

Image Processing

Adam Finkelstein Princeton University COS 426, Spring 2003

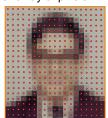
Overview

- Image representation
 What is an image?
 - o What is an image?
- · Halftoning and dithering
 - o Trade spatial resolution for intensity resolution
 - o Reduce visual artifacts due to quantization
- · Sampling and reconstruction
 - o Key steps in image processing
 - o Avoid visual artifacts due to aliasing

What is an Image?

• An image is a 2D rectilinear array of pixels

Continuous image


Digital image

What is an Image?

· An image is a 2D rectilinear array of pixels

Continuous image

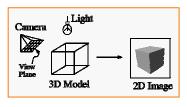
Digital image

A pixel is a sample, not a little square!

What is an Image?

· An image is a 2D rectilinear array of pixels

Continuous image


Digital image

A pixel is a sample, not a little square!

Image Acquisition

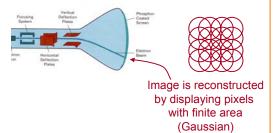

- Pixels are samples from continuous function
 - o Photoreceptors in eye
 - o CCD cells in digital camera
 - o Rays in virtual camera

Image Display

Re-create continuous function from samples

 Example: cathode ray tube

Image Resolution

- · Intensity resolution
 - o Each pixel has only "Depth" bits for colors/intensities
- · Spatial resolution
 - o Image has only "Width" x "Height" pixels
- Temporal resolution
 - o Monitor refreshes images at only "Rate" Hz

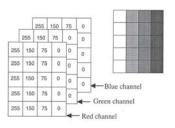
	Width x Height	Depth	Rate
NTSC	640 x 480	8	30
Workstation	1280 x 1024	24	75
Film	3000 x 2000	12	24
Laser Printer	6600 x 5100	1	-

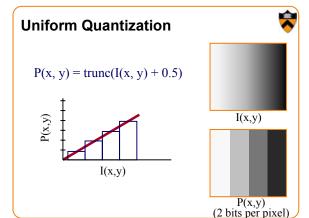
Sources of Error

- · Intensity quantization
 - o Not enough intensity resolution
- · Spatial aliasing
 - o Not enough spatial resolution
- · Temporal aliasing
 - o Not enough temporal resolution

$$E^{2} = \sum_{(x,y)} (I(x,y) - P(x,y))^{2}$$

Overview




- Image representation
 - o What is an image?
- Halftoning and dithering
 - o Reduce visual artifacts due to quantization
- Sampling and reconstruction
 - o Reduce visual artifacts due to aliasing

Quantization

- · Artifacts due to limited intensity resolution
 - o Frame buffers have limited number of bits per pixel
 - o Physical devices have limited dynamic range

Uniform Quantization · Images with decreasing bits per pixel: 8 bits 4 bits 2 bits 1 bit

Notice contouring

Reducing Effects of Quantization

- · Halftoning
 - o Classical halftoning
- · Dithering
 - o Random dither
 - o Ordered dither
 - o Error diffusion dither

Classical Halftoning

· Use dots of varying size to represent intensities o Area of dots proportional to intensity in image

Classical Halftoning

Newspaper Image

From New York Times, 9/21/99

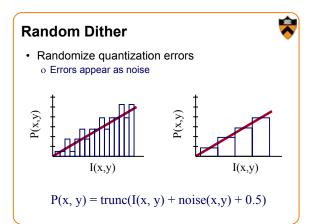
Halftone patterns

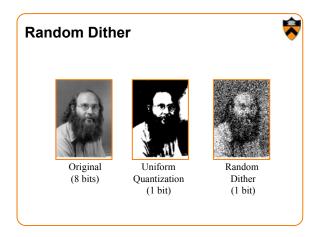
· Use cluster of pixels to represent intensity o Trade spatial resolution for intensity resolution

