
Iterative Dataflow Analysis
� Many dataflow analyses have the same structure.

� They “interpret” the statements in program, collecting information as they proceed.

� Ideally, we would like to do “perfect interpretation,” collecting exact information
about how the program executes.

� We can’t because we don’t have the program inputs at compile time, and we aren’t
going to make our compiler run the program to completion during compilation–that
just takes too long (why the hell do you think we are compiling the program in the
first place?)

Computer Science 320
Prof. David Walker

- 1 -



Iterative Dataflow Analysis
� Instead of interpreting the program exactly, we approximate the program behavior

as we execute.

� This is called Abstract Interpretation and it is often a useful way of understanding
different program analyses.

� Analysis via abstract interpretation is often defined by:

– A transfer function — ���� — that simulates/approximates execution of instruc-
tion � on its inputs

– A joining operator — � — since you don’t know which branch of an if state-
ment (for example) will be taken at compile time, you need to interpret both and
combine the results.

– A direction — FORWARD or REVERSE — In the reverse direction, we are
interpreting the program backwards.

Computer Science 320
Prof. David Walker

- 2 -



Iterative Dataflow Analysis
To code up a particular analysis we need to take the following steps.

� First, we decide what sort of information we are interested in processing. This is
going to determine the transfer function and the joining operator, as well as any
initial conditions that need to be set up.

� Second, we decide on the appropriate direction for the analysis.

� In the forward direction, we:

– Need to get the inputs from the previous instructions

– Since we don’t know exactly which instruction preceeded the current one, we use
the join over all possible predecessors.

– Once we have the input, we apply the transfer function, which generates an out-
put.

– Iterate the process.

– Mathematically:

�� ��� � ������������� ���

��� ��� � ����

Computer Science 320
Prof. David Walker

- 3 -



� In the backward direction, we:

– Need get the outputs from the successor instructions.

– Use the join since there are many successors.

– Use the transfer function to get the inputs.

– Iterate the process.

– For reverse analyses:

��� ��� � ����	

����� �	�

�� ��� � ����

Computer Science 320
Prof. David Walker

- 4 -



Example: Live Variable Analysis

From last time, Live Variable Analysis:

� A register 
 is live on edge � if there exists a path from � to a use of 
 that does not
go through a definition of 
.

� ����� - the set of registers that � uses.

� �� ��� - the set of registers that � defines.

� Transfer function ���� � ����� � ���� ������ ����

� Join (�) is set union

� Direction: REVERSE

Computer Science 320
Prof. David Walker

- 5 -



Live Variable Application 1: Register Allocation

Register Allocation:

1. Perform live variable analysis.

2. Build interference graph.

3. Color interference graph with real registers.

We’ll be talking more about register allocation later, so I won’t get into it now.

Computer Science 320
Prof. David Walker

- 6 -



Live Variable Application 2: Dead Code Elimination
� Given statement 	 with a definition and no side-effects:

r1 = r2 + r3, r1 = M[r2], or r1 = r2

If r1 is not live at the end of 	, then the 	 is dead

� Dead statements can be deleted.

� Some statements 	 do not define live variables, but cannot be consider dead because
they have side effects.

r1 = call F, M[r1] = r2

Even if r1 is not live at the end of 	, it is not dead.

Computer Science 320
Prof. David Walker

- 7 -



Reaching Definition Analysis

Determines whether definition of register 
 directly affects use of 
 at some point in pro-
gram.

Reaching Definition Definitions:

� Definition of � (of 
) reaches statement � if a path of CFG edges exists from d to u
that does not pass through a definition of 
.

Analysis set-up:

� Label every temporary definition with a unique definition id

� Eg: � � 
 � � � �

� Eg: � � 
 � � ���

� These instructions generate definition �

� These instructions also kill any previous definitions of register 
.

Computer Science 320
Prof. David Walker

- 8 -



Reaching Definition Analysis

Reaching Definition Analysis Equation:

� �� ��� - the set of definition id’s that � creates.

� ������� - the set of definition id’s that � kills.

– ���	�
� - set of all definition id’s of register 
.

� Transfer function ���� � �� ��� � ��� ������������

� Join (�): Union

� Direction: FORWARD

�� ��� � ������������� ���

��� ��� � �� ��� � ��� ������������

Computer Science 320
Prof. David Walker

- 9 -



Reaching Definition Analysis Example

4:

5:

1:

2:

3:

r1 = 5

r3 = 1

r3 = r3 + 1

branch r3 > r1, 6:

goto 3:

6:

7:

8:

r4 = 10

r1 = r1 + r4

M[r3] = r1

Node �� ���� IN OUT IN OUT IN OUT
1
2
3
4
5
6
7
8

Computer Science 320
Prof. David Walker

- 10 -



Reaching Definition Application 1: Constant Propagation
� Given Statement �: a = c where c is constant

� Given Statement �: t = a op b

� If statement � reach � and no other definition of a reaches �, then replace � by t =
c op b.

4:

5:

1:

2:

3:

r1 = 5

r3 = 1

r3 = r3 + 1

branch r3 > r1, 6:

goto 3:

6:

7:

8:

r4 = 10

r1 = r1 + r4

M[r3] = r1

Statements 1 and 6 are dead.
Computer Science 320
Prof. David Walker

- 11 -



Constant Folding
� Given Statement �: t = a op b

� If a and b are constant, compute c as a op b, replace � by t = c

4:

5:

2:

3:

r3 = 1

r3 = r3 + 1

goto 3:

7:

8: M[r3] = r1

branch r3 > 5, 6:

r1 = 5 + 10

Computer Science 320
Prof. David Walker

- 12 -



Common Subexpression Elimination

If x op y is computed multiple times, common subexpression elimination (CSE) at-
tempts to eliminate some of the duplicate computations.

