
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #21
Scribe: Brian Tsang April 22, 2003

1 Active Learning

Now we turn to a new type of learning where the algorithm gets to ask for particular
examples, and where it has to come up with an exact answer.

x c(x)c

Figure 1: The target concept c is a ”black box” for which we must find an
equivalent function.

1.1 Definition Formalization

Let c, the target concept, be a function taking our example space, X, to {0, 1}. We wish
to identify h ∈ C which is exactly equivalent to c. That is, ∀x ∈ X, c(x) = h(x).

1.2 Query Types

Our algorithm is actually allowed two types of queries:

The Membership Query:

In this type of query, the algorithm provides an example, x ∈ X, and the
membership oracle returns the label of that example, c(x).

The Equivalence Query:

In this type of query, the algorithm provides a hypothesis, h ∈ C, and the
equivalence oracle returns ”Yes” if h is equivalent to c. If not, the equivalence
oracle returns ”No” and provides a counterexample (i.e. some xc ∈ X such that
c(xc) 6= h(xc)).

2 The Significance of Active Learning

There are some problems in which active learning learns where an algorithm which is merely
provided with m examples according to some distribution, D, cannot. Here we describe one
such problem: determining an n-state Finite State Automaton. Kearns and Valiant showed
that it is computationally hard to even weakly PAC learn an FSA using any hypothesis
space.

2.1 Problem Formanlization

Our target concept c is an n-state FSA where:

Q ≡ the set of states (1)
q0 ∈ Q ≡ the start state (2)

δ : Q× {a, b} → Q ≡ the state transition function (3)
v : Q→ {0, 1} ≡ the label that the FSA returns for any (4)

sequence ending at the given state (5)
n ≡ |Q| (6)

Our example space is the set of all strings formed with the letters a and b, where the empty
string is denoted by λ.

2.2 Example

Consider the FSA drawn below:

0 1

a

b

a

1

b

a

b

Figure 2: This FSA is equivalent to ”not empty and not ending with ab” or
”(a|b)∗ab”.

The following are some example queries on the FSA.

Membership Queries:

aba −→ 1
bbab −→ 0
λ −→ 0

Equivalence Queries:

0

a,b

−→ No; ”a”→ 1

0 1

a,ba

b −→ No; ”a”→ 1

2

2.3 The Necessity of Equivalence Queries

It seems that equivalence queries are rather powerful, but are they necessary? In this prob-
lem we can definitley spot an instance where they are necessary. Consider the combination
lock FSA which matches only to a certain sequence of n characters; you would have to
query Ω(2n) examples to differentiate this from an FSA which always returns 0!

2.4 Distinguishing States

First, let us adopt a shorthand for state transitions. Let q ∈ Q and e ∈ {a, b}.

qe ≡ δ(q, e) (7)

We can repeatedly apply this operation so that qs is the state the FSA will be in after
reading the string s given that it was in state q just before it was fed s.

Now for the definitions: q1 and q2 ∈ Q are said to be distinguished by a string s if
v(q1s) 6= v(q2s).

A set of strings, T , is a distinguishing set of our FSA if and only if for every pair of
states in Q at least one string in T distinguishes them. More precisely:

∀q1, q2 ∈ Q, q1 6= q2 ⇒ ∃t ∈ T : v(q1t) 6= v(q2t) (8)

2.5 Example

Consider the FSA drawn below:

0 1a

0

b

a,b

a

1a
b b

Figure 5: This FSA is equivalent to ”no b’s and only a number of a’s which is
eqivalent to 1 or 2 modulo 3” or ”[(aaa)∗a]|[(aaa)∗aa]”.

A minimal set of disginguishing strings for this DFA is {λ, aa}.

2.6 Angluin’s Algorithm: Part I

Suppose we are given a set of distinguishing strings, T = {t1, t2, . . . , tm}. We claim that,
we can find an FSA equivalent to c using only membership queries!

Consider the following fact: Suppose you have a string s1 and a string s2, and you want to

3

know if they end up in different states when fed into the FSA (i.e. Does q0s1 = q0s2?). Well,
you could append each of our distinguishing strings, to s1 and s2 and query the results. If
for any distinguishing string, sd, we find that v(q0s1sd) 6= v(q0s2sd), then and only then
will our two states be different.

By this fact, we can find a unique identifier for each state, q: the ordered m-tuple,
(v(qt1), v(qt2), . . . , v(qtm)).

We can use this to take a methodical approach to determining the FSA. First, presume
that all strings yield different states. Then, find the identifier for each state, and merge
states with the same identifier.

Let’s formalize this into a high-level algorithm:

1. Initialize a stack of states to be analyzed.

2. Add q0 to the stack.

3. While there is a state q in the stack:

(a) Pop q off the stack.
(b) Determine the identifier of q.
(c) If the identifier has been encountered before, in state qi, merge the states q and

qi.
(d) Otherwise, push qa and qb onto the stack (and define the appropriate transitions

from q).

2.7 Example

The following is the result of running the algorithm on the FSA in Figure 5. Note how the
two are isomorphic:

State q0

M(λ)=0
M(aa)=1

State q0a

M(a λ)=1
M(a aa)=0

State q0b

M(b λ)=0
M(b aa)=0

a b

State q0ab

M(ab λ)=0
M(ab aa)=0

State q0aa

M(aa λ)=1
M(aa aa)=1

State q0ba

M(ba λ)=0
M(ba aa)=0

State q0bb

M(bb λ)=0
M(bb aa)=0

a ab b

State q0aab

M(aab λ)=0
M(aab aa)=0

b

State q0aaa

M(aaa λ)=0
M(aaa aa)=1

a

4

Figure 6: The result of running the algorithm on the FSA in Figure 5. Dotted
arrows indicate that two states have been merged. M(s) is a membership query
on string s (i.e. M(s) = v(q0s)).

2.8 Next Time (Algluin’s Algorithm: Part II)

Of course, we are not given T. So how do we fix this hole in our algorithm?

Next time we will discuss a way to start out with some guess for Ti (where our initial
guess would be T0 = {λ}), build a tree and model Mi, run an equivalence query on Mi, and
use the counterexample to add a string to Ti, repeating this process until the equivalence
query returns ”Yes”.

5

