Ve

3D Rendering

* The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

p
Ray Casting
Adam Finkelstein
Princeton University
COS 426, Spring 2003
N
p
Ray Casting

* For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color sample based on surface radiance

o ° o, o o o

® ° [o L}

® ° e o ° °

ST
Rays
through
view plane
Simplest method 1:1 134
is ray casting I | View plane
Eye position
. J

Ve

Ray Casting

+ Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}

return image;

S~
Ray Casting
» For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color sample based on surface radiance
Rays
through
view plane
amples on
” view plane
L Eye position)
S~
Ray Casting
* Simple implementation:
Image RayCast(Camera camera, Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);
}
return image;
}
\\§ J

Vs

Constructing Ray Through a Pixel

Up direction

back

right

Vs

Ray Casting

+ Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
imagel[i][j] = GetColor(hit);

}

return image;

Vs

Ray-Sphere Intersection

Ray: P =P, +tV
Sphere: |P-0|2-r2=0

Vs

Constructing Ray Through a Pixel
» 2D Example

© = frustum half-angle
d = distance to view plane

right = towards X up

P1 =P, + d*towards — d*tan(®)*right

?

v
P2 =P, + d*towards + d*tan(®)*right P2

P =Pl + (i/width + 0.5) * (P2 - P1)
=PI + (i/width + 0.5) * 2*d*tan (©)*right
V=(P-Py/|[P-Py

Ray: P =P, + tV

J

Vs

Ray-Scene Intersection

* Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees

?

Vs

-

Ray-Sphere Intersection |

Ray: P =P, + tV

. - 2_r2=
Sphere: [P - Of -r2=0 Algebraic Method
Substituting for P, we get:

|Pp+tV-0]2-r2=0

Solve quadratic equation: P’
at?+bt+c=0 P
where: v
a=1
b=2V-(P,-0) Po
c=|P,-C|?2-r2=0
P =P, +tV

?

p
Ray-Sphere Intersection Il

Ray: P =P, +tV
Sphere: |P-0|2-r2=0

Geometric Method

L=0-P,

ta=LeV
if (t, < 0) return O

2=LeL-t.2 !
i (02 > r2 \
if (d2 > r2) return O P,

thc = Sql’t(l’2 - d2)
t=te -t and to, + by,

P=P,+1tV

Vs

Ray-Scene Intersection

* Intersections with geometric primitives

» Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees

Vs

Ray-Sphere Intersection

* Need normal vector at intersection
for lighting calculations

N=(P-0O)/||P-Ol

p
Ray-Plane Intersection

Ray: P =P, +tV
Plane:P+N+d=0 Algebraic Method
Substituting for P, we get:

(Po+tV)eN+d=0

Solution:
t=-(Py*N+d)/(V+N)
P=P,+tV
\Y%
PO

Vs

Ray-Triangle Intersection

« First, intersect ray with plane

» Then, check if point is inside triangle
. V
PO
J

Ray-Triangle Intersection |

Vs

» Check if point is inside triangle algebraically
For each side of triangle T3
V,=T,-P
V,=T,-P
N, =V,xV,
Normalize N,
if (P-Py)*N,<0)
return FALSE;
end

Vs

Ray-Triangle Intersection Il

» Check if point is inside triangle parametrically

Compute a, B: s

P=a (TyT) +B(T5-Ty)

Check if point inside triangle.
0<a<t1and0<B<1
a+fB<1

T,

p
Other Ray-Primitive Intersections

* Cone, cylinder, ellipsoid:
o Similar to sphere

* Box
o Intersect 3 front-facing planes, return closest

» Convex polygon
o Same as triangle (check point-in-polygon algebraically)

» Concave polygon
o Same plane intersection
o More complex point-in-polygon test

Vs

Ray-Scene Intersection
» Find intersection with front-most primitive in group

Intersection FindIntersection(Ray ray, Scene scene)

{

min_t = infinity
min_primitive = NULL
For each primitive in scene {

t = Intersect(ray, primitive);
if (t> 0 && t < min_t) then

min_primitive = primitive
min_t=t
}
} ®

return Intersection(min_t, min_primitive)
}

p
Ray-Scene Intersection

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees

Vs

Bounding Volumes

» Check for intersection with simple shape first

v

Vs

Bounding Volumes

» Check for intersection with simple shape first

Vs

-
Bounding Volumes @

» Check for intersection with simple shape first
o If ray doesn'’t intersect bounding volume,
then it doesn’t intersect its contents

Vs

-
Bounding Volume Hierarchies | @

* Build hierarchy of bounding volumes
o Bounding volume of interior node contains all children

Q)

N
/

©
©

O‘@\
pa—©
o
D‘@\
O-@ -
@

Vs

.
Bounding Volume Hierarchies Il @

+ Sort hits & detect early termination

FindIntersection(Ray ray, Node node)

{

// Find intersections with child node bounding volumes
// Sort intersections front to back

// Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i {
if (min_t <bv_t[i]) break;
shape_t = FindIntersection(ray, child);
if (shape_t <min_t) { min_t = shape_t;}
}

return min_t;

p
Bounding Volumes

» Check for intersection with simple shape first

o If ray doesn't intersect bounding volume,
then it doesn’t intersect its contents

Still need to check for
intersections with shape.

p
Bounding Volume Hierarchies

» Use hierarchy to accelerate ray intersections
o Intersect node contents only if hit bounding volume

p
Ray-Scene Intersection

» Acceleration techniques

o Spatial partitions
» Uniform grids
» Octrees
» BSP trees

Vs

Uni

+ Construct uniform grid over scene

form Grid

o Index primitives according to overlaps with grid cells

Vs

Uniform Grid

» Potential problem:
o How choose suitable grid resolution?

Too little benefit
if grid is too coarse Fi

()

e

AC
<

Too much cost
if grid is too fine

(»)
\

Vs

Uni

p
Octree

» Construct adaptive grid over scene
o Recursively subdivide box-shaped cells into 8 octants

o Index primitives by overlaps with cells
©) B
o
Generally fewer cells D -
N\
C

+ Trace rays through grid cells
o Fast

form Grid

o Incremental

£

Only check primitives
in intersected grid cells

Vs

Ray-Scene Intersection

» Acceleration techniques
o Spatial partitions

» Octrees
» BSP trees

" ?

Octree
» Trace rays through neighbor cells
o Fewer cells
o More complex neighbor finding
ko
D A

Trade-off fewer cells for
more expensive traversal

(" 2\
Ray-Scene Intersection @

» Acceleration techniques

o Spatial partitions

» BSP trees

(" N\
Binary Space Partition (BSP) Tree @

» Simple recursive algorithms
o Example: point finding

(" N\
Binary Space Partition (BSP) Tree @

RayTreelntersect(Ray ray, Node node, double min, double max)

if (Node is a leaf)
return intersection of closest primitive in cell, or NULL if none
else
dist = distance of the ray point to split plane of node
near_child = child of node that contains the origin of Ray
far_child = other child of node
if the interval to look is on near side
return RayTreelntersect(ray, near_child, min, max)
else if the interval to look is on far side
return RayTreelntersect(ray, far_child, min, max)
else if the interval to look is on both side
if (RayTreelntersect(ray, near_child, min, dist)) return ...;
else return RayTreelntersect(ray, far_child, dist, max)

Vs

-
Binary Space Partition (BSP) Tree @

» Recursively partition space by planes
o Every cell is a convex polyhedron

Vs

-
Binary Space Partition (BSP) Tree @

» Trace rays by recursion on tree
o BSP construction enables simple front-to-back traversal

J
s N
Other Accelerations @
» Screen space coherence
o Check last hit first
o Beam tracing SRS R AREE 7 R N
o Pencil tracing " I . t S ‘,‘}
o Cone tracing o o oo o oo
* Memory coherence RO S
o Large scenes
+ Parallelism
o Ray casting is “embarassingly parallelizable”
» etc.
. J

(2\
Acceleration e

* Intersection acceleration techniques are important
o Bounding volume hierarchies
o Spatial partitions

» General concepts
o Sort objects spatially
o Make trivial rejections quick
o Utilize coherence when possible

Expected time is sub-linear in number of primitives

4 N
Heckbert’s business card ray tracer e

+ typedef struct{double x,y,z}vec;vec U black,amb={.02,.02,.02};struct sphere{ vec cen,color;
double rad,kd,ks,kt kl,ir}*s, *best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1..8.,-.5,1.,.5,.2,1.,
.7,.3,0.,.05,1.2,1.8.-5,1,8,8,1.,.3,7,0.,0.,1.2,3.6.,15.,1.,.8,1.,7.,0.,0.,0... -3.12,
.8,1,,1.5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A B;{return A.x

*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec AB;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z;

return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(vdot(A,A)),A black);}struct sphere*intersect

(P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),

u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u): 1€31,u=b-u>1e-7?b-u:b+u tmin=u>=1e-78&

u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=
s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),
eta=1/eta,d= -d;|=sph+5;while(l-->sph)if((e= ->kI*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&
intersect(P,U)==l)color=vcomb(e ,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z

=U.z,e=1-eta eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-

sqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb

(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2-

yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black,vunit(U)) black),printf

("%.0f %.0f %.0f\n",U);}/*minray!/

- J

-~

Summary @

» Writing a simple ray casting renderer is easy
o Generate rays
o Intersection tests
o Lighting calculations

Image RayCast(Camera camera, Scene scene, int width, int height)

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
ion hit = Fi ion(ray, scene);
imagef[i][j] = GetColor(hit);

}

return image;

}
. J
4 N\
Next Time is lllumination! e
Without lllumination With lllumination
G J

