
1

Parametric
Curves & Surfaces

Adam Finkelstein
Princeton University

COS 426, Spring 2002

Overview
Part 1: Curves

Part 2: Surfaces

Przemyslaw Prusinkiewicz

Curves
• Splines: mathematical way to express curves

• Motivated by “loftsman’s spline”
o Long, narrow strip of wood/plastic
o Used to fit curves through specified data points
o Shaped by lead weights called “ducks”
o Gives curves that are “smooth” or “fair”

• Have been used to design:
o Automobiles
o Ship hulls
o Aircraft fuselage/wing

Many applications in graphics

• Fonts ABC
• Animation paths

• Shape modeling

• etc…

Animation
(Angel, Plate 1)

Shell
(Douglas Turnbull,

CS 426, Fall99)

Goals
• Some attributes we might like to have:

o Predictable control
o Multiple values
o Local control
o Versatility
o Continuity

• We’ll satisfy these goals using:
o Piecewise
o Parametric
o Polynomials

Parametric curves
A parametric curve in the plane is expressed as:

x = x(u)
y = y(u)

Example: a circle with radius r centered at origin:

x = r cos u
y = r sin u

In contrast, an implicit representation is:

x2 + y2 = r2

2

Parametric polynomial curves
• A parametric polynomial curve is described:

• Advantages of polynomial curves

o Easy to compute
o Infinitely differentiable

∑
=

=
n

i

i
iuaux

0

)(

∑
=

=
n

i

i
iubuy

0

)(

Piecewise parametric polynomials
• Use different polynomial functions

on different parts of the curve

o Provides flexibility
o How do you guarantee smoothness at “joints”?

(continuity)

• In the rest of this lecture, we’ll look at:

o Bézier curves: general class of polynomial curves
o Splines: ways of putting these curves together

Bézier curves
• Developed independently in 1960s by

o Bézier (at Renault)
o deCasteljau (at Citroen)

• Curve Q(u) is defined by nested interpolation:

Vi’s are control points
{V0, V1, …, Vn} is control polygon

V0

V1
V2

V3

Q(u)

Basic properties of Bézier curves
• Endpoint interpolation:

• Convex hull:
o Curve is contained within convex hull of control polygon

• Symmetry

0)0(VQ =

nVQ =)1(

},...,{by defined)1(},...,{by defined)(00 VVuQVVuQ nn −≡

Explicit formulation
• Let’s indicate level of nesting with superscript j:

• An explicit formulation of Q(u) is given by:

• Case n=2 (quadratic):

1
1

1)1(−
+

− +−= j
i

j
i

j
i uVVuV

0
2

20
1

0
0

2

0
2

0
1

0
1

0
0

1
1

1
0

2
0

)1(2)1(

])1[(])1)[(1(

)1(

)(

VuVuuVu

uVVuuuVVuu

uVVu

VuQ

+−+−=

+−++−−=

+−=

=

More properties
• General case: Bernstein polynomials

• Degree: polynomial of degree n

• Tangents:
)()1('

)()0('

1

01

−−=
−=

nn VVnQ
VVnQ

ini
n

i
i uu

i
n

VuQ −

=

−







= ∑)1()(

0

3

Cubic curves

• From now on, let’s talk about cubic curves (n=3)

• In CAGD, higher-order curves are often used

• In graphics, piecewise cubic curves will do
o Specified by points and tangents
o Allows specification of a curve in space

• All these ideas generalize to higher-order curves

Matrix form
Bézier curves may be described in matrix form:

()




































−
−

−−

=

+−+−+−=

−







= −

=
∑

3

2

1

0

23

3
3

2
2

1
2

0
3

0

0001
0033
0363
1331

 1

)1(3)1(3)1(

)1()(

V
V
V
V

uuu

VuVuuVuuVu

uu
i
n

VuQ ini
n

i
i

MBezier

Display
Q: How would you draw it using line segments?

