Analysis and Transformation

• Analysis:
 – Control Flow Analysis
 – Dataflow Analysis

• Transformation:
 – Register Allocation
 – Optimization
 * Machine dependent/independent
 * Local/Global/Interprocedural
 * Acyclic/Cyclic
 – Scheduling
Dataflow Analysis Motivation

Constant Propagation and Dead Code Elimination:

\[r_2 = r_1 + 5 \]
\[r_1 = 4 \]
\[r_2 = r_1 + 5 \]
\[r_2 = 9 \]

Needs dominator, liveness, and reaching definition information.
Dataflow Analysis Motivation

Register Allocation:

- Infinite number of registers (virtual registers) must be mapped to a limited number of real registers.

- Pseudo-assembly must be examined by *live variable analysis* to determine which virtual registers contain values which may be used later.

- Virtual registers which are not simultaneously *live* may be mapped onto the same real register.

```
1  r2 = r1 + 1

2  r3 = M[r2]

3  r4 = r3 + 4

4  LOAD r5 = M[r2 + r4]
```
Dataflow Analysis

Three types we will cover:

- Live Variable
 - Live range for register allocation
 - Scheduling
 - Dead code elimination

- Reaching Definitions
 - Constant propagation
 - Constant folding
 - Copy propagation

- Available expressions
 - Common subexpression elimination
Iterative Dataflow Analysis Framework

• These dataflow analyses are all very similar → define a framework.

• Specify:
 – Two set definitions - $A[n]$ and $B[n]$
 – A transfer function - $f (A, B, IN/OUT)$
 – A confluence operator - \lor.
 – A direction - FORWARD or REVERSE.

• For forward analyses:

 $IN[n] = \lor_{p \in PRED[n]} OUT[p]$

 $OUT[n] = f (A, B, IN)$

• For reverse analyses:

 $OUT[n] = \lor_{s \in SUCC[n]} IN[s]$

 $IN[n] = f (A, B, OUT)$
Definitions

Control Flow Definitions:

- CFG node has *out-edges* leading to *successor nodes*.
- CFG node has *in-edges* coming from *predecessor nodes*.
- For each CFG node n, $PRED[n] = \text{set of all predecessors of } n$.
- For each CFG node n, $SUCCE[n] = \text{set of all successors of } n$.
Iterative Dataflow Analysis Framework

- Iterative dataflow analysis equations are applied in an iterative fashion until IN and OUT sets do not change.

- Typically done in (FORWARD or REVERSE) topological sort order of CFG for efficiency.

- IN and OUT sets initialized to \emptyset.

For each node n {
 $IN[n] = OUT[n] = \{}$;
}

Repeat {
 For each node n in forward/reverse topological order {
 $IN'[n] = IN[n]$;
 $OUT'[n] = OUT[n]$;
 $IN[n], OUT[n] = (Equations)$;
 }
} until $IN'[n] = IN[n]$ and $OUT'[n] = OUT[n]$ for all n.
Definitions

Liveness Definitions:

• A source (RHS) register t is a use of t.

• A destination (LHS) register t is a definition of t.

• A register t is live on edge e if there exists a path from e to a use of t that does not go through a definition of t.

• Register t is live-in at CFG node n if t is live on any in-edge of n.

• Register t is live-out at CFG node n if t is live on any out-edge of n.
Live Variable Analysis

Live Variable Analysis Equation:

- Set definition \((A[n])\): \(USE[n]\) - the set of registers that \(n\) uses.
- Set definition \((B[n])\): \(DEF[n]\) - the set of registers that \(n\) defines.
- Transfer function \((f(A, B, OUT))\): \(USE[n] \cup (OUT[n] - DEF[n])\)
- Confluence operator \((\lor)\): \(\lor\)
- Direction: REVERSE

\[
OUT[n] = \bigcup_{s \in SUCC[n]} IN[s] \\
IN[n] = USE[n] \cup (OUT[n] - DEF[n])
\]
Live Variable Analysis Example

1: \(r_1 = 0 \)
2: \(r_2 = r_1 + 1 \)
3: \(r_3 = r_3 + r_2 \)
4: \(r_1 = r_2 * 2 \)
5: branch \(r_1 < 10, \text{L1} \)

6: return \(r_3 \)

