Optimizing Compilers

Effective optimizing compilers need to gather information about the structure and the flow of control through programs.

- Which instructions are always executed before a given instruction
- Which instructions are always executed after a given instruction
- Where the loops in a program are
 - 90% of any computation is normally spent in 10% of the code: the inner loops
- We’ve already seen how construction of a control-flow graph can help give us some of this information
- In this lecture, we’ll show how to analyze the control-flow graph to detect more refined control-flow information.
Basic Blocks

- *Basic Block* - run of code with single entry and exit.
- Control flow graph of basic blocks more convenient.
- Determine by the following:
 1. Find *leaders*:
 (a) First statement
 (b) Targets of conditional and unconditional branches
 (c) Instructions that follow branches
 2. Basic blocks are leader up to, but not including next leader.
Basic Block Example

r1 = 0

LOOP:
r1 = r1 + 1
r2 = r1 & 1
BRANCH r2 == 0, ODD
r3 = r3 + 1
JUMP NEXT

ODD:
r4 = r4 + 1

NEXT:
BRANCH r1 <= 10, LOOP
Domination Motivation

Constant Propagation:

\[r_1 = 4 \]
\[r_2 = r_1 + 5 \]
\[r_2 = 9 \]

\[r_1 = 4 \]
\[r_2 = r_1 + 5 \]
\[r_2 = 9 \]
Domination

- Assume every Control Flow Graph (CFG) has start node s_0 with no predecessors.
- Node d dominates node n if every path of directed edges from s_0 to n must go through d.
- Every node dominates itself.
- Consider:

 ![Diagram]

 - If d dominates each of the p_i, then d dominates n.
 - If d dominates n, then d dominates each of the p_i.
Dominator Analysis

- If d dominates each of the p_i, then d dominates n.
- If d dominates n, then d dominates each of the p_i.
- $Dom[n] = \text{set of nodes that dominate node } n$.
- $N = \text{set of all nodes}$.

- Computation:
 1. $Dom[s_0] = \{s_0\}$.
 2. for $n \in N - \{s_0\}$ do $Dom[n] = N$
 3. while (changes to any $Dom[n]$ occur) do
 4. for $n \in N - \{s_0\}$ do
 5. $Dom[n] = \{n\} \cup (\cap_{p \in pred[n]} Dom[p])$.
Dominator Analysis Example

<table>
<thead>
<tr>
<th>Node</th>
<th>$Dom[n]$</th>
<th>$Dom[n]$</th>
<th>$IDom[n]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1-12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram showing the flow of control through nodes 1 to 12 with connections indicated by lines.
Immediate Dominator

- Immediate dominator used in constructing *dominator tree*.
- Dominator Tree:
 - efficient representation of dominator information
 - used for other types of analysis (e.g. control dependence)
- s_0 is root of dominator tree.
- Each node d dominates only its descendants in tree.
- Every node n ($n \neq s_0$) has exactly one immediate dominator $IDom[n]$.
 - $IDom[n] \neq n$
 - $IDom[n]$ dominates n
 - $IDom[n]$ does not dominate any other dominator of n.
- Last dominator of n on any path from s_0 to n is $IDom[n]$.
Immediate Dominator Example

<table>
<thead>
<tr>
<th>Node</th>
<th>$Dom[n]$</th>
<th>$IDom[n]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,2,3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,2,4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1,2,5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1,2,4,6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1,2,7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1,2,5,8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1,2,5,8,9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1,2,5,8,9,10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1,2,7,11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1,2,12</td>
<td></td>
</tr>
</tbody>
</table>
Post-Domination

- Assume every Control Flow Graph (CFG) has exit node x with no successors.
- Node p post-dominates node n if every path of directed edges from n to x must go through p.
- Every node post-dominates itself.
- Derivation of post-dominator and immediate post-dominator analysis analogous to dominator and immediate dominator analysis.
- Post-dominators will be useful in computing control dependence.
- Control dependence will be useful in many future optimizations.
Loop Optimizations

- First step in loop optimization → find the loops.

