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Motivation é

» Surfaces may be back-facing.
» Surfaces may be occluded.

+ Surfaces may overlap in the image plane.

+ Surfaces may intersect.
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Overview

+ Algorithms for HSR
o Back-face detection
o Depth sort
o Ray casting
o Scan-line
o Z-buffer
o Area subdivision

» Tradeoffs
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3D Rendering Pipeline
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Somewhere in here we have to decide
which objects are visible, and
which objects are hidden.
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Visibility algorithms
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Q: How do we test for back-facing polygons?

A: Dot product of the normal and view directions.

Back-face detection
Q: When does this method break down?

A: More than one object. Object not closed. Interreflect?
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Depth sort

“Painter’s alg

o Sort surfaces in order of decreasing maximum depth
o Scan convert surfaces in back-to-front order
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BSP Tree

< Binary space partition with solid cells labeled
o Constructed from polygonal representations
o Provides linear-time depth sort for arbitrary view

(We'll come ba

Binary Spatial Partition

ck to this...)

Binary Tree
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3D Rendering Pipeline ﬁ
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3D Rendering Pipeline é
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Depth sort comments
o O(nlog n)
o Better with frame coherence?
o Implemented in software
o Render every polygon
o Often use BSP-tree or
static list ordering
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Ray Casting ﬁ

« Fire a ray for every pixel
o If ray intersects multiple objects, take the closest
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Ray Casting Pipeline ﬁ Z-Buffer ﬁ

» Color & depth of closest object for every pixel
o Update only pixels whose depth is closer than in buffer
o Depths are interpolated from vertices, just like colors

Ray casting comments
o O(p log n) for p pixels

3D Primitives i
S Modeling Coordinates o May (or not) use pixel coherence

o Simple, but generally not used
Transformation
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3D Rendering Pipeline e Scan-Line Algorithm e

3D Primitives

3D Modeling Coordinates  Z-buffer comments » For each scan line, construct spans

o Polygons rasterized in any order o Sort by depth
3D World Coordinates o Requires lots of memory

Lighting

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

* 1K x 1K x 24bits

« Was expensive, cheap now
o Subject to aliasing (A-buffer)
o Commonly in hardware
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3D Rendering Pipeline ﬁ Area Subdivision ﬁ

3D Primitives

3D Modeling Goordinates Warnock’s algorithm
Trangionmglon Scan-line comments o Fill area if:
1 3D World Coordinates o Fully compute only visible pixels » All surfaces are outside area, or
o Coherence among along scans .
. » Only one surface intersects area, or
3D World Coordinates o Commonly in software

Viewing » One surface occludes
Transformation .
3D Camera Coordinates other surfaces in area

o Otherwise, subdivide
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3D Rendering Pipeline

Area subdivision comments

o Augments scan conversion
o Polygon coherence

o Commonly in software
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Conclusions

Algorithms for HSR
o Back-face detection
o Depth sort
o Ray casting
o Scan-line
o Z-buffer
o Area subdivision

* Where in pipeline?
* Hardware / Software?

* Trends in hardware.




