
1

Portable Programming

CS 217

2

Quiz
• Signal mask for each process

o For OS to know which signals not to deliver

• Unblockable signals
o SIGKILL, SIGSTOP

• The signal handling code
o Everyone got this

3

Portability
• We live in a heterogeneous computing environment

o Multiple kinds of HW: IA32, IA64, PowerPC, Sparc, MIPS, Arms, …
o Multiple kinds of systems: Windows, Linux, MAC, SUN, IBM, …
o Software will be used in multiple countries

• It is difficult to design and implement a software system
o It takes a lot effort to support multiple hardware and multiple

operating systems (multiple versions)
o Patches and releases are frequent operations

• If a program is portable, it requires no change to run on
another machine
o Correctness portability (primary concern)
o Performance portability (secondary concern)

• Normally, portability is difficult to achieve
o But, making the programs more portable is a good practice 4

Language
• Stick to the standard

o Program in high-level language and within the language standard
o Standard may be incomplete

– char type in C and C++ may be signed or unsigned

• Program in the mainstream
o Mainstream implies the established style and the use

– Program enough to know what compilers commonly do
– Difficult for large language such as C++

• Beware of language trouble spots
o Some features are intentionally undefined to give compiler

implementers flexibility

5

Size of Data Types
• What are the sizes of char, short, int, long,
float and double in C and C++?
o They are not defined, except

– char must have at least 8 bits, short and int at least 16 bits
– sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤
sizeof(long)

– sizeof(float) ≤ sizeof(double)
• In Java, sizes are defined

o byte: 8 bits
o char: 16 bits
o short: 16 bits
o int: 32 bits
o long: 64 bits

6

Order of Evaluation
• What does the following code do?

n = (getchar() >> 4) | getchar();
– The order is not specified

strings[i] = names[++i];
– i can be incremented before or after indexing strings!

printf(“%c %c\n”, getchar(), getchar());
– The second character in stdin can be printed first!

• What are the rules in C and C++?
o All side effects and function calls must be completed at “;”
o && and || operators execute left to right and only as far as necessary

• What about Java?
o Require expressions including side effects be evaluated left to right
o But, Java manual advises not writing code depending on the order

• Our Advice: do not depend on the order of evaluation
in an expression

7

Signed or Unsigned?
• Is there any problem with the following C code?

int i;
char s[MAX+1];
for (i = 0; i < MAX; i++)

if ((s[i] = getchar()) == ‘\n’ || s[i] == EOF)
break;

s[i] = ‘\0’;

o If char is signed, s[i] is 255 but EOF is -1! (will hang)

• Portable C code
int c, i;
char s[MAX+1];
for (i = 0; i < MAX; i++) {

if ((c = getchar()) == ‘\n’ || c == EOF)
break;

s[i] = c;
}
s[i] = ‘\0’; 8

Other C Language Issues
• Arithmetic or logical shift

o Signed quantities with >> may be arithmetic or logical in C
o Java reserves >> for arithmetic right shift and >>> for logical

• Byte order
o Byte order within short, int and long is not defined

• Alignment of items within structures, classes and unions
o The items are laid out in the order of declaration
o The alignment is undefined and there might be holes
struct foo {

char x;
int y; /* can be 2, 4, or 8 bytes from x */

}

• Bit fields
o Very machine dependent: avoid them as much as possible

9

Use Standard Libraries
• Pre-ANSI C may have calls not supported in ANSI C

o Program will break if you continue use them
o Header files can pollute the name space

• Consider the signals defined
o ANSI C defines 6 signals
o POSIX defines 19 signals
o Most UNIX defines 32 or more

• Take a look at /usr/include/*.h to see the conditional
definitions

10

Use Common Features
• Motivation

o Write a program that runs on Unix and on a cell phone and cell
phone environment may have fewer libraries and different type sizes

o Use the common ones

• Avoid conditional compilation
o #ifdef are difficult to manage because it can be all over the places
…
some common code
#ifdef MAC
…
#else
#ifdef WINDOWSXP
…
#endif
#endif

11

Isolation
• Common feature may not always work: Life is hard

• Localize system dependencies in separate files
o Use a separate file to wrap the interface calls for each system
o Example: unix.c, windows.c, mac.c, …

• Hide system dependencies behind interfaces
o Abstraction can serve as the boundary between portable and non-

portable components
o Java goes one big step further: use virtual machine which abstracts

the entire machine
– Independent of operating systems
– Independent of hardware

12

Data Exchange
• Use ASCII text

o Binary is often not portable

• Still need to be careful
o But, even with text, not all systems are the same

– Windows systems use use ‘\r’ or ‘\n’ to terminate a line
– UNIX uses only ‘\n’

o Example:
– Use Microsoft Word and Emacs to edit files
– CVS assume all lines have been changed and will merge

incorrectly
o Use standard interfaces which will deal CRLF (carriage-return and

line feed) and newline in a consistent manner

13

Byte Order
• Recall big-endian and little-endian?

• Consider the following program between two processes
o Writing a short to stdout:

unsigned short x;
x = 0x1000;
...
fwrite(&x, sizeof(x), 1, stdout)

o Later, read it from stdin
unsigned short x;
...
Fread(&x, sizeof(x), 1, stdin);

• What is the value of x after reading?

14

Byte Order Solutions
• Conditional compilation

o Conditional compilation for different byte orders
o Swap the byte order if it is necessary
o What is the pros and cons of this approach?

– Save some instructions
– Make the code messy

• Fix the byte order for data exchange
o Sender:
unsigned short x;
putchar(x >> 8); /* high-order byte */
putchar(x & 0xFF); /* low-order byte */

o Receiver:
unsigned short x;
x = getchar() << 8; /* read high-order byte */
x |= getchar() & 0xFF; /* read low-order byte */

15

More on Byte Order
• Language solution

o Java has a serializable interface that defines how data items are
packed

o C and C++ require programmers to deal with the byte order

• Binary files vs. text files
o Binary mode for text files

– No problem on UNIX
– Windows will terminate reading once it sees Ctrl-Z as input

16

Portability and Upgrade
• Issues arise when the low level system is changed

o Ideally, you would like your software continues working
o If your software does not work, then you need to let user know

• Example:
On machine 1:
% sum foo
15996 7

Transfer foo to machine 2
% sum foo
15996 7

Transfer foo to machine 3, which has a new sum
% sum foo
15996 2

17

Internationalization
• Don’t assume ASCII

o Many countries do not use English
o Asian languages use 16 bits per character

• Standardizations
o Latin-1 arguments ASCII by using all 8 bits (superset of ASCII)
o Unicode uses 16 bits per character and try to use Latin-1 encoding
o Java uses unicode as its native character set for strings

• Issues with unicode
o Byte order issue!
o Solution is to use UTF-8 as an intermediate representation or

defined the byte order for each character

18

Summary
• Language

o Don’t assume char signed or unsigned
o Always use sizeof to compute the size of types
o Don’t depend on the order of evaluation of an expression
o Never right shift a signed value
o Make sure that the data type is big enough

• Use standard interfaces
o Use the common features
o Isolation

• Byte order
o Fix byte order for data exchange

• Internationalization
o Don’t assume ASCII and English