- A loop is a set of CFG nodes S such that:
 1. there exists a header node h in S that dominates all nodes in S.
 - there exists a path of directed edges from h to any node in S.
 - h is the only node in S with predecessors not in S.
 2. from any node in S, there exists a path of directed edges to h.

- A loop is a single entry, multiple exit region.
Examples of Loops
Back Edges

- **Back-edge** - flow graph edge from node n to node h such that h dominates n
- Each back-edge has a corresponding *natural loop*.
Natural Loops

- Natural loop of back-edge \(\langle n, h \rangle \):
 - has a loop header \(h \).
 - set of nodes \(X \) such that \(h \) dominates \(x \in X \) and there is a path from \(x \) to \(n \) not containing \(h \).
- A node \(h \) may be header of more than one natural loop.
- Natural loops may be nested.
Loop Optimization

- Compiler should optimize inner loops first.
 - Programs *typically* spend most time in inner loops.
 - Optimizations may be more effective \rightarrow loop invariant code removal.
- Convenient to merge natural loops with same header.
- These merged loops are not natural loops.
- Not all cycles in CFG are loops of any kind (more later).
Loop Optimization

Loop invariant code motion

- An instruction is loop invariant if it computes the same value in each iteration.
- Invariant code may be hoisted outside the loop.

```
ADDI   r1 = r0 + 0
LOAD   r2 = M[FP + a]
ADDI   r3 = r0 + 4
LOAD   r6 = M[FP + x]

LOOP:
  MUL   r4 = r3 * r1
  ADD   r5 = r2 + r4
  STORE M[r5] = r6

ADDI   r1 = r1 + 1
BRANCH r1 <= 10, LOOP
```
Loop Optimization

- **Induction variable analysis and elimination** - i is an induction variable if only definitions of i within loop increment/decrement i by loop-invariant value.

- **Strength reduction** - replace expensive instructions (like multiply) with cheaper ones (like add).

```
ADDI   r1 = r0 + 0
LOAD   r2 = M[FP + a]
ADDI   r3 = r0 + 4
LOAD   r6 = M[FP + x]

LOOP:
MUL    r4 = r3 * r1
ADD    r5 = r2 + r4
STORE  M[r5] = r6

ADDI   r1 = r1 + 1
BRANCH r1 <= 10, LOOP
```
Non-Loop Cycles

Examples:
Non-Loop Cycles

• Loops are instances of *reducible* flow graphs.
 – Each cycle of nodes has a unique header.
 – During reduction, entire loop becomes a single node.

• Non-Loops are instances of *irreducible* flow graphs.
 – Analysis and optimization is more efficient on reducible flow graphs.
 – Irreducible flow graphs occur rarely in practice.
 * Use of structured constructs (e.g. if-then, if-then-else, while, repeat, for) leads to reducible flow graphs.
 * Use of goto’s *may* lead to irreducible flow graphs.
 – Fortunately, Tiger and ML don’t have gotos.
Loop Preheaders

Recall:

- A loop is a set of CFG nodes S such that:
 1. there exists a header node h in S that dominates all nodes in S.
 - there exists a path of directed edges from h to any node in S.
 - h is the only node in S with predecessors not in S.
 2. from any node in S, there exists a path of directed edges to h.

- A loop is a single entry, multiple exit region.

Loop Preheaders:

- Some loop optimizations (loop invariant code removal) need to insert statements immediately before loop header.

- Create a loop preheader - a basic block before the loop header block.
Loop Preheader Example
Loop Invariant Computations

- Given statements in loop s: $\tau = a_1 \circ \mathcal{P} a_2$:
 - s is loop-invariant if a_1, a_2 have same value each loop iteration.
 - may sometimes be possible to hoist s outside loop.

- Cannot always tell whether a will have same value each iteration \rightarrow conservative approximation.

- d: $\tau = a_1 \circ \mathcal{P} a_2$ is loop-invariant within loop L if for each a_i:
 1. a_i is constant, or
 2. all definitions of a_i that reach d are outside L, or
 3. only one definition of a_i reaches d, and is loop-invariant.
Loop Invariant Computation: Algorithm

Iterative algorithm for determining loop-invariant computations:

mark "invariant" all definitions whose operands
- are constant, or
- whose reaching definitions are outside loop.