<table>
<thead>
<tr>
<th>Node</th>
<th>USE</th>
<th>DEF</th>
<th>OUT</th>
<th>IN</th>
<th>OUT</th>
<th>IN</th>
<th>OUT</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Live Variable Application 1: Register Allocation

Register Allocation:

1. Perform live variable analysis.

2. Build *interference graph*.

3. Color interference graph with real registers.
Interference Graph

- Node t corresponds to virtual register t.
- Edge $\langle t_i, t_j \rangle$ exists if registers t_i, t_j have overlapping live ranges.
- For some node n, if $DEF[n] = \{a\}$ and $OUT[n] = \{b_1, b_2, ... b_k\}$, then add interference edges: $\langle a, b_1 \rangle, \langle a, b_2 \rangle, \langle a, b_k \rangle$

Interference Graph For Example:

<table>
<thead>
<tr>
<th>Node</th>
<th>DEF</th>
<th>OUT</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r1</td>
<td>r1,r3</td>
<td>r3</td>
</tr>
<tr>
<td>2</td>
<td>r2</td>
<td>r2,r3</td>
<td>r1,r3</td>
</tr>
<tr>
<td>3</td>
<td>r3</td>
<td>r2,r3</td>
<td>r2,r3</td>
</tr>
<tr>
<td>4</td>
<td>r1</td>
<td>r1,r3</td>
<td>r2,r3</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>r1, r3</td>
<td>r1,r3</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td></td>
<td>r3</td>
</tr>
</tbody>
</table>

Virtual registers r1 and r2 may be mapped to same real registers.
Live Variable Application 2: Dead Code Elimination

- Given statement s with a definition and no side-effects:

 \[
 r_1 = r_2 + r_3, \quad r_1 = M[r_2], \quad \text{or} \quad r_1 = r_2
 \]

 If r_1 is *not* live at the end of s, then the s is *dead*

- Dead statements can be deleted.

- Given statement s without a definition or side-effects:

 \[
 r_1 = \text{call FUN_NAME}, \quad M[r_1] = r_2
 \]

 Even if r_1 is not live at the end of s, it is not dead.

Example:

\[
\begin{align*}
 & r_1 = r_2 + 1 \\
 & r_2 = r_2 + 2 \\
 & r_1 = r_2 + 3 \\
 & M[r_1] = r_2
\end{align*}
\]
Reaching Definition Analysis

Determines whether definition of register t directly affects use of t at some point in program.

Reaching Definition Definitions:

- *unambiguous* - instruction explicitly defines register t.
- *ambiguous* - instruction may or may not define register t.
 - Global variables in a function call.
 - No ambiguous definitions in tiger since all globals are stored in memory.
- Definition of d (of t) *reaches* statement u if a path of CFG edges exists from d to u that does not pass through an unambiguous definition of t.
- One unambiguous and many ambiguous definitions of t may reach u on a single path.
Reaching Definition Analysis

Reaching Definition Analysis Equation:

- Set definition ($B[n]$): $KILL[n]$ - the set of definition id’s that n kills.
 - $defs(t)$ - set of all definition id’s of register t.
- Transfer function ($f(A, B, IN)$): $GEN[n] \cup (IN[n] - KILL[n])$
- Confluence operator (\lor): \cup
- Direction: FORWARD

$$IN[n] = \bigcup_{p \in \text{PRE}[n]} OUT[p]$$

$$OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$$
Reaching Definition Analysis Example

1: \(r_1 = 5 \)
2: \(r_3 = 1 \)
3: \(\text{branch } r_3 > r_1, 6: \)
4: \(r_3 = r_3 + 1 \)
5: \(\text{goto } 3: \)
6: \(r_4 = 10 \)
7: \(r_1 = r_1 + r_4 \)
8: \(M[r_3] = r_1 \)

<table>
<thead>
<tr>
<th>Node</th>
<th>GEN</th>
<th>KILL</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reaching Definition Application 1: Constant Propagation

- Given Statement d: $a = c$ where a is constant
- Given Statement u: $t = a \ op \ b$
- If statement d reach u and no other definition of a reaches u, then replace u by $t = c \ op \ b$.

Statements 1 and 6 are dead.
Constant Folding

- Given Statement \(d: t = a \ op \ b \)
- If \(a \) and \(b \) are constant, compute \(c \) as \(a \ op \ b \), replace \(d \) by \(t = c \)