COS 423 Problem Set No. 6 Due: Tuesday May 13
Spring 2003

1. Prove that the following problem is NP-complete: given an undirected
graph G and a vertex constraint d(v) at each vertex v, does G have a
spanning tree that satisfies the degree constraint at every vertex? (The tree
satisfies the constraint at a vertex v if the degree of v in the tree is at most
d(v). That is, the degree constraints are upper bounds on the allowed
degrees.)

2. Bonnie and Clyde
Bonnie and Clyde have just robbed a bank. They have a bag of money
and want to divide it up. For each of the following scenarios, either give a
polynomial-time algorithm, or prove that the yes-no version of the
problem is NP-complete. The input in each case is a list of the n items in
the bag, along with the value of each, expressed in ordinary decimal
notation.

a. There are n coins, but only 2 different denominations: some coins are worth
x dollars, and some are worth y dollars. They wish to divide the money exactly
evenly.

b. There are n coins, with an arbitrary number of different denominations, but
each denomination is a nonnegative integer power of 2, i.e., the possible de-
nominations are 1 dollar, 2 dollars, 4 dollars, etc. They wish to divide the
money exactly evenly.

c¢. There are n checks, which are, in an amazing coincidence, made out to “Bonnie
or Clyde.” They wish to divide the checks so that they each get the exact same
amount of money:.

d. There are n checks as in part (c), but this time they are willing to accept a split
in which the difference is no larger than 100 dollars.

3. In the MAX-CUT problem, we are given an unweighted undirected graph G =
(V, E). We define a cut (S, V — §) as in Chapter 23 and the weight of a cut as the
number of edges crossing the cut. The goal is to find a cut of maximum weight.
Suppose that for each vertex v, we randomly and independently place v in S with
probability 1/2 and in V — § with probability 1/2. Show that this algorithm is a
randomized 2-approximation algorithm. Does this algorithm give a
2-approximation if the edges have arbitrary non-negative weights?




Parallel machine scheduling
In the parallel-machine-scheduling problem, we are given n jobs, Jy, Jo, ..., J,,
where each job J; has an associated nonnegative processing time of p,. We are
also given m identical machines, M, M>, ..., M,,. A schedule specifies, for each
job Ji, the machine on which it runs and the time period during which it runs. Each
job Ji must run on some machine M; for p; consecutive time units, and during that

time period no other job may run on M;. Let C, denote the completion time of
job Jy, that is, the time at which job J; completes processing. Given a schedule,
we define C__ = max,,, C, to be the makespan of the schedule. The goal is to
find a schedule whose makespan is minimum.

For example, suppose that we have two machines M| and M, and that we have
four jobs Jy, Jo, J3, Js, with py = 2, pp = 12, p3 = 4, and p; = 5. Then
one possible schedule runs, on machine M;, job J; followed by job J,, and on
machine M,, it runs job J4 followed by job J3. For this schedule, C = 2, C, = 14,
C3 =9,C4 =5, and Cppyx = 14. An optimal schedule runs J, on machine M, and
it runs jobs Ji, J3, and J4 on machine M;. For this schedule, C; = 2, C; = 12,
C3=6,Cq4 = 11,and Cppx = 12.

Given a parallel-machine-scheduling problem, we let C
of an optimal schedule.

*

mayx denote the makespan

a. Show that the optimal makespan is at least as large as the greatest processing
time, that is,
C*

max = Max pi .

i<k<n

b. Show that the optimal makespan is at least as large as the average machine load,
that is,

Suppose that we use the following greedy algorithm for parallel machine schedul-
ing: whenever a machine is idle, schedule any job that has not yet been scheduled.

¢. Write pseudocode to implement this greedy algorithm. What is the running
time of your algorithm?

d. For the schedule returned by the greedy algorithm, show that

1
Cmaxf_ Z Pr + max p; .

1 <k=n 1<k<n

Conclude that this algorithm is a polynomial-time 2-approximation algorithm.



