- all edges e entering S in original hetwork have f(e) = 0

fl = X fle)- Xfle)
eoutof S einto S
= XY ule)
eoutof S

capacity(S, T)

residual network

Max Flow Network Implementation

Edge in original graph may correspond to 1 or 2 residual edges.
. May need to traverse edge e = v-w in forward or reverse direction.
. Flow = f(e), capacity = u(e).
. Insert two copies of each edge, one in adjacency list of v and one in w.

public class Edge {

private int v, w; // from, to

private int cap; // capacity from v to w
private int flow; // flow from v to w
public Edge(int v, int w, int cap) { ... }

public int cap() { return cap; }
public int flow() { return flow; }

public boolean from(int v) { return this.v == v; }
public int other (int v) { return from(v) ? this.w : this.v; }
public int capRto (int v) { return from(v) ? flow : cap - flow; }

public void addflowRto(int v, int d) { flow += from(v) ? -d : d; }

27

Ford-Fulkerson Algorithm: Implementation

Ford-Fulkerson main loop.

// while there exists an augmenting path, use it
while (augpath()) {

// compute bottleneck capacity
int bottle = INFINITY;
for (int v =¢t; v !'=s; v = ST(v))
bottle = Math.min (bottle, pred[v].capRto(v)) ;

// augment flow
for (int v =¢t; v !'=s; v = ST(v))
pred[v] .addflowRto (v, bottle) ;

// keep track of total flow sent from s to t
value += bottle;




Ford-Fulkerson Algorithm: Analysis

Assumption: all capacities are integers between 1 and U.

Invariant: every flow value and every residual capacities remain an
integer throughout the algorithm.

Theorem: the algorithm terminates in at most | f * | <V U iterations.

‘
not polynomial
in input size!
Corollary: if U =1, then algorithm runs in < V iterations.

Integrality theorem: if all arc capacities are integers, then there
exists a max flow f for which every flow value is an integer.
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

100

100

Original Network

100

100
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

1 4
X 0
100 100
1
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Original Network

31

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

Original Network
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

4
1 x 1
100 100
0
1X
X1 1
100 100
v

Original Network
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

1 1
100 100
10
1 1
100 100

Original Network

200 iterations possible!
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.
. Clever choices lead to polynomial algorithms.
. Optimal choices for real world problems ?2??

Design goal is to choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting path with:
. Fewest number of arcs.
» Max bottleneck capacity.

Edmonds-Karp (1972)
(shortest path)
(fattest path)
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Shortest Augmenting Path

Shortest augmenting path.
. Easy to implement with BFS.
. Finds augmenting path with fewest number of arcs.

while (!q.isEmpty()) {
int v = g.dequeue() ;
IntIterator i = G.neighbors (v) ;
while (i.hasNext()) {
Edge e = i.next();
int w = e.other (v) ;
if (e.capRto(w) > 0) { // is v-w a residual edge?
if (wt[w] > wt[v] + 1) {
wt[w] = wt[v] + 1;
pred[w] = e;
g.enqueue (w) ;

// keep track of shortest path

}
}

return (wt[t] < INFINITY) ; // is there an augmenting path?
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Shortest Augmenting Path Analysis

Length of shortest augmenting path increases monotonically.
. Strictly increases after at most E augmentations.
. At most E V total augmenting paths.
. O(E? V) running time.
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Fattest Augmenting Path

Fattest augmenting path.
. Finds augmenting path whose bottleneck capacity is maximum.
. Delivers most amount of flow fo sink.
. Solve using Dijkstra-style (PFS) algorithm.

12 X 10

© 10 @

residual capacity

if (wt[w] < Math.min(wt[v], e.capRto(w)) {
wt[w] = Math.min(wt[v], e.capRto(w)) ;
pred[w] = v;

Finding a fattest path. O(E log V) per augmentation with binary heap.
Fact. O(E log U) augmentations if capacities are between 1 and U.
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Choosing an Augmenting Path

Choosing an augmenting path.
. Any path will do = wide latitude in implementing Ford-Fulkerson.
. Generic priority first search.
. Some choices lead to good worst-case performance.
- shortest augmenting path
- fattest augmenting path
- variation on a theme: PFS
. Average case not well understood.