WHILE (changes have occurred)
 mark "invariant" all definitions whose operands
 - are constant,
 - whose reaching definitions are outside loop, or
 - which have a single reaching definition in loop
 marked invariant.
Loop Invariant Code Motion

After detecting loop-invariant computations, perform code motion.

1: \(r1 = 0 \)

2: \(r2 = 5 \)

Preheader:

3: \(r3 = r3 + 1 \)

4: \(r1 = r2 + 10 \)

5: \(M[r3] = r1 \)

6: \(\text{branch } r3 < N \)

7: \(r4 = r1 \)

Subject to some constraints.
Loop Invariant Code Motion: Constraint 1

\[d : t = a \, \text{op} \, b \]

\(d \) must dominate all loop exit nodes where \(t \) is live out.

```
1: r1 = 0
2: r2 = 5

Preheader:

3: branch r3 < N

8: r4 = r1
4: r3 = r3 + 1
5: r1 = r2 + 10
6: M[r3] = r1
7: jump
```
Loop Invariant Code Motion: Constraint 2

\[d: \ t = a \ \text{op} \ b \]

there must be only one definition of \(t \) inside loop.

1: \(r1 = 0 \)

2: \(r2 = 5 \)

Preheader:

3: \(r3 = r3 + 1 \)

4: \(r1 = r2 + 10 \)

5: \(M[r3] = r1 \)

6: \(r1 = 0 \)

7: \(M[r3] = r1 \)

8: branch \(r3 < N \)

9: [empty block]
Loop Invariant Code Motion: Constraint 3

d: \(t = a \ op \ b \)

\(t \) must not be live-out of loop preheader node (live-in to loop)

1: \(r1 = 0 \)
2: \(r2 = 5 \)

Preheader:

3: \(M[r3] = r1 \)
4: \(r3 = r3 + 1 \)
5: \(r1 = r2 + 10 \)
6: \(M[r3] = r1 \)
7: \(\text{branch } r3 < N \)
8: \(r4 = r1 \)
Loop Invariant Code Motion

Algorithm for code motion:

- Examine invariant statements of L in same order in which they were marked.
- If invariant statement s satisfies three criteria for code motion, remove s from L, and insert into preheader node of L.
Induction Variables

Variable i in loop L is called induction variable of L if each time i changes value in L, it is incremented/decremented by loop-invariant value.

Assume a, c loop-invariant.

- i is an induction variable
- j is an induction variable

- $j = i \times c$ is equivalent to $j = j + a \times c$

- compute $e = a \times c$ outside loop:
 $j = j + e \Rightarrow$ strength reduction

- may not need to use i in loop \Rightarrow induction variable elimination
Induction Variable Detection

Scan loop L for two classes of induction variables:

- **basic** induction variables - variables (i) whose only definitions within L are of the form $i = i + c$ or $i = i - c$, c is loop invariant.

- **derived** induction variables - variables (j) defined only once within L, whose value is linear function of some basic induction variable L.

Associate triple (i, a, b) with each induction variable j

- i is basic induction variable; a and b are loop invariant.

- value of j at point of definition is $a + b \times i$

- j belongs to the family of i
Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

- Scan statements of L for basic induction variables i
 - for each i, associate triple $(i, 0, 1)$
 - i belongs to its own family.

- Scan statements of L for derived induction variables k:
 1. there must be single assignment to k within L of the form $k = j \times c$ or $k = j + d$, j is an induction variable; c, d loop-invariant, and
 2. if j is a derived induction variable belonging to the family of i, then:
 - the only definition of j that reaches k must be one in L, and
 - no definition of i must occur on any path between definition of j and definition of k

- Assume j associated with triple $(i, a, b): j = a + b \times i$ at point of definition.