Figure 14.37 from H&B

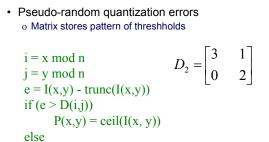
Dithering

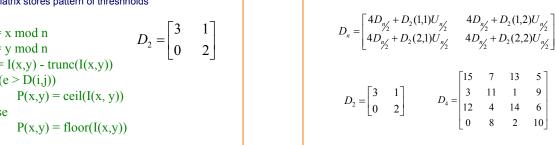
- · Distribute errors among pixels
 - o Exploit spatial integration in our eye
 - o Display greater range of perceptible intensities

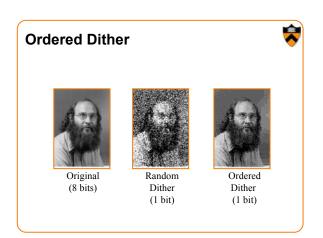

Original (8 bits)

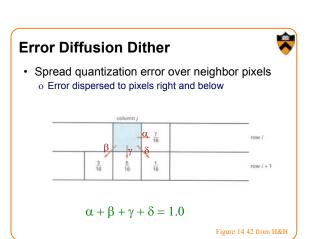


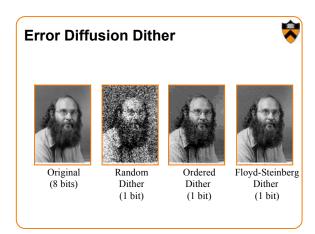
Quantization (1 bit)

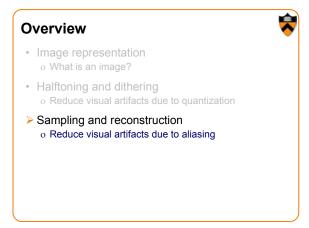

Floyd-Steinberg Dither (1 bit)

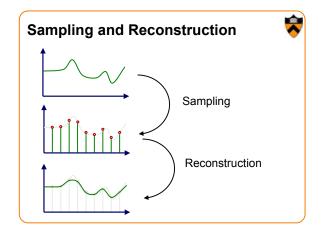


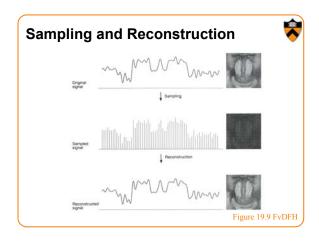

Ordered Dither

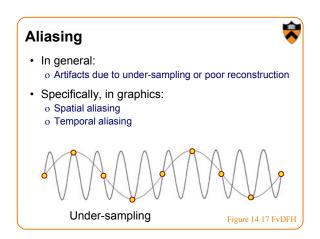

· Bayer's ordered dither matrices

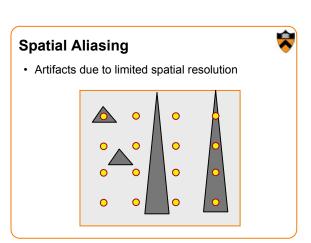


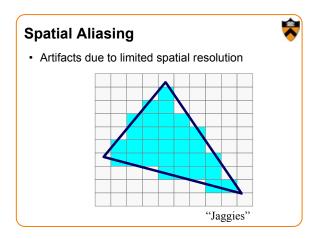

Ordered Dither

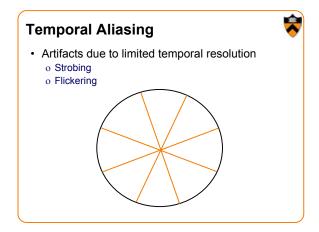


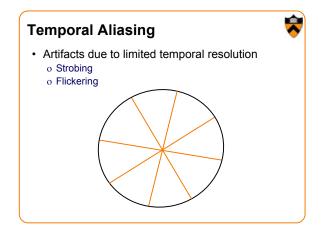


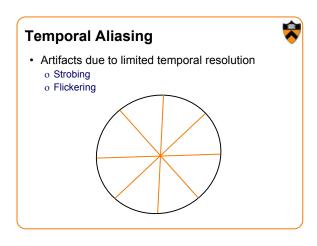


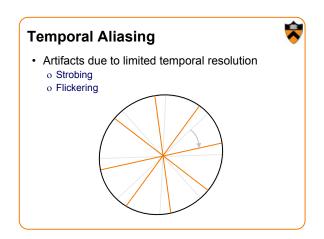


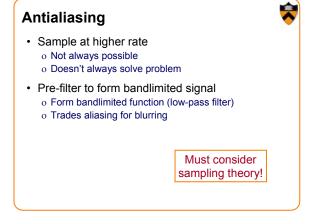


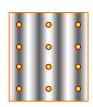






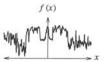






Sampling Theory

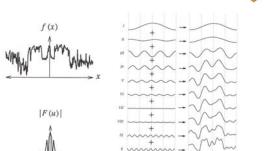
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



