Analysis and Transformation

- Analysis:
 - Control Flow Analysis
 - Dataflow Analysis
- Transformation:
 - Register Allocation
 - Optimization
 - * Machine dependent/independent
 - * Local/Global/Interprocedural
 - * Acyclic/Cyclic
 - Scheduling

Dataflow Analysis Motivation

Constant Propagation and Dead Code Elimination:

Needs dominator, liveness, and reaching definition information.

8

Dataflow Analysis Motivation

Register Allocation:

- Infinite number of registers (virtual registers) must be mapped to a limited number of real registers.
- Pseudo-assembly must be examined by *live variable analysis* to determine which virtual registers contain values which may be used later.
- Virtual registers which are not simultaneously *live* may be mapped onto the same real register.
- $1 r^2 = r^1 + 1$
- 2 r3 = M[r2]
- 3 r4 = r3 + 4
- 4 LOAD r5 = M[r2 + r4]

Dataflow Analysis

Three types we will cover:

- Live Variable
 - Live range for register allocation
 - Scheduling
 - Dead code elimination
- Reaching Definitions
 - Constant propagation
 - Constant folding
 - Copy propagation
- Available expressions
 - Common subexpression elimination

Iterative Dataflow Analysis Framework

• These dataflow analyses are all very similar \rightarrow define a framework.

• Specify:

- Two set definitions A[n] and B[n]
- A transfer function f(A, B, IN/OUT)
- A confluence operator \lor .
- A *direction* FORWARD or REVERSE.
- For forward analyses:

$$IN[n] = \lor_{p \in PRED[n]} OUT[p]$$
$$OUT[n] = f(A, B, IN)$$

• For reverse analyses:

$$OUT[n] = \bigvee_{s \in SUCC[n]} IN[s]$$

$$IN[n] = f\left(A,B,OUT\right)$$

Definitions

Control Flow Definitions:

- CFG node has *out-edges* leading to *successor nodes*.
- CFG node has *in-edges* coming from *predecessor nodes*.
- For each CFG node n, PRED[n] = set of all predecessors of <math>n.
- For each CFG node n, SUCC[n] = set of all successors of <math>n.

Iterative Dataflow Analysis Framework

- Iterative dataflow analysis equations are applied in an iterative fashion until IN and OUT sets do not change.
- Typically done in (FORWARD or REVERSE) topological sort order of CFG for efficiency.
- IN and OUT sets initialized to \emptyset .

```
For each node n {
    IN[n] = OUT[n] = {};
}
Repeat {
    For each node n in forward/reverse topological order {
        IN'[n] = IN[n];
        OUT'[n] = OUT[n];
        IN[n], OUT[n] = (Equations);
    }
} until IN'[n] = IN[n] and OUT'[n] = OUT[n] for all n.
```

Definitions

Liveness Definitions:

- A source (RHS) register t is a *use* of t.
- A destination (LHS) register t is a *definition* of t.
- A register t is *live* on edge e if there exists a path from e to a use of t that does not go through a definition of t.
- Register t is *live-in* at CFG node n if t is live on any in-edge of n.
- Register t is *live-out* at CFG node n if t is live on any out-edge of n.

Live Variable Analysis

Live Variable Analysis Equation:

- Set definition (A[n]): USE[n] the set of registers that n uses.
- Set definition (B[n]): DEF[n] the set of registers that n defines.
- Transfer function (f(A, B, OUT)): $USE[n] \cup (OUT[n] DEF[n])$
- Confluence operator (\lor): \cup
- Direction: REVERSE

 $OUT[n] = \bigcup_{s \in SUCC[n]} IN[s]$ $IN[n] = USE[n] \cup (OUT[n] - DEF[n])$

Live Variable Analysis Example

Live Variable Application 1: Register Allocation

Register Allocation:

- 1. Perform live variable analysis.
- 2. Build *interference graph*.
- 3. Color interference graph with real registers.

Interference Graph

- Node t corresponds to virtual register t.
- Edge $\langle t_i, t_j \rangle$ exists if registers t_i, t_j have overlapping live ranges.
- For some node n, if $DEF[n] = \{a\}$ and $OUT[n] = \{b_1, b_2, ..., b_k\}$, then add interference edges: $\langle a, b_1 \rangle, \langle a, b_2 \rangle, \langle a, b_k \rangle$

Interference Graph For Example: Node | DEF | OUT IN

iouc	D D I	001	
1	r1	r1,r3	r3
2	r2	r2,r3	r1,r3
3	r3	r2,r3	r2,r3
4	r1	r1,r3	r2,r3
5	-	r1, r3	r1,r3
6	-		r3

Virtual registers r1 and r2 may be mapped to same real registers.

Live Variable Application 2: Dead Code Elimination

• Given statement s with a definition and no side-effects:

r1 = r2 + r3, r1 = M[r2], or r1 = r2

If r1 is *not* live at the end of *s*, then the *s* is *dead*

- Dead statements can be deleted.
- Given statement s without a definition or side-effects:

$$r1 = call FUN_NAME, M[r1] = r2$$

Even if r1 is not live at the end of s, it is not dead.

Example:

r1 = r2 + 1 r2 = r2 + 2 r1 = r2 + 3 M[r1] = r2

Reaching Definition Analysis

Determines whether definition of register t directly affects use of t at some point in program.

Reaching Definition Definitions:

- *unambiguous* instruction explicitly defines register *t*.
- *ambiguous* instruction may or may not define register t.
 - Global variables in a function call.
 - No ambiguous definitions in tiger since all globals are stored in memory.
- Definition of d (of t) reaches statement u if a path of CFG edges exists from d to u that does not pass through an unambiguous definition of t.
- One unambiguous and many ambiguous definitions of t may reach u on a single path.

Reaching Definition Analysis

Reaching Definition Analysis Equation:

- Set definition (A[n]): GEN[n] the set of *definition id's* that n creates.
- Set definition (B[n]): KILL[n] the set of *definition id's* that n kills.

- defs(t) - set of all *definition id's* of register t.

- Transfer function (f(A, B, IN)): $GEN[n] \cup (IN[n] KILL[n])$
- Confluence operator (\lor): \cup
- Direction: FORWARD

$$IN[n] = \bigcup_{p \in PRED[n]} OUT[p]$$
$$OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$$

Reaching Definition Analysis Example

Reaching Definition Application 1: Constant Propagation

- Given Statement d: a = c where a is constant
- Given Statement u: t = a op b
- If statement d reach u and no other definition of a reaches u, then replace u by t = c op b.

Statements 1 and 6 are dead.

Computer Science 320 Prof. David Walker

Constant Folding

- Given Statement d: t = a op b
- If a and b are constant, compute c as a op b, replace d by t = c

