
Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Geometric Algorithms

Reference: Chapters 24-25, Algorithms in C, 2nd Edition, Robert Sedgewick.

Convex hull

Geometric primitives

Closest pair of points

Voronoi

2

Geometric Algorithms

Applications.
� Data mining.
� VLSI design.
� Computer vision.
� Mathematical models.
� Astronomical simulation.
� Geographic information systems.
� Computer graphics (movies, games, virtual reality).
� Models of physical world (maps, architecture, medical imaging).

History.
� Ancient mathematical foundations.
� Most geometric algorithms less than 25 years old.

Reference: http://www.ics.uci.edu/~eppstein/geom.html

3

Geometric Primitives

Point: two numbers (x, y).
Line: two numbers a and b [ax + by = 1]
Line segment: four numbers (x1, y1), (x2, y2).
Polygon: sequence of points.

Primitive operations.
� Distance between two points.
� Compare slopes of two lines.
� Given three points p1, p2, p3, is p1-p2-p3 a counterclockwise turn?
� Do two line segments intersect?
� Is a point inside a polygon?

Other geometric shapes.
� Triangle, rectangle, circle, sphere, . . .
� 3D and higher dimensions sometimes more complicated.

any line not through origin

4

Warning: Intuition May Mislead

Warning: intuition may be misleading.
� Humans have spatial intuition in 2D and 3D.

Is a given polygon convex?

we think of this algorithm sees this

1 6 5 8 7 2

7 8 6 4 2 1

1 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 2 18 4 18 4 19 4 19 4 20 3 20 3 20

1 10 3 7 2 8 8 3 4

6 5 15 1 11 3 14 2 16

5

Warning: Intuition May Mislead

Warning: intuition may be misleading.
� Humans have spatial intuition in 2D and 3D.

Intersections among set of rectangles.

we think of this algorithm sees this

6

Warning: Intuition May Mislead

Warning: intuition may be misleading.
� Humans have spatial intuition in 2D and 3D.
� Computers do not.
� Neither has good intuition in higher dimensions!

7

Convex Hull

Convex hull.
� Shortest fence surrounding the points.
� Smallest (convex) polygon enclosing the points.
� Intersection of halfspaces defined by point pairs.

Parameters.
� N = # points.
� M = # points on the hull.

convex not convex

8

Package Wrap

Package wrap.
� Start with point with smallest y-coordinate.
� Rotate sweep line around current point in ccw direction.
� First point hit is on the hull.
� Repeat.

9

Package Wrap

Implementation.
� Compute angle between current point and all remaining points.
� Pick smallest angle larger than current angle.
� 2D analog of selection sort: �(MN) time.

10

How Many Points on the Hull?

Parameters.
� N = # points.
� M = # points on the hull.

How many points on hull?
� Worst case: N.
� Average case: difficult problems in stochastic geometry.

Uniform on a circle: N.
Uniform in a convex polygon with O(1) edges: log N.
Uniform in a disc: N1/3.

11

Graham Scan: Example

Graham scan.
� Choose point p with smallest y-coordinate.
� Sort points by polar angle with p to get simple polygon.
� Consider points in order, and discard those that

cause a clockwise turn.

p

12

Graham Scan: Example

Implementation.
� Input: p[1], p[2], . . ., p[N] are points.
� Output: M and rearrangement so that p[1], ..., p[M] is convex hull.
� Given three points a,b, and c, is a-b-c a counterclockwise turn?
� Total cost: O(N log N) for sort and O(N) for rest.

// preprocess so that p[1] has smallest y-coordinate
// sort by angle with p[1]

points[0] = points[N]; // sentinel
int M = 3;
for (int i = 4; i <= N; i++) {

while (Point.ccw(p[M], p[M-1], p[i]) >= 0) {
M--; // back up to include i on hull

}
M++;
swap(points, M, i); // add i to putative hull

}

13

CCW: Given three point a, b, and c, is a-b-c a counterclockwise turn?
� Idea: compare slopes.
� Difficulty: degeneracy.

Lesson.
� Geometric primitives are tricky to implement.
� Need to handle all degenerate cases.

Implementing CCW

c

a

b

Yes

b

a

c

No

c

a

b

Yes
(� slope)

c

a

b

???
(collinear)

c

b

a

???
(collinear)

b

a

c

???
(collinear)

14

Implementing CCW

CCW: Given three point a, b, and c, is a-b-c a counterclockwise turn?
� Plays same role as comparisons in sorting.
� Determinant gives twice area of triangle.

� If area > 0 then a-b-c is counterclockwise.
If area < 0, then a-b-c is clockwise.
If area = 0, then a-b-c are collinear.

yxyxyxxyxyyx

yx

yx

yx
bccbcacababa

cc
bb
aa

������

1
1
1

> 0

(ax, ay)

< 0

(bx, by)

(cx, cy)

(cx, cy)

(ax, ay)(bx, by)

15

Quick Elimination

Quick elimination.
� Choose a quadrilateral Q or rectangle R with 4 points as corners.
� If point is inside, can eliminate.

– 4 CCW tests for quadrilateral
– 4 comparisons for rectangle

Three-phase algorithm
� Pass through all points to compute R.
� Eliminate points inside R.
� Find convex hull of remaining points.

Impact.
� Almost all points are eliminated if

points are random: O(N).
� Improve performance of any convex hull algorithm.

Q

these
points
eliminated

R

16

Convex Hull Algorithms Costs Summary

“Guaranteed” asymptotic cost to find M-point hull in N-point set.

