Texture Mapping
Adam Finkelstein
Princeton University
COS 426, Spring 2003

Textures
• Describe color variation in interior of 3D polygon
 When scan converting a polygon, vary pixel colors according to values fetched from a texture

3D Rendering Pipeline (for direct illumination)
3D Primitives
 → 3D Modeling Coordinates
 Modeling Transformations
 → 3D World Coordinates
 Lighting Transformations
 → 3D Camera Coordinates
 Projection Transformations
 → 2D Screen Coordinates
 Clipping
 → 2D Screen Coordinates
 Viewing Transformations
 → 2D Image Coordinates
 Scan Conversion
 → 2D Image Coordinates

Surface Textures
• Add visual detail to surfaces of 3D objects

Surface Textures
• Add visual detail to surfaces of 3D objects
[Daren Horley]

Overview
• Texture mapping methods
 • Parameterization
 • Mapping
 • Filtering
• Texture mapping applications
 • Modulation textures
 • Illumination mapping
 • Bump mapping
 • Environment mapping
 • Image-based rendering
 • Non-photorealistic rendering
Parameterization

geometry + image = texture map

• Q: How do we decide where on the geometry each color from the image should go?

Option: Varieties of projections

[Paul Bourke]

Option: unfold the surface

[PiPoni2000]

Option: make an atlas

[PiPoni2000]

Overview

• Texture mapping methods
 • Parameterization
 • Mapping
 • Filtering
 • Texture mapping applications
 • Modulation textures
 • Illumination mapping
 • Bump mapping
 • Environment mapping
 • Image-based rendering
 • Volume textures
 • Non-photorealistic rendering

Texture Mapping

• Steps:
 • Define texture
 • Specify mapping from texture to surface
 • Lookup texture values during scan conversion

Modeling Coordinate System ▶️ Texture Coordinate System ▶️ Image Coordinate System
Texture Mapping

- When scan convert, map from …
 - image coordinate system (x,y) to
 - modeling coordinate system (u,v) to
 - texture image (t,s)

- Texture mapping is a 2D projective transformation
 - texture coordinate system: (t,s) to
 - image coordinate system (x,y)

Overview

- Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering

- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering

Texture Filtering

- Must sample texture to determine color at each pixel in image
Texture Filtering

• Aliasing is a problem

Point sampling Area filtering

Angel Figure 9.5

Texture Filtering

• Ideally, use elliptically shaped convolution filters

In practice, use rectangles

Angel Figure 9.5

Texture Filtering

• Size of filter depends on projective warp
 - Can prefiltering images
 - Mip maps
 - Summed area tables

Magnification Minification

Angel Figure 9.14

Mip Maps

• Keep textures prefiltered at multiple resolutions
 - For each pixel, linearly interpolate between two closest levels (e.g., trilinear filtering)
 - Fast, easy for hardware

Overview

• Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering

• Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering

Summed-area tables

• At each texel keep sum of all values down & right
 - To compute sum of all values within a rectangle, simply subtract two entries
 - Better ability to capture very oblique projections
 - But, cannot store values in a single byte

Overview

• Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering

• Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering
Modulation textures
Map texture values to scale factor

Illumination Mapping
Map texture values to surface material parameter

\[I = I_e + K_a I_a + \sum (K_d(N \cdot L) + K_r(V \cdot R)^s) S_I + K_f I_f + K_f I_d \]

Bump Mapping
Texture values perturb surface normals

Bump Mapping
Texture values perturb surface normals

Environment Mapping
Texture values are reflected off surface patch

Image-Based Rendering
Map photographic textures to provide details for coarsely detailed polygonal model
Solid textures
Texture values indexed by 3D location (x,y,z)
- Expensive storage, or
- Compute on the fly, e.g. Perlin noise

Nonphotorealistic Rendering

Art-Maps

Summary
- Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering
- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Volume textures
 - Non-photorealistic rendering