Due: Tuesday May 13 1. Prove that the following problem is NP-complete: given an undirected graph G and a vertex constraint d(v) at each vertex v, does G have a spanning tree that satisfies the degree constraint at every vertex? (The tree satisfies the constraint at a vertex v if the degree of v in the tree is at most d(v). That is, the degree constraints are upper bounds on the allowed degrees.) ## 2. Bonnie and Clyde Bonnie and Clyde have just robbed a bank. They have a bag of money and want to divide it up. For each of the following scenarios, either give a polynomial-time algorithm, or prove that the yes-no version of the problem is NP-complete. The input in each case is a list of the n items in the bag, along with the value of each, expressed in ordinary decimal notation. - a. There are n coins, but only 2 different denominations: some coins are worth x dollars, and some are worth y dollars. They wish to divide the money exactly evenly. - b. There are n coins, with an arbitrary number of different denominations, but each denomination is a nonnegative integer power of 2, i.e., the possible denominations are 1 dollar, 2 dollars, 4 dollars, etc. They wish to divide the money exactly evenly. - c. There are n checks, which are, in an amazing coincidence, made out to "Bonnie or Clyde." They wish to divide the checks so that they each get the exact same amount of money. - d. There are n checks as in part (c), but this time they are willing to accept a split in which the difference is no larger than 100 dollars. - 3. In the MAX-CUT problem, we are given an unweighted undirected graph G = (V, E). We define a cut (S, V S) as in Chapter 23 and the **weight** of a cut as the number of edges crossing the cut. The goal is to find a cut of maximum weight. Suppose that for each vertex v, we randomly and independently place v in S with probability 1/2 and in V S with probability 1/2. Show that this algorithm is a randomized 2-approximation algorithm. Does this algorithm give a 2-approximation if the edges have arbitrary non-negative weights? ## 4. Parallel machine scheduling In the *parallel-machine-scheduling problem*, we are given n jobs, J_1, J_2, \ldots, J_n , where each job J_k has an associated nonnegative processing time of p_k . We are also given m identical machines, M_1, M_2, \ldots, M_m . A *schedule* specifies, for each job J_k , the machine on which it runs and the time period during which it runs. Each job J_k must run on some machine M_i for p_k consecutive time units, and during that time period no other job may run on M_i . Let C_k denote the *completion time* of job J_k , that is, the time at which job J_k completes processing. Given a schedule, we define $C_{\max} = \max_{1 \le k \le n} C_k$ to be the *makespan* of the schedule. The goal is to find a schedule whose makespan is minimum. For example, suppose that we have two machines M_1 and M_2 and that we have four jobs J_1 , J_2 , J_3 , J_4 , with $p_1=2$, $p_2=12$, $p_3=4$, and $p_4=5$. Then one possible schedule runs, on machine M_1 , job J_1 followed by job J_2 , and on machine M_2 , it runs job J_4 followed by job J_3 . For this schedule, $C_1=2$, $C_2=14$, $C_3=9$, $C_4=5$, and $C_{\max}=14$. An optimal schedule runs J_2 on machine M_1 , and it runs jobs J_1 , J_3 , and J_4 on machine M_2 . For this schedule, $C_1=2$, $C_2=12$, $C_3=6$, $C_4=11$, and $C_{\max}=12$. Given a parallel-machine-scheduling problem, we let C_{max}^* denote the makespan of an optimal schedule. a. Show that the optimal makespan is at least as large as the greatest processing time, that is, $$C_{\max}^* \ge \max_{1 \le k \le n} p_k .$$ b. Show that the optimal makespan is at least as large as the average machine load, that is, $$C_{\max}^* \ge \frac{1}{m} \sum_{1 \le k \le n} p_k .$$ Suppose that we use the following greedy algorithm for parallel machine scheduling: whenever a machine is idle, schedule any job that has not yet been scheduled. - c. Write pseudocode to implement this greedy algorithm. What is the running time of your algorithm? - d. For the schedule returned by the greedy algorithm, show that $$C_{\max} \leq \frac{1}{m} \sum_{1 \leq k < n} p_k + \max_{1 \leq k \leq n} p_k.$$ Conclude that this algorithm is a polynomial-time 2-approximation algorithm.