* assumes "reasonable"
point distribution

Package Wrap

Algorithm

Graham Scan

Sweep Line

Quick Elimination

N M

Running Time

N log N

N log N

N *

Quickhull N log N

Best in Theory N log M

Mergehull N log N

17

Closest Pair of Points

Given N points in the plane, find a pair that is closest together.
� For concreteness, we assume Euclidean distances.
� Foundation of then-fledgling field of computational geometry.
� Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

Brute force solution.
� Check all pairs of points p and q.
� �(N2) comparisons.

1-D version (points on a line). O(N log N) easy.

Assumption. No two points have same x coordinate.

solely to make presentation cleaner

21

Closest Pair of Points

Algorithm.
� Divide: draw vertical line so that roughly N / 2 points on each side.
� Conquer: find closest pair in each side recursively.
� Combine: find closest pair with one point in each side.
� Return: best of 3 solutions.

12

21
8

25

Closest Pair of Points

Key step: find closest pair with one point in each side.
� Extra information: closest pair entirely in one side had distance �.
� Observation: only need to consider points within � of line.
� Sort points in 2�-strip by their y coordinate.
� Only check distances of those within 6 positions in sorted list!

12

21

� = min(12, 21)

�

1

2

3

4
5

6

7

26

Closest Pair of Points

s[] = array of points in the 2�-strip, sorted by their y-coordinate.

Fact: if |i – j| � 12, then the distance between
s[i] and s[j] is at least �.

� No two points lie in same �/2 by �/2 box.
� Two points at least 2 rows apart

have distance � 2� / 2.

Fact: still true if we replace 12 with 7.

�

27

29
30

31

28

26

25

�

� / 2

2 rows
� / 2

� / 2

39

i

j

27

Closest Pair of Points

Closest pair algorithm.

Compute separation line x = xmed such that half the points
have x coordinate less than xmed, and half are greater.

�1 = ClosestPair(left half)
�2 = ClosestPair(right half)
� = min (�1 , �2)

Delete all points further than � from separation line.

Sort remaining points in strip by y coordinate.

Scan in y order, and compute distance between each point
and next 6 neighbors. If any of these distances is less
than � , update � .

Return �.

� = ClosestPair (p1, p2 , . . . , pN)

O(N log N)

2T(N / 2)

O(N)

O(N log N)

O(N)

28

Closest Pair of Points

Running time.

Can we achieve O(N log N)?
� Yes. Don't sort points in strip from scratch each time.
� Each recursive call should return two lists: all points sorted by y

coordinate, and all points sorted by x coordinate.
� Sorting is accomplished by merging two already sorted lists.

� �)log()T()(2/2)(NNONNONTNT ����

� �)log()T()log(2/2)T(2 NNONNNONTN ����

29

Nearest Neighbor

Input: N Euclidean points.

Nearest neighbor problem: given a query point p, which one of original
N points is closest to p?

Brute force: O(N) time per query.
Goal: O(N log N) preprocessing, O(log N) per query.

30

Voronoi Diagram / Dirichlet Tesselation

Input: N Euclidean points.
Voronoi region: set of all points closest to a given point.
Voronoi diagram: planar subdivision delineating Voronoi regions.
Fact: Voronoi edges are perpendicular bisector segments.

Quintessential nearest neighbor data structure.

31

Applications of Voronoi Diagrams

Anthropology. Identify influence of clans and chiefdoms on geographic regions.
Astronomy. Identify clusters of stars and clusters of galaxies.
Biology, Ecology, Forestry. Model and analyze plant competition.
Cartography. Piece together satellite photographs into large "mosaic" maps.
Crystallography. Study Wigner-Setiz regions of metallic sodium.
Data visualization. Nearest neighbor interpolation of 2D data.
Finite elements. Generating finite element meshes which avoid small angles.
Fluid dynamics. Vortex methods for inviscid incompressible 2D fluid flow.
Geology. Estimation of ore reserves in a deposit using info from bore holes.
Geo-scientific modeling. Reconstruct 3D geometric figures from points.
Marketing. Model market of US metro at individual retail store level.
Metallurgy. Modeling "grain growth" in metal films.
Physiology. Analysis of capillary distribution in cross-sections of muscle tissue.
Typography. Character recognition, beveled and carved lettering.
Zoology. Model and analyze the territories of animals.

References: http://voronoi.com, http://www.ics.uci.edu/~eppstein/geom.html

32

Adding a Point to Voronoi Diagram

Challenge: compute Voronoi.

Basis for incremental algorithms: region containing point gives points
to check to compute new Voronoi region boundaries.

How to represent the Voronoi diagram? Use multilist associating each
point with its Voronoi neighbors.

33

Randomized Incremental Voronoi Algorithm

Add points (in random order).
� Find region containing point.
� Update neighbor regions, create region for new point.

� Running time: O(N log N) on average.

use Voronoi itself

34

Discretized Voronoi Diagram

Use grid approach to answer near-neighbor queries in constant time.
� Approach 1: provide approximate answer (to within grid size).
� Approach 2: keep list of points to check in grid squares.
� Computation not difficult (move outward from points).

35

Delaunay Triangulation

Input: N Euclidean points.
Delaunay triangulation: triangulation such that no point
is inside circumcircle of any other triangle.

Fact 1: Dual of Voronoi (connect adjacent points in Voronoi diagram).
Fact 2: No edges cross � O(N) edges.
Fact 3: Maximizes the minimum angle for all triangular elements.
Fact 4: Boundary of Delaunay triangulation is convex hull.
Fact 5: Closest pair of of Delaunay graph is closest pair.

Delaunay
Voronoi

36

Some Geometric Algorithms

Running time to solve a 2D problem with N points.

convex hull

Problem

closest pair

N2

Brute Force

N2

nearest neighbor N

N log N

Cleverness

N log N

log N

polygon triangulation N2 N log N

furthest pair N2 N log N