A: Recursive subdivision!

V0

V1
V2

V3

Display
Pseudocode for displaying Bézier curves:

procedure Display({Vi}):
if {Vi} flat within ε
then

output line segment V0Vn
else

subdivide to produce {Li} and {Ri}
Display({Li})
Display({Ri})

end if
end procedure

Flatness
Q: How do you test for flatness?

A: Compare the length of the control polygon
to the length of the segment between endpoints

ε+<
−

−+−+− 1
||

||||||

03

231201

VV
VVVVVV

V0

V1
V2

V3

(…or, compare dot products…)

Splines
• For more complex curves, piece together Béziers

• We want continuity across joints:
o Positional (C0) continuity
o Derivative (C1) continuity

• Q: How would you satisfy continuity constraints?

• Q: Why not just use higher-order Bézier curves?

• A: Splines have several of advantages:
• Numerically more stable

• Easier to compute

• Fewer bumps and wiggles

4

Catmull-Rom splines
• Properties

o Interpolate control points
o Have C0 and C1 continuity

• Derivation
o Start with joints to interpolate
o Build cubic Bézier between each joint
o Endpoints of Bézier curves are obvious

• What should we do for the other
Bézier control points?

Catmull-Rom Splines
• Catmull & Rom use:

o half the magnitude of the vector between adjacent CP’s

• Many other formulations work, for example:
o Use an arbitrary constant τ times this vector
o Default is 1/2
o Gives a “tension” control
o Could be adjusted for each joint

Matrix formulation
Convert from Catmull-Rom CP’s to Bezier CP’s:

Exercise: Derive this matrix.
(Hint: in this case, τ is not 1/2.)





































−
−

=



















3

2

1

0

3

2

1

0

0600
1610

0161
0060

6
1

V
V
V
V

B
B
B
B

Properties
• Catmull-Rom splines have these attributes:

o C1 continuity

o Interpolation

o Locality of control

o No convex hull property

(Proof left as an exercise.)

B-splines
• We still want local control

• Now we want C2 continuity

• Give up interpolation

• It turns out we get convex hull property

• Constraints:
o Three continuity conditions at each joint j

» Position of two curves same
» Derivative of two curves same
» Second derivatives same

o Local control
» Each joint affected by 4 CPs

Matrix formulation for B-splines
• Grind through some messy math to get:

()




































−
−

−−

=

3

2

1

0

23

0141
0303
0363
1331

6
11)(

V
V
V
V

uuuuQ

5

Curved Surfaces
• Motivation

o Exact boundary representation for some objects
o More concise representation than polygonal mesh

H&B Figure 10.46

Curved Surfaces
• What makes a good surface representation?

o Accurate
o Concise
o Intuitive specification
o Local support
o Affine invariant
o Arbitrary topology
o Guaranteed continuity
o Natural parameterization
o Efficient display
o Efficient intersections

Curved Surface Representations
• Polygonal meshes

• Subdivision surfaces

• Parametric surfaces

• Implicit surfaces

Curved Surface Representations
• Polygonal meshes

• Subdivision surfaces

• Parametric surfaces

• Implicit surfaces

Parametric Surfaces
• Boundary defined by parametric functions:

o x = fx(u,v)
o y = fy(u,v)
o z = fz(u,v)

• Example: ellipsoid

H&B Figure 10.10

φ
θφ
θφ

sin
sincos
coscos

z

y

x

rz
ry
rx

=
=
=

Surface of revolution
• Idea: take a curve and rotate it about an axis

Demetri Terzopoulos

6

Swept surface
Idea: sweep one curve along path of another curve

Demetri Terzopoulos

Parametric Surfaces
Advantage: easy to enumerate points on surface.

Disadvantage: need piecewise-parametric surface
to describe complex shape.

u

v

FvDFH Figure 11.42

Piecewise Parametric Surfaces
Surface is partitioned into parametric patches:

Watt Figure 6.25
Same ideas as parametric splines!