Spectral Analysis

- · Spatial domain:
 - o Function: f(x)
 - o Filtering: convolution

- · Frequency domain:
 - o Function: F(u)
 - o Filtering: multiplication



Any signal can be written as a sum of periodic functions.

Fourier Transform

Figure 2.6 Wolber

Fourier Transform

· Fourier transform:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi xu} dx$$

· Inverse Fourier transform:

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{+i2\pi ux} du$$

Sampling Theorem

- A signal can be reconstructed from its samples, if the original signal has no frequencies above 1/2 the sampling frequency - Shannon
- The minimum sampling rate for bandlimited function is called "Nyquist rate"

A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth.

Convolution

• Convolution of two functions (= filtering):

$$g(x) = f(x) \otimes h(x) = \int_{-\infty}^{\infty} f(\lambda)h(x - \lambda)d\lambda$$

- · Convolution theorem
 - o Convolution in frequency domain is same as multiplication in spatial domain, and vice-versa

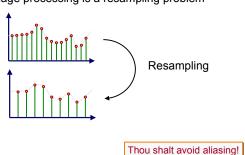
Image Processing

- Quantization
 - o Uniform Quantization
 - o Random dither
 - o Ordered dither
 - o Floyd-Steinberg dither
- · Pixel operations
 - o Add random noise
 - o Add luminance
 - o Add contrast
 - o Add saturation

- Filtering
 - o Blur
- o Detect edges
- Warping
 - o Scale
 - o Rotateo Warps
- Combining
 - o Morphs
 - o Composite

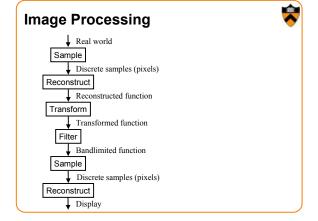
Image Processing

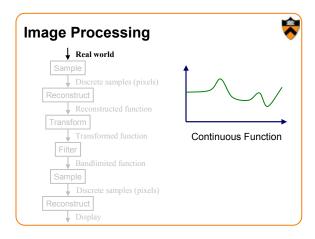
· Consider reducing the image resolution

