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1 From Last Time

H is finite. Then with probability ≥ 1− δ, if hεH is consistent then

err(h) ≤
ln|H|+ ln|1δ |

m
. (1)

We saw last time that this bound works if |H| is finite. What if |H| is infinite?

2 Intuition and examples

Even if we have infinitely many possible hypotheses, learning is possible from a finite sample.
Example 1:
Let’s say we have 3 examples. Then there are infinitely many possible hypotheses but only
four possible labelings. Labelings are also called behaviors or dichotomies. In Fig. 1, all
the possible labelings for the possible hypotheses are shown.

In such a case if we have m samples, there are m+ 1 possible labelings.

Example 2 - Learning Intervals: In this case, there are m(m−1)
2 +m+ 1 =

(m
2

)
+m+ 1

possible labelings, where +m is for the intervals having just single points. As it can be seen,
the number of labelings is O(m2) for this example.

3 An upper bound for err(h) when |H| is not finite

3.1 Notation

The following notation was introduced:

S =< x1, x2, ....., xm >,

ΠH(S) = {< h(x1), h(x2), ....., h(xm) >: hεH},
ΠH(m) = max

S
|S|=m

|ΠH(S)| ≤ 2m.

Note: ΠH(S) is the set of all possible labelings for all possible hypotheses and ΠH(m) is
the number we computed in the above examples.

3.2 Finding the upper bound

For any H, there are 2 possible cases:

1. Either ∀m,ΠH(m) = 2m, which is the worst case,



Figure 1: Possible labelings when we have 3 samples

2. or, ΠH(m) = O(md), which is a really nice case. Here, d is the VC-dimension of
H where V C stands for Vapnik-Chervonenkis. VC-dimension will be defined in next
lecture.

Step 1: Derive an error bound in which ln |H| is replaced by ln |O(md)| so, we will get a
result analogous to Occam’s razor result.

Theorem: With probability ≥ 1− δ, ∀hεH, if h is consistent, then

err(h) ≤ O
(

ln ΠH(2m) + ln(1
δ )

m

)
(2)

Proof: First, we will try to show that with probability ≥ 1− δ

(∀hεH : h is consistent, err(h) ≤ ε). (3)

Let’s define event B and Pr[B] as follows:

PrS[∃hεH : h is consistent on S but err(h) > ε︸ ︷︷ ︸
eventB

].

Note that event B is the negation of the event defined in (3). We are trying to bound PrS [B].
Because, if PrS [B] < δ, then Pr[event defined in (3)] ≥ 1−δ which is what we want to show.
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Trick : Replace the error with error on another sample. In this new sample, there will
be finitely many errors we need to consider. Let

S′ = second sample of m examples.

The data is independent identically distributed. We will argue that it is unlikely to see
many errors on one sample, and no errors on the second sample.

S =< x1, x2, ...., xm > all i.i.d,
S′ =< x′1, x

′
2, ...., x

′
m > all i.i.d,

S;S′ has 2m samples.

NOTATION:

M(h) = |{i : h(x′i) 6= c(x′i)}|. (number of mistakes)

B′ ≡ ∃hεH : h is consistent on S and M(h) ≥ mε
2 . (We have m samples and probabil-

ity of making error for each sample is ε.)

Claim: Pr[B′|B] ≥ 1
2 i.e. if you are in bad case B, the probability that you are in case B′

is ≥ 1
2 .

If you know B happens, i.e., if h is consistent on S and err(h) > ε, then M(h) ≥ mε
2

with probability ≥ 1
2 which implies Pr[B′|B] ≥ 1

2 . (This will be proven later.)

Pr[B′] ≥ Pr[B′ ∧B]
= Pr[B] · Pr[B′|B]

≥ 1
2
Pr[B] (4)

(4) implies Pr[B] ≤ 2Pr[B′]. So, if probability of event B′ happening is small, then the
probability of event B happening is also small. Thus, instead of bounding probability of
event B, we can start working with event B′ and bound its probability.

Experiment I : Draw S at random and then draw S′ at random.

Experiment II : Draw S, S′. With probability 1/2 interchange xi and x′i and with prob-
ability 1/2 leave them as they are. Doing this will not change the sample distribution.

As Experiment I and Experiment II will give the same distribution of examples, we can
work with experiment II. So,

FIX h, S, S′. We will try to bound Pr[B′|S, S′].
Recall, B′ ≡ ∃hεH : h is consistent on S and M(h) ≥ mε

2 .
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x1 x2 . . .
S : 0 1 0 1 0 0
S′ : 1 1 0 0 1 1

x1′ x2′ . . .

S : 0 0 0 0 ... means h is consistent with S.

If ∃i such that both xi and x′i are 1, then there is no way we can have all zeros in S.
So,

Pr[h is consistent on S and M(h) ≥ mε

2
] = 0. (5)

If there are M(h) i’s where exactly one of xi or x′i is 1, then,

Pr[h is consistent on S] ≤ 2−M(h) (this is the probability of all the 1s ending up in S′).
(6)

We can think of this as follows: If x1 is 0 and x′1 is 1, w.p 1/2 x1 will remain 0. If x2 is 0
and x′2 is 0, w.p 1 x2 will remain 0 ...etc. So; the probability of all xi’s being 0 is:

1
2
.1.

1
2
.... = (

1
2
)number of i’s for which only one of xi or x′i is 1

unless there is an i for which both xi and x′i are 1 in which case the probability is zero.

Let H ′(S) = one representative from H for each dichotomy in S. Then;

B′ ≡

∃hεH ′(S;S′) : h is consistent on S and M(h) ≥ mε

2︸ ︷︷ ︸
e(h)



Pr[B′|S, S′] = Pr[∃hεH ′(S;S′) : e(h)|S, S′]
= Pr[e(h1) ∨ e(h2) ∨ · · · ∨ e(hN )|S, S′]

≤
N∑
i=1

Pr[e(hi)|S, S′]

≤ |H ′(S, S′)|2−mε/2

= |ΠH(S, S′)|2−mε/2

The last equality comes from the fact that there is one representative for each labeling. So;
number of representatives is equal to number of labelings.

In the next lecture; Pr[B′] will be written as an expectation and the bound, found
above, for Pr[B′|S, S′] will be used to bound Pr[B′] which will in turn give a bound for
Pr[B]. Because Pr[B] ≤ 2Pr[B′].
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