
Analysis and Transformation
� Analysis:

– Control Flow Analysis

– Dataflow Analysis

� Transformation:

– Register Allocation

– Optimization

� Machine dependent/independent

� Local/Global/Interprocedural

� Acyclic/Cyclic

– Scheduling

Computer Science 320
Prof. David Walker

- 1 -



Dataflow Analysis Motivation

Constant Propagation and Dead Code Elimination:

r2 = r1 + 5

r1 = 4

r1 = 4

r2 = r1 + 5 r2 = 9

r2 = 9

Needs dominator, liveness, and reaching definition information.

Computer Science 320
Prof. David Walker

- 2 -



Dataflow Analysis Motivation

Register Allocation:

� Infinite number of registers (virtual registers) must be mapped to a limited number
of real registers.

� Pseudo-assembly must be examined by live variable analysis to determine which
virtual registers contain values which may be used later.

� Virtual registers which are not simultaneously live may be mapped onto the same
real register.

1 r2 = r1 + 1

2 r3 = M[r2]

3 r4 = r3 + 4

4 LOAD r5 = M[r2 + r4]

Computer Science 320
Prof. David Walker

- 3 -



Dataflow Analysis

Three types we will cover:

� Live Variable

– Live range for register allocation

– Scheduling

– Dead code elimination

� Reaching Definitions

– Constant propagation

– Constant folding

– Copy propagation

� Available expressions

– Common subexpression elimination

Computer Science 320
Prof. David Walker

- 4 -



Iterative Dataflow Analysis Framework
� These dataflow analyses are all very similar � define a framework.

� Specify:

– Two set definitions - ���� and ����

– A transfer function - � ����� ���	
� �

– A confluence operator - �.

– A direction - FORWARD or REVERSE.

� For forward analyses:
�� ��� � ����������	
� ���

	
� ��� � � ����� ���

� For reverse analyses:

	
� ��� � ����	

����� �
�

�� ��� � � �����	
� �

Computer Science 320
Prof. David Walker

- 5 -



Definitions

Control Flow Definitions:

� CFG node has out-edges leading to successor nodes.

� CFG node has in-edges coming from predecessor nodes.

� For each CFG node �, ������� = set of all predecessors of �.

� For each CFG node �, �
����� = set of all successors of �.

Computer Science 320
Prof. David Walker

- 6 -



Iterative Dataflow Analysis Framework
� Iterative dataflow analysis equations are applied in an iterative fashion until �� and

	
� sets do not change.

� Typically done in (FORWARD or REVERSE) topological sort order of CFG for
efficiency.

� �� and 	
� sets initialized to �.

For each node n {
IN[n] = OUT[n] = {};

}
Repeat {

For each node n in forward/reverse topological order {
IN’[n] = IN[n];
OUT’[n] = OUT[n];
IN[n], OUT[n] = (Equations);

}
} until IN’[n] = IN[n] and OUT’[n] = OUT[n] for all n.

Computer Science 320
Prof. David Walker

- 7 -



Definitions

Liveness Definitions:

� A source (RHS) register � is a use of �.

� A destination (LHS) register � is a definition of �.

� A register � is live on edge � if there exists a path from � to a use of � that does not
go through a definition of �.

� Register � is live-in at CFG node � if � is live on any in-edge of �.

� Register � is live-out at CFG node � if � is live on any out-edge of �.

Computer Science 320
Prof. David Walker

- 8 -



Live Variable Analysis

Live Variable Analysis Equation:

� Set definition (����): 
����� - the set of registers that � uses.

� Set definition (����): ��� ��� - the set of registers that � defines.

� Transfer function (������	
� �): 
����� � �	
� ������� ����

� Confluence operator (�): �

� Direction: REVERSE
	
� ��� � ����	

����� �
�

�� ��� � 
����� � �	
� ������� ����
Computer Science 320
Prof. David Walker

- 9 -



Live Variable Analysis Example
r1 = 0

r2 = r1 + 1

r3 = r3 + r2

r1 = r2 * 2

branch r1 < 10, L1

return r36:

1:

2:

3:

4:

5:

Node 
�� ��� OUT IN OUT IN OUT IN
1
2
3
4
5
6

Computer Science 320
Prof. David Walker

- 10 -



Live Variable Application 1: Register Allocation

Register Allocation:

1. Perform live variable analysis.

2. Build interference graph.

3. Color interference graph with real registers.

Computer Science 320
Prof. David Walker

- 11 -



Interference Graph
� Node � corresponds to virtual register �.