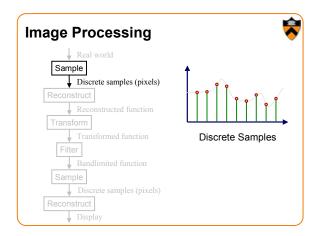

Original image

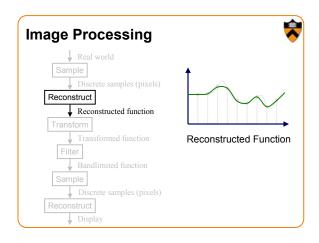
1/4 resolution

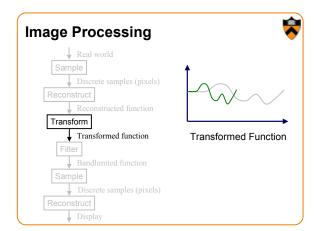
Image Processing

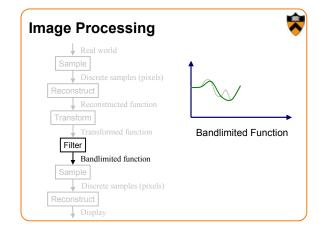

• Image processing is a resampling problem

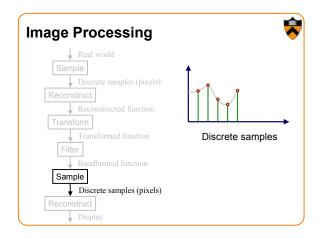


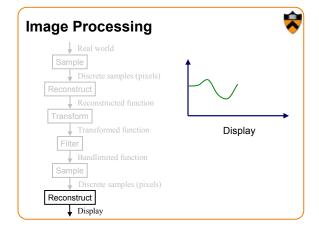

Antialiasing in Image Processing

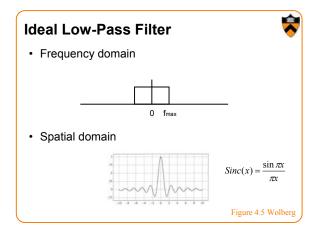


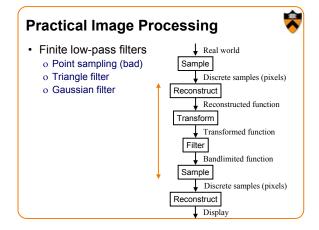

- · General Strategy
 - o Pre-filter transformed image via convolution with low-pass filter to form bandlimited signal
- Rationale
 - o Prefer blurring over aliasing

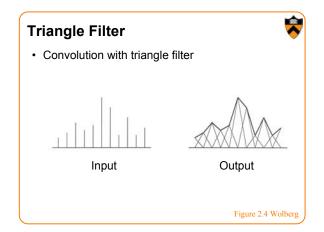


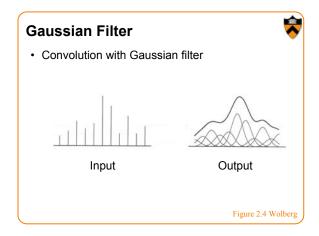


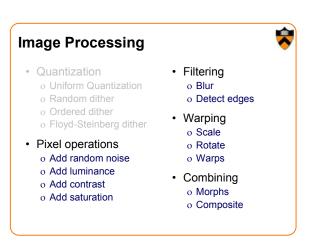


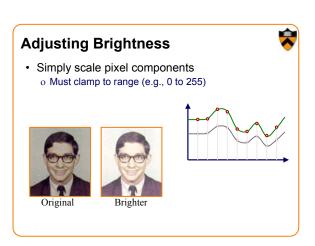


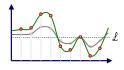












Adjusting Contrast

- Compute mean luminance ℓ for all pixels o luminance = 0.30*r + 0.59*g + 0.11*b
- Scale deviation from \mathcal{L} for each pixel component o Must clamp to range (e.g., 0 to 255)

Original

More Contrast

Image Processing

- Quantization

 - o Floyd-Steinberg dither
- Pixel operations
 - o Add random noise
 - o Add luminance
 - o Add contrast
 - o Add saturation

- · Filtering
 - o Blur
 - o Detect edges
- Warping
 - o Scale
 - o Rotate
 - o Warps
- Combining
 - o Morphs
 - o Composite

Adjust Blurriness

· Convolve with a filter whose entries sum to one o Each pixel becomes a weighted average of its neighbors

 $Filter = \begin{bmatrix} 1/6 & 2/6 & 1/6 \\ 1/6 & 1/6 & 1/6 \\ 2/16 & 1/6 & 1/6 \\ 1/6 & 2/16 & 1/6 \end{bmatrix}$

Edge Detection

· Convolve with a filter that finds differences between neighbor pixels

Image Processing

- Quantization

 - o Floyd-Steinberg dither
- Pixel operations
 - o Add random noise
 - o Add luminance
 - o Add contrast o Add saturation
- Filtering

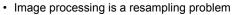
 - o Detect edges
- Warping
 - o Scale
 - o Rotate
- o Warps
- Combining
 - o Morphs
 - o Composite

Scaling

· Resample with triangle or Gaussian filter

More on this next lecture!

Original



4X resolution

Image Processing

o Avoid aliasing o Use filtering

Summary

- · Image representation
 - o A pixel is a sample, not a little square
 - o Images have limited resolution
- · Halftoning and dithering
 - o Reduce visual artifacts due to quantization
 - o Distribute errors among pixels
 - » Exploit spatial integration in our eye
- Sampling and reconstruction
 - o Reduce visual artifacts due to aliasing
 - o Filter to avoid undersampling
 - » Blurring is better than aliasing

