Binary Search Trees

Binary search trees Randomized BSTs

Reference: Chapter 12, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Princeton University · COS 226 · Algorithms and Data Structures · Spring 2004 · Kevin Wayne · http://www.Princeton.EDU/~cos226

Binary Search Tree

Binary search tree: binary tree in symmetric order.

Binary tree is either:

- Empty.
- . A key-value pair and two binary trees.

Symmetric order:

- . Keys in nodes.
- . No smaller than left subtree.
- No larger than right subtree.

node x subtrees B smaller larger

Guaranteeing Performance

Symbol table: key-value pair abstraction.

- Insert a value with specified key.
- Search for value given key.
- Delete value with given key.

Challenge 1: guarantee symbol table performance.

- Make average case independent of input distribution.
- Extend average case guarantee to worst-case.
- Remove assumption on having a good hash function.
- Remove expensive (but infrequent) re-doubling operations.

Challenge 2: expand interface when keys are ordered.

- Find the ith largest key.
- . Range searching.

Binary Search Tree in Java

A BST is a reference to a node.

A Node is comprised of four fields:

- . A key and a value.
- A reference to the left and right subtree.

3

Tree Shape

Tree shape.

- Many BSTs correspond to same input data.
- . Have different tree shapes.
- Performance depends on shape.

BST Search

Search for specified key and return corresponding value or null.

- . Code follows from BST definition.
- Use helper function to search for key in subtree rooted at h.

BST Skeleton

```
public class SymbolTable {
   private Node root;
   private static class Node {
      Comparable key;
      Object value;
      Node left, right;
      Node (Comparable key, Object value) {
         this.key = key;
         this.value = value;
                                helper inner class
                                                        helper functions
   private static boolean less(Comparable k1, Comparable k2) { }
   private static boolean equals(Comparable k1, Comparable k2) { }
   public void put(Comparable key, Object value) { }
   public Object get(Comparable key) { }
                            ST interface methods
```

BST Insert

Insert key-value pair.

- . Code follows from BST definition.
- Search, then insert.
- . Simple (but tricky) recursive code.
- Duplicates allowed.

,

BST Construction

Insert the following keys into BST: A S E R C H I N G X M P L

BST Analysis

Cost of search and insert BST.

- Proportional to depth of node.
- 1-1 correspondence between BST and quicksort partitioning.
- Height of node corresponds to number of function calls on stack when node is partitioned.

Theorem. If keys are inserted in random order, then height of tree is $\Theta(\log N)$, except with exponentially small probability. Thus, search and insert take $O(\log N)$ time.

Problem. Worst-case search and insert are proportional to N.

• If nodes in order, tree degenerates to linked list.

Symbol Table: Implementations Cost Summary

	Worst Case			Average Case		
Implementation	Search	Insert	Delete	Search	Insert	Delete
Sorted array	log N	N	N	log N	N/2	N/2
Unsorted list	N	1	1	N/2	1	1
Hashing	Ν	1	N	1*	1*	1*
BST	Ν	N	N	log N	log N	555

BST: log N insert and search if keys arrive in random order.

Ahead: Can we make all ops log N if keys arrive in arbitrary order?

Symbol Table: Delete

To delete a node:

- Case 1 (zero children): just remove it.
- Case 2 (one child): pass the child up.
- Case 3 (two children): find the next largest node using right-left* or left-right*, swap with next largest, remove as in Case 1 or 2.

Problem: strategy clumsy, not symmetric. Serious problem: trees not random (!!)

11

Symbol Table: Implementations Cost Summary

	Worst Case			Average Case		
Implementation	Search	Insert	Delete	Search	Insert	Delete
Sorted array	log N	N	N	log N	N/2	N/2
Unsorted list	N	1	1	N/2	1	1
Hashing	N	1	N	1*	1*	1*
BST	N	N	N	log N	log N	sqrt(N) †

^{*} assumes our hash function can generate random values for all keys † if delete allowed, insert/search become sqrt(N) too

Ahead: Can we achieve log N delete? Ahead: Can we achieve log N worst-case?

Right Rotate, Left Rotate

Fundamental operation to rearrange nodes in a tree.

- . Maintains BST order.
- Local transformations, change just 3 pointers.

