
Strings
� All string operations performed by run-time system functions.

� In Tiger, C, string literal is constant address of memory segment initialized to char-
acters in string.

– In assembly, label used to refer to this constant address.

– Label definition includes directives that reserve and initialize memory.

‘‘foo’’:

1. Translate module creates new label �.

2. Tree.NAME(�) returned: used to refer to string.

3. String fragment “foo” created with label �. Fragment is handed to code emitter,
which emits directives to initialize memory with the characters of “foo” at address �.

Computer Science 320
Prof. David Walker

- 1 -

Strings

String Representation:

Pascal fixed-length character arrays, padded with blanks.

C variable-length character sequences, terminated by ‘/000’

Tiger any 8-bit code allowed, including ‘/000’

f
o
o

3label:
"foo"

Computer Science 320
Prof. David Walker

- 2 -

Strings
� Need to invoke run-time system functions

– string operations

– string memory allocation

� Frame.externalCall: string * Tree.exp -> Tree.exp

Frame.externalCall("stringEqual", [s1, s2])

– Implementation takes into account calling conventions of external functions.

– Easiest implementation:

fun externalCall(s, args) =
T.CALL(T.NAME(Temp.namedlabel(s)), args)

Computer Science 320
Prof. David Walker

- 3 -

Array Creation

type intarray = array of int
var a:intarray := intarray[10] of 7

Call run-time system function initArray to malloc and initialize array.

Frame.externalCall("initArray", [CONST(10), CONST(7)])

Computer Science 320
Prof. David Walker

- 4 -

Record Creation

type rectype = { f1:int, f2:int, f3:int }
var a:rectype := rectype{f1 = 4, f2 = 5, f3 = 6}

ESEQ(SEQ(MOVE(TEMP(result),
Frame.externalCall("allocRecord",

[CONST(12)])),
SEQ(MOVE(BINOP(PLUS, TEMP(result), CONST(0*w)),

CONST(4)),
SEQ(MOVE(BINOP(PLUS, TEMP(result), CONST(1*w)),

CONST(5)),
SEQ(MOVE(BINOP(PLUS, TEMP(result), CONST(2*w)),

CONST(6)))))),
TEMP(result))

� allocRecord is an external function which allocates space and returns address.

� result is address returned by allocRecord.

Computer Science 320
Prof. David Walker

- 5 -

While Loops

One layout of a while loop:

while CONDITION do BODY

test:
if not(CONDITION) goto done
BODY
goto test

done:

A break statement within body is a JUMP to label done.
transExp and transDec need formal parameter “break”:

� passed done label of nearest enclosing loop

� needed to translate breaks into appropriate jumps

� when translating while loop, transExp recursively called with loop done label in
order to correctly translate body.

Computer Science 320
Prof. David Walker

- 6 -

For Loops

Basic idea: Rewrite AST into let/while AST; call transExp on result.

for i := lo to hi do
body

Becomes:

let
var i := lo
var limit := hi

in
while (i <= limit) do

(body;
i := i + 1)

end

Complication:
If limit == maxint, then increment will overflow in translated version.

Computer Science 320
Prof. David Walker

- 7 -

Function Calls

f(a1, a2, ..., an) =>
CALL(NAME(l_f), sl::[e1, e2, ..., en])

� sl static link of f (computable at compile-time)

� To compute static link, need:

– l f : level of f

– l g : level of g, the calling function

� Computation similar to simple variable access.

Computer Science 320
Prof. David Walker

- 8 -

Declarations

Consider type checking of “let” expression:

fun transExp(venv, tenv) =
...
| trexp(A.LetExp{decs, body, pos}) =

let
val {venv = venv’, tenv = tenv’} =
transDecs(venv, tenv, decs)

in
transExp(venv’, tenv’) body

end

� Need level, break.

� What about variable initializations?

Computer Science 320
Prof. David Walker

- 9 -

Declarations

Need to modify code to handle IR translation:

1. transExp, transDec require level to handle variable references.

2. transExp, transDec require break to handle breaks in loops.

3. transDec must return Translate.exp list of assignment statements corresponding
to variable initializations.

� Will be prepended to body.

� Translate.exp will be empty for function and type declarations.

Computer Science 320
Prof. David Walker

- 10 -

Function Declarations
� Cannot specify function headers with IR tree, only function bodies.

� Special “glue” code used to complete the function.

� Function is translated into assembly language segment with three components:

– prologue

– body

– epilogue

Computer Science 320
Prof. David Walker

- 11 -

Function Prologue

Prologue precedes body in assembly version of function:

1. Assembly directives that announce beginning of function.

2. Label definition for function name.

3. Instruction to adjust stack pointer (SP) - allocate new frame.

4. Instructions to save escaping arguments into stack frame, instructions to move non-
escaping arguments into fresh temporary registers.

5. Instructions to store into stack frame any callee-save registers used within function.

Computer Science 320
Prof. David Walker

- 12 -

Function Epilogue

Epilogue follows body in assembly version of function:

6. Instruction to move function result (return value) into return value register.

7. Instructions to restore any callee-save registers used within function.

8. Instruction to adjust stack pointer (SP) - deallocate frame.

9. Return instructions (jump to return address).

10. Assembly directives that announce end of function.

� Steps 1, 3, 8, 10 depend on exact size of stack frame.

� These are generated late (after register allocation).

� Step 6:

MOVE(TEMP(RV), unEx(body))

Computer Science 320
Prof. David Walker

- 13 -

Fragments

signature FRAME = sig
...
datatype frag = STRING of Temp.label * string

| PROC of {body:Tree.stm, frame:frame}
end

� Each function declaration translated into fragment.

� Fragment translated into assembly.

� body field is instruction sequence: 4, 5, 6, 7

� frame contains machine specific information about local variables and parameters.

Computer Science 320
Prof. David Walker

- 14 -

Problem with IR Trees

Problem with IR trees generated by the Translate module:

� Certain constructs don’t correspond exactly with real machine instructions.

� Certain constructs interfere with optimization analysis.

� CJUMP jumps to either of two labels, but conditional branch instructions in real
machine only jump to one label. On false condition, fall-through to next instruction.

� ESEQ, CALL nodes within expressions force compiler to evaluate subexpression
in a particular order. Optimization can be done most efficiently if subexpressions
can proceed in any order.

� CALL nodes within argument list of CALL nodes cause problems if arguments passed
in specialized registers.

Solution: Canonicalizer

Computer Science 320
Prof. David Walker

- 15 -

Canonicalizer

Lexer Parser
Source

Stream of
Tokens

Abstract
Syntax Tree Semantic

Analysis
IR Trees Canon-

icalizer
IR Trees

Back End
Target

Canonicalizer takes Tree.stm for each function body, applies following transforms:

1. Tree.stm becomes Tree.stm list, list of canonical trees. For each tree:

� No SEQ, ESEQ nodes.

� Parent of each CALL node is EXP(...) or MOVE(TEMP(t), ...)

2. Tree.stm list becomes Tree.stm list list, statements grouped into
basic blocks

� A basic block is a sequence of assembly instructions that has one entry and one
exit point.

� First statement of basic block is LABEL.

� Last statement of basic block is JUMP, CJUMP.

� No LABEL, JUMP, CJUMP statements in between.

Computer Science 320
Prof. David Walker

- 16 -

Canonicalizer

3. Tree.stm list list becomes Tree.stm list

� Basic blocks reordered so every CJUMP immediately followed by false label.

� Basic blocks flattened into individual statements.

Computer Science 320
Prof. David Walker

- 17 -