� Edge ���� ��	 exists if registers ��� �� have overlapping live ranges.

� For some node �, if ��� ��� � 
�� and 	
� ��� � 
��� ��� ����
�, then add interfer-
ence edges: ��� ��	 � ��� ��	 � ��� �
	

Interference Graph For Example:
Node ��� OUT IN

1 r1 r1,r3 r3
2 r2 r2,r3 r1,r3
3 r3 r2,r3 r2,r3
4 r1 r1,r3 r2,r3
5 - r1, r3 r1,r3
6 - r3

Virtual registers r1 and r2 may be mapped to same real registers.
Computer Science 320
Prof. David Walker

- 12 -



Live Variable Application 2: Dead Code Elimination
� Given statement 
 with a definition and no side-effects:

r1 = r2 + r3, r1 = M[r2], or r1 = r2

If r1 is not live at the end of 
, then the 
 is dead

� Dead statements can be deleted.

� Given statement 
 without a definition or side-effects:

r1 = call FUN_NAME, M[r1] = r2

Even if r1 is not live at the end of 
, it is not dead.

Example:

r1 = r2 + 1
r2 = r2 + 2
r1 = r2 + 3
M[r1] = r2

Computer Science 320
Prof. David Walker

- 13 -



Reaching Definition Analysis

Determines whether definition of register � directly affects use of � at some point in pro-
gram.

Reaching Definition Definitions:

� unambiguous - instruction explicitly defines register �.

� ambiguous - instruction may or may not define register �.

– Global variables in a function call.

– No ambiguous definitions in tiger since all globals are stored in memory.

� Definition of � (of �) reaches statement � if a path of CFG edges exists from d to u
that does not pass through an unambiguous definition of �.

� One unambiguous and many ambiguous definitions of � may reach � on a single
path.

Computer Science 320
Prof. David Walker

- 14 -



Reaching Definition Analysis

Reaching Definition Analysis Equation:

� Set definition (����): ��� ��� - the set of definition id’s that � creates.

� Set definition (����): ������� - the set of definition id’s that � kills.

– ���
��� - set of all definition id’s of register �.

� Transfer function (������ ���): ��� ��� � ��� ������������

� Confluence operator (�): �

� Direction: FORWARD

�� ��� � ����������	
� ���

	
� ��� � ��� ��� � ��� ������������

Computer Science 320
Prof. David Walker

- 15 -



Reaching Definition Analysis Example

4:

5:

1:

2:

3:

r1 = 5

r3 = 1

r3 = r3 + 1

branch r3 > r1, 6:

goto 3:

6:

7:

8:

r4 = 10

r1 = r1 + r4

M[r3] = r1

Node ��� ���� IN OUT IN OUT IN OUT
1
2
3
4
5
6
7
8

Computer Science 320
Prof. David Walker

- 16 -



Reaching Definition Application 1: Constant Propagation
� Given Statement �: a = c where a is constant

� Given Statement �: t = a op b

� If statement � reach � and no other definition of a reaches �, then replace � by t =
c op b.

4:

5:

1:

2:

3:

r1 = 5

r3 = 1

r3 = r3 + 1

branch r3 > r1, 6:

goto 3:

6:

7:

8:

r4 = 10

r1 = r1 + r4

M[r3] = r1

Statements 1 and 6 are dead.
Computer Science 320
Prof. David Walker

- 17 -



Constant Folding
� Given Statement �: t = a op b

� If a and b are constant, compute c as a op b, replace � by t = c

4:

5:

2:

3:

r3 = 1

r3 = r3 + 1

goto 3:

7:

8: M[r3] = r1

branch r3 > 5, 6:

r1 = 5 + 10

Computer Science 320
Prof. David Walker

- 18 -