- Can determine triple for k based on triple for j and instruction defining k:
\(-k = j \cdot c \rightarrow (i, a \cdot c, b \cdot c)\)
\(-k = j + d \rightarrow (i, a + d, b)\)
Induction Variable Detection: Example

```
s = 0;
for(i = 0; i < N; i++)
    s += a[i];
```
1: r1 = 0
2: r2 = 0

Preheader:

3: branch r2 >= N
4: r3 = r2 * 4
5: r4 = r3 + a
6: r5 = M[r4]
7: r1 = r1 + r5
8: r2 = r2 + 1
9: jump
10:

Computer Science 320
Prof. David Walker
Strength Reduction

1. For each derived induction variable j with triple (i, a, b), create new j'.

 • all derived induction variables with same triple (i, a, b) may share j'

2. After each definition of i in $L, i = i + c$, insert statement:

 $j' = j' + b * c$

 • $b * c$ is loop-invariant and may be computed in preheader or during compile time.

3. Replace unique assignment to j with $j = j'$.

4. Initialize j' at end of preheader node:

 $j' = b * i$

 $j' = j' + a$

 • Strength reduction still requires multiplication, but multiplication now performed outside loop.

 • j' also has triple (i, a, b)
Strength Reduction: Example

1: \(r_1 = 0 \)

2: \(r_2 = 0 \)

Preheader:

3: branch \(r_2 \geq N \)

10: \(r_1 = r_1 + r_5 \)

4: \(r_3 = r_2 \times 4 \)

5: \(r_4 = r_3 + a \)

6: \(r_5 = M[r_4] \)

7: \(r_1 = r_1 + r_5 \)

8: \(r_2 = r_2 + 1 \)

9: jump
Strength Reduction: Example

1: \(r_1 = 0 \)

2: \(r_2 = 0 \)

Preheader:
- \(r_{33} = r_2 \times 4 \)
- \(r_{33} = r_{33} + 0 \)
- \(r_{44} = r_2 \times 4 \)
- \(r_{44} = r_{44} + a \)

3: branch \(r_2 \geq N \)

4: \(r_3 = r_{33} \)

5: \(r_4 = r_{44} \)

6: \(r_5 = M[r_4] \)

7: \(r_1 = r_1 + r_5 \)

8: \(r_2 = r_2 + 1 \)

8': \(r_{33} = r_{33} + 4 \)

8'': \(r_{44} = r_{44} + 4 \)

9: jump
Induction Variable Elimination

After strength reduction has been performed:

- some induction variables are only used in comparisons with loop-invariant values.
- some induction variables are *useless*
 - dead on all loop exits, used only in definition of itself.
 - dead code elimination will not remove useless induction variables.
Induction Variable Elimination: Example

1: \(r_1 = 0 \)
2: \(r_2 = 0 \)

Preheader:

3: \(r_{33} = 0 \)
 \(r_44 = a \)
4: \(\text{branch } r_2 \geq N \)

5: \(r_4 = r_44 \)
6: \(r_5 = M[r_4] \)
7: \(r_1 = r_1 + r_5 \)
8: \(r_2 = r_2 + 1 \)
8': \(r_{33} = r_{33} + 4 \)
8'': \(r_44 = r_44 + 4 \)
9: \(\text{jump} \)

Computer Science 320
Prof. David Walker
Induction Variable Elimination

- Variable \(k \) is *almost useless* if it is only used in comparisons with loop-invariant values, and there exists another induction variable \(t \) in the same family as \(k \) that is not useless.

- Replace \(k \) in comparison with \(t \)
 \[\rightarrow k \text{ is useless} \]
Induction Variable Elimination: Example

1: \(r1 = 0 \)
2: \(r2 = 0 \)

Preheader:

\(r44 = a \)

3: branch \(r2 \geq N \)

5: \(r4 = r44 \)

6: \(r5 = M[r4] \)

7: \(r1 = r1 + r5 \)

8: \(r2 = r2 + 1 \)

8': \(r44 = r44 + 4 \)

9: jump
Induction Variable Elimination: Example

1: \(r1 = 0 \)

2: \(r2 = 0 \)

Preheader:

- \(r44 = a \)
- \(r100 = 4 \times N \)
- \(r101 = r100 + a \)

3: \(\text{branch } r44 \geq r101 \)

10:

5: \(r4 = r44 \)

6: \(r5 = M[r4] \)

7: \(r1 = r1 + r5 \)

8: \(r2 = r2 + 1 \)

8\': \(r44 = r44 + 4 \)

9: \(\text{jump} \)