Research challenges.

. Practice: solve max flow problems on real networks in linear time.
. Theory: prove it for worst-case networks.
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History of Worst-Case Running Times

Discoverer Method

Asymptotic Time

Dantzig Simplex
1955 Ford, Fulkerson Augmenting path EVUt
1970 Edmonds-Karp Shortest path E2V
1970 Edmonds-Karp Max capacity E logU(E+Vlog V)t
1970 Dinitz Improved shortest path E V2
1972 | Edmonds-Karp, Dinitz Capacity scaling E2logut
1973 Dinitz-Gabow Improved capacity scaling EVlogU f
1974 Karzanov Preflow-push V3
1983 Sleator-Tarjan Dynamic trees E Vlog V
1986 Goldberg-Tarjan FIFO preflow-push EV log (V2/ E)
1997 6oldberg-Rao Length function Sf,s"l’gg(‘(/\jz/ /E%)Ic;gguu**

T Arc capacities are between 1 and U.
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An Application

Jon placement. Alice Adobe
. . Adobe Alice
. Companies make job offers. Applo iy
. Students have job choices. HP Dave
Bob Apple
Adobe Alice
Can we fill every job? Apple Bob
Yahoo Dave
Carol HP
Can we employ every student? HP Alice
mploy 4 IBM Carol
Sun Frank
Dave IBM
Adobe Carol
Alice-Adobe EI_Apple . Eliza
iza un
Bob-Yahoo IBM Carol
Carol-HP Sun Eliza
Yahoo Frank
Dave—Apple Frank Yahoo
Eliza-IBM :P E?b
un iza
Frank-Sun Yahoo Frank
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Bipartite Matching

Bipartite matching.

. Input: undirected and bipartite graph 6.

. Set of edges M is a matching if each vertex appears at most once.
« Max matching: find a max cardinality matching.

Matching M
1-B, 3-A, 4-E
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Bipartite Matching

Bipartite matching.

. Input: undirected and bipartite graph G.

. Set of edges M is a matching if each vertex appears at most once.
» Max matching: find a max cardinality matching.

\<@
@ ® Matching M
/ 1-A, 2-B, 3-C, 4-D

©

®
©

©
@
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Bipartite Matching

Reduces to max flow.
. Create a directed graph G'.
. Direct all arcs from L to R, and give infinite (or unit) capacity.
. Add source s, and unit capacity arcs from s to each node in L.
. Add sink t, and unit capacity arcs from each node in R to t.

R
Q
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Bipartite Matching: Proof of Correctness

Claim. Matching in G of cardinality k induces flow in G' of value k.
. Given matching M = { 1-B, 3-a, 4-E } of cardinality 3.
. Consider flow f that sends 1 unit along each of 3 paths:
s-1-B-t s-3-A-t s-4-E-t.
. fisaflow, and has cardinality 3.
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Bipartite Matching: Proof of Correctness

Claim. Flow f of value k in G' induces matching of cardinality k in 6.
. By infegrality theorem, there exists 0/1 valued flow f of value k.
. Consider M = set of edges from L to R with f(e) = 1.

- each node in L and R incident to at most one edge in M
- |M| =k
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Reduction

Reduction.
. Given an instance of bipartite matching.
. Transform it to a max flow problem.
. Solve max flow problem.
. Transform max flow solution to bipartite matching solution.

Issues.
. How expensive is transformation? OE +V)
. Is it better to solve problem directly? O(E V¥/?) bipartite matching

Bottom line: max flow is an extremely rich problem-solving model.

. Many important practical problems reduce to max flow.
. We know good algorithms for solving max flow problems.
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