! %
Hidden Surface Removal
(or, visibility)
Adam Finkelstein
Princeton University
COS 426, Spring 2003
N
e ~\
Motivation é

» Surfaces may be back-facing.
» Surfaces may be occluded.

+ Surfaces may overlap in the image plane.

+ Surfaces may intersect.

. !

back-facing
polygon

Ve

Ve

Overview

+ Algorithms for HSR
o Back-face detection
o Depth sort
o Ray casting
o Scan-line
o Z-buffer
o Area subdivision

» Tradeoffs

Overview

* Motivation

+ Algorithms for HSR
o Back-face detection
o Depth sort
o Ray casting
o Scan-line
o Z-buffer
o Area subdivision

* Tradeoffs

Ve

3D Rendering Pipeline

3D Primitives
3D Modeling Coordinates
Modelin:
Transformation
3D World Coordinates
Lighting
3D World Coordinates
Viewing
Transformation
3D Camera Coordinates
Pro'jection
Transformation
2D Screen Coordinates
Clipping

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

Scan_
Conversion
2D Image Coordinates

Image

Somewhere in here we have to decide
which objects are visible, and
which objects are hidden.

?

Ve

Visibility algorithms

B LB Suberlowd, B . Sproul and R. 4, Schuracker

A Claraderiatin f Ten Hen Sfoc Alpritons. 51

[Sutherland “74]

?

J/

Ve

G

Q: How do we test for back-facing polygons?

A: Dot product of the normal and view directions.

Back-face detection
Q: When does this method break down?

A: More than one object. Object not closed. Interreflect?

back-facing
polygon

?

J

Ve

Depth sort

“Painter’s alg

o Sort surfaces in order of decreasing maximum depth
o Scan convert surfaces in back-to-front order

<)

eye

orithm”

/]

depth sort

?

‘ 7
)

J

Ve

BSP Tree

< Binary space partition with solid cells labeled
o Constructed from polygonal representations
o Provides linear-time depth sort for arbitrary view

(We'll come ba

Binary Spatial Partition

ck to this...)

Binary Tree

(" -\
3D Rendering Pipeline ﬁ

3D Primitives
3D Modeling Coordinates

Modelin,
A polygon is backfacing if
D World Coordinates VeN>0

Lighting

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates N

Clipping

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

Scan
Conversion

2D Image Coordinates

back-
facing
polygon

Naylor

J/

_ Image Y,

(" \
3D Rendering Pipeline é

3D Primitives
3D Modeling Coordinates

Modeling
Transformation

3D World Coordinates

Lighting

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Pro'jection
Transformation

2D Screen Coordinates

Clipping
) al een Coordinates
Viewport

Transformation

Depth sort comments
o O(nlog n)
o Better with frame coherence?
o Implemented in software
o Render every polygon
o Often use BSP-tree or
static list ordering

2D Image Coordinates

Scan_
Conversion

2D Image Coordinates

_ Image Y,

(" \
Ray Casting ﬁ

« Fire a ray for every pixel
o If ray intersects multiple objects, take the closest

o o | o
2
RINE
Lo | 9
ol o o
ol o o
ol o o

4 2\ 4 -\
Ray Casting Pipeline ﬁ Z-Buffer ﬁ

» Color & depth of closest object for every pixel
o Update only pixels whose depth is closer than in buffer
o Depths are interpolated from vertices, just like colors

Ray casting comments
o O(p log n) for p pixels

3D Primitives i
S Modeling Coordinates o May (or not) use pixel coherence

o Simple, but generally not used
Transformation

3D World Coordinates

3D World Coordinates & i) S
Lighting 2D Image Coordinates) o o
2D Image Coordinates ol o | o
Image
o o o
o To—"0
G J G J

4 N\ 4 \
3D Rendering Pipeline e Scan-Line Algorithm e

3D Primitives

3D Modeling Coordinates Z-buffer comments » For each scan line, construct spans

o Polygons rasterized in any order o Sort by depth
3D World Coordinates o Requires lots of memory

Lighting

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

* 1K x 1K x 24bits

« Was expensive, cheap now
o Subject to aliasing (A-buffer)
o Commonly in hardware

Projection

] scan line
Transformation

2D Screen Coordinates [
Clipping M Ny
| JEIBE
2D Screen Coordinates
. o oflo e
Viewport
Transformation o olie o
2D Image Coordinates o | o ot

T
Conversion example spans [

2D Image Coordinates

N Image J N J

4 N\ 4 \
3D Rendering Pipeline ﬁ Area Subdivision ﬁ

3D Primitives

3D Modeling Goordinates Warnock’s algorithm
Trangionmglon Scan-line comments o Fill area if:
1 3D World Coordinates o Fully compute only visible pixels » All surfaces are outside area, or
o Coherence among along scans .
. » Only one surface intersects area, or
3D World Coordinates o Commonly in software

Viewing » One surface occludes
Transformation .
3D Camera Coordinates other surfaces in area

o Otherwise, subdivide

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

2D Image Coordinates

Scan_
_ Image Y, _)

Ve

3D Primitives
3D Modeling Coordinates

Modeling
Transformation

3D World Coordinates

Lighting

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Pm'jection_
Transformation

2D Screen Coordinates

Clipping
2D Screen Coordinates
Viewport
Transformation
2D Image Coordinates
Scan
Conversion

2D Image Coordinates

_ Image

3D Rendering Pipeline

Area subdivision comments

o Augments scan conversion
o Polygon coherence

o Commonly in software

Ve

Conclusions

Algorithms for HSR
o Back-face detection
o Depth sort
o Ray casting
o Scan-line
o Z-buffer
o Area subdivision

* Where in pipeline?
* Hardware / Software?

* Trends in hardware.