4:

5:

1:

2:

3:

r1 = M[A]

r2 = r1 + 10

r3 = M[A]

r4 = r3 + 1

r5 = r4 + r2

Need to track expression propagation � available expression analysis

Computer Science 320
Prof. David Walker

- 13 -



Definitions

Definitions:

� Expression x op y is available at CFG node � if, on every path from CFG entry
node to �, x op y is computed at least once, and neither x nor y are defined since
last occurrence of x op y on path.

� Can compute set of expressions available at each statement using system of dataflow
equations.

� Statement r1 = M[r2]:

– generates expression M[r2].

– kills all expressions containing r1.

� Statement r1 = r2 + r3:

– generates expression r2 + r3.

– kills all expressions containing r1.

Computer Science 320
Prof. David Walker

- 14 -



Available Expression Analysis

Available Expression Analysis:

� ����
� - set of all expressions containing 
.

� �� ��� - the set of all expressions generated by �.

� ������� - the set of all expressions that � kills - ������.

� Transfer function ���� � �� ��� � ��� ������������

� Join operator (�): set intersection

– Use of union as join, required initialization of �� and ��� sets to �.

– Use of intersection, requires initialization of �� and ��� sets to � (except for

�� of entry node).

� Direction: FORWARD

�� ��� � ������������� ���

��� ��� � �� ��� � ��� ������������

Computer Science 320
Prof. David Walker

- 15 -



4:

5:

1:

2:

3:

r1 = M[A]

r2 = M[B]

r3 = r1 + r2

r4 = r3 + r1

branch r3 > r2

r1 = r1 + 12

r4 = r1 + r2

r5 = r1 + r2

M[r5] = r4

6:

7:

8:

9:

Node ��� ���� IN OUT
1 M[A] r1+r2, r1+12, r3+r1 - �

2 M[B] r1+r2 � �

3 r1+r2 r3+r1 � �

4 r3+r1 � �

5 � �

6 r1+r2, r3+r1, r1+12 � �

7 r1+r2 � �

8 r1+r2 M[r5] � �

9 M[A], M[B], M[r5] � �

Node ��� ���� IN OUT
1 1 378, 6, 4 - �

2 2 378 � �

3 378 4 � �

4 4 � �

5 � �

6 378, 4, 6 � �

7 378 � �

8 378 9 � �

9 1, 2, 9 � �

Computer Science 320
Prof. David Walker

- 16 -



Common Subexpression Elimination

Given statement 	: t = x op y:
If expression x op y is available at beginning of node 	 then:

1. starting from node 	, traverse CFG edges backwards to find last occurrence of
x op y on each path from entry node to 	.

2. create new temporary w.

3. for each statement 	�: v = x op y found in (1), replace 	� by:
w = x op y
v = w

4. replace statement 	 by: t = w

Computer Science 320
Prof. David Walker

- 17 -



Common Subexpression Elimination - Example

4:

5:

1:

2:

3:

r1 = M[A]

r2 = M[B]

r3 = r1 + r2

r4 = r3 + r1

branch r3 > r2

r1 = r1 + 12

r4 = r1 + r2

r5 = r1 + r2

M[r5] = r4

6:

7:

8:

9:

Computer Science 320
Prof. David Walker

- 18 -



Copy Propagation
� Given statement �: a = z (a and z are both register temps) � � is a copy state-

ment.

� Given statement �: t = a op b.

� If � reaches �, no other definition of a reaches �, and no definition of z exists on
any path from � to �, then replace � by: t = z op b.

Computer Science 320
Prof. David Walker

- 19 -



M[r5] = r4

r5 = r998:

9:

1:

2:

3:

r1 = M[A]

r2 = M[B]

r99 = r1 + r2

3’: r3 = r99

4:

5:

r4 = r3 + r1

branch r3 > r2

r1 = r1 + 12

r99 = r1 + r2

r4 = r99

6:

7:

7’:

Computer Science 320
Prof. David Walker

- 20 -



Sets
� Sets have been used in all the dataflow and control flow analyses presented.

� There are at least 3 representations which can be used:

– Bit-Arrays:

� Each potential member is stored in a bit of some array.

� Insertion, Member is ����.

� Assuming set size of � and word size of � - Union (OR) and Intersection
(AND) is ����� �.

– Sorted Lists/Trees:

� Each member is stored in a list element.

� Insertion, Member, Union, Intersection is ��	����. (Insertion, Member is

��	
�� 	���� in trees.)

� Better for sparse sets than bit-arrays.
– Hybrids: - Trees with bit-arrays

� Use Tree to hold elements containing bit-arrays.

� Union, Intersection is ��	����� �. Insertion, Member is ��	
�� 	����� �.
Computer Science 320
Prof. David Walker

- 21 -



Basic Block Level Analysis
� To improve performance of dataflow, process at basic block level.

– Represent the entire basic block by a single super-instruction which has any num-
ber of destinations and sources.

– Run dataflow at basic block level.

– Expand result to the instruction level.

Computer Science 320
Prof. David Walker

- 22 -



The Phase Ordering Problem
� One of the tricky problems engineering compilers is how to order optimizations: the

phase ordering problem.

� Hard because optimizations interact:

– Constant folding creates opportunities for constant propagation.

– Constant propagation creates opportunities for constant folding.

– Both create opportunities for dead code elimination and common subexpression
elimination.

– Other optimizations such as function inlining, create further opportunities for
almost all other optimizations

� Exam problem: Should Optimization X precede optimization Y? Explain.

� Often times, compilers apply apply a series of optimizations several times.

Computer Science 320
Prof. David Walker

- 23 -