13

Right Rotate, Left Rotate

Fundamental operation to rearrange nodes in a tree.

• Easier done than said.

Left rotate

Right rotate

Recursive BST Root Insertion

Root insertion: insert a node and make it the new root.

- . Insert the node using standard BST.
- Use rotations to bring it up to the root.

Why bother?

- Faster if searches are for recently inserted keys.
- Basis for advanced algorithms.

```
Node insertT(Node h, Comparable key, Object value)
   if (h == null) return new Node(key, value);
   if (less(key, h.key)) {
      h.left = insertT(h.left, key, value);
   \Rightarrow h = rotR(h);
   else {
      h.right = insertT(h.right, key, value);
   \Rightarrow h = rotL(h);
   return h;
```

insert G

BST Construction: Root Insertion

ASERCHINGXMPL

Randomized BST

Observation. If keys are inserted in random order then BST is balanced with high probability.

Idea. When inserting a new node, make it the root (via root insertion) with probability 1/(N+1) and do it recursively.

Fact. Tree shape distribution is identical to tree shape of inserting keys in random order.

• No assumptions made on the input distribution!

Randomized BST Example

Insert keys in order.

. Tree shape still random.

Randomized BST

Always "looks like" random binary tree.

- Implementation: maintain subtree size in each node.
- Supports all symbol table ops.
- log N average case.
- Exponentially small chance of bad balance.

Randomized BST: Delete

Join. Merge two disjoint symbol tables A (of size M) and B (of size N), assuming all keys in A are less than all keys in B.

- Use A as root with probability M / (M + N), and recursively join right subtree of A with B
- Use B as root with probability N / (M + N), and recursively join left subtree of B with A

Delete. Given a key k, delete and return a node with key k.

- . Delete the node.
- . Join two broken subtrees as above.

Theorem. Tree still random after delete.

Symbol Table: Implementations Cost Summary

	Worst Case			Average Case			
Implementation	Search	Insert	Delete	Search	Insert	Delete	
Sorted array	log N	N	N	log N	N/2	N/2	
Unsorted list	N	1	1	N/2	1	1	
Hashing	N	1	N	1*	1*	1*	
BST	N	N	N	log N	log N	sqrt(N) †	
Randomized BST	log N ‡	log N ‡	log N ‡	log N	log N	log N	

^{*} assumes our hash function can generate random values for all keys

Randomized BST: guaranteed log N performance! Next time: Can we achieve deterministic guarantee?

21

BST: Other Operations

Sort. Traverse tree in ascending order.

- . Inorder traversal.
- Same comparisons as quicksort, but pay space for extra links.

Range search. Find all items whose keys are between k_1 and k_2 .

Find kth largest. Generalized PQ that finds kth smallest.

Special case: find min, find max.

. Add subtree size to each node.

. Takes time proportional to height of tree.

private class Node {
 Comparable key;
 Object value;
 Node left, right;
 int N;
}

Randomized BST: Other Operations

Ceiling. Given key k, return smallest element that is at least as big as k.

Best-fit bin packing heuristic. Insert the item in the bin with the least remaining space among those that can store the item.

Theorem. Best-fit decreasing is guaranteed use no more than 11B/9 + 1 bins, where B is the best possible.

- within 22% of best possible.
- original proof of this result was over 70 pages of analysis!

[†] if delete allowed, insert/search become sqrt(N)

[‡] assumes system can generate random numbers

Symbol Table: Implementations Cost Summary

	Worst Case Asymptotic Cost							
Implementation	Search	Insert	Delete	Find kth	Sort	Join	Ceil	
Sorted array	log N	N	Ν	log N	Ν	Ν	log N	
Unsorted list	2	1	1	Ν	N log N	Ν	2	
Hashing	1*	1*	1*	N	N log N	Ν	Ν	
BST	2	N	Ν	Ν	N	N	2	
Randomized BST	log N ‡	log N ‡	log N ‡	log N ‡	log N ‡	log N ‡	log N ‡	

^{*} assumes our hash function can generate random values for all keys $\mbox{\dag}$ assumes system can generate random numbers

makes no assumption on input distribution

Randomized BST: O(log N) average case for ALL ops! Next time: Can we achieve deterministic guarantee?