Parametric Patches
• Each patch is defined by blending control points

Same ideas as parametric curves!
FvDFH Figure 11.44

Parametric Patches
• Point Q(u,v) on the patch is the tensor product of

parametric curves defined by the control points

Watt Figure 6.21

Q(u,v)

Q(0,0)

Q(1,0)

Q(0,1)
Q(1,1)

Parametric Bicubic Patches
Point Q(u,v) on any patch is defined by combining

control points with polynomial blending functions:

TTVMUM



















=

4,43,42,41,4

4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

),(

PPPP
PPPP
PPPP
PPPP

vuQ

Where M is a matrix describing the blending functions
for a parametric cubic curve (e.g., Bezier, B-spline, etc.)

[]123 uuu=U []123 vvv=V

7

B-Spline Patches

VMUM T
SplineBSplineB −−



















=

4,43,42,41,4

4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

),(

PPPP
PPPP
PPPP
PPPP

vuQ

Watt Figure 6.28























−
−

−−

=−

06
1

3
2

6
1

02
102

1
02

112
1

6
1

2
1

2
1

6
1

SplineBM

Bezier Patches

VMUM T
BezierBezier



















=

4,43,42,41,4

4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

),(

PPPP
PPPP
PPPP
PPPP

vuQ

FvDFH Figure 11.42

















−
−

−−
=

0001
0033
0363
1331

BezierM

Bezier Patches
• Properties:

o Interpolates four corner points
o Convex hull
o Local control

Watt Figure 6.22

Bezier Surfaces
• Continuity constraints are similar to the

contraints Bezier splines

FvDFH Figure 11.43

Bezier Surfaces
• C0 continuity requires aligning boundary curves

Watt Figure 6.26a

Bezier Surfaces
• C1 continuity requires aligning boundary curves

and derivatives (a reason to prefer subdiv. surf.)

Watt Figure 6.26b

8

Drawing Bezier Surfaces
• Simple approach is to loop through

uniformly spaced increments of u and v

DrawSurface(void)
{

for (int i = 0; i < imax; i++) {
float u = umin + i * ustep;
for (int j = 0; j < jmax; j++) {

float v = vmin + j * vstep;
DrawQuadrilateral(...);

}
}

}

DrawSurface(void)
{

for (int i = 0; i < imax; i++) {
float u = umin + i * ustep;
for (int j = 0; j < jmax; j++) {

float v = vmin + j * vstep;
DrawQuadrilateral(...);

}
}

}

Watt Figure 6.32

Drawing Bezier Surfaces
• Better approach is to use adaptive subdivision:

DrawSurface(surface)
{

if Flat (surface, epsilon) {
DrawQuadrilateral(surface);

}
else {

SubdivideSurface(surface, ...);
DrawSurface(surfaceLL);
DrawSurface(surfaceLR);
DrawSurface(surfaceRL);
DrawSurface(surfaceRR);

}
}

DrawSurface(surface)
{

if Flat (surface, epsilon) {
DrawQuadrilateral(surface);

}
else {

SubdivideSurface(surface, ...);
DrawSurface(surfaceLL);
DrawSurface(surfaceLR);
DrawSurface(surfaceRL);
DrawSurface(surfaceRR);

}
}

Uniform subdivision

Adaptive subdivision

Watt Figure 6.32

Drawing Bezier Surfaces
• One problem with adaptive subdivision is avoiding

cracks at boundaries between patches at different
subdivision levels

Avoid these cracks by adding extra vertices and triangulating
quadrilaterals whose neighbors are subdivided to a finer level.

Crack

Watt Figure 6.33

Parametric Surfaces
• Advantages:

o Easy to enumerate points on surface
o Possible to describe complex shapes

• Disadvantages:
o Control mesh must be quadrilaterals
o Continuity constraints difficult to maintain
o Hard to find intersections

Blender (www.blender.nl)

