Priority Queues

Priority Queue ADT Heaps and Heapsort Binomial Queues

Separate interface and implementation so as to

- build layers of abstraction
- reuse software
- Ex: pushdown stack, FIFO queue

interface: description of data type, basic operations client: program using operations defined in interface implementation: actual code implementing operations

Client can't know details of implementation

- therefore has many implementations to choose from Implementation can't know details of client needs
 - therefore many clients can use the same implementation

2

Basic Priority Queue ADT

Records with keys (priorities) basic operations

- insert
- remove largest <---- can substitute smallest for clarity but not both in same client
- create
- test if empty
- common to many ADTs
 - not needed for one-time use but critical in large systems

generic operations

Example clients

- simulation
- numerical computation
- data compression
- graph searching

PQ.h

void PQinit(); void PQinsert(Item); Item POdelmax/min(); int PQempty();

PQ interface in C

ADTs and algorithms

Performance matters!

ADT allows use of better algorithm

(without any change to client)

Idealized scenario

- design general-purpose ADT useful for many clients
- develop efficient implementation of all ADT functions

Each ADT provides a new level of abstraction

Total cost depends on

- ADT implementation (algorithm)
- client usage pattern

Might need different implementations for different clients

algorithms

client

quicksort

stack

linked list

Fx:

clients

- destroy
 - copy

stay tuned

Unordered-array PQ implementation

PQ client example

Problem: Find the largest M of a stream of N elements Example application: Fraud detection (isolate \$\$ transactions)

Constraint: May not have memory to store N elements

So	lution:	Use	n	priority	aueue
00	unon	030	u	priority	queue

	time	space
elementary PQ	NM	Μ
heap/BQ	N lgM	M
select	N	N

PQinit();
for $(k = 0; k < M; k++)$
<pre>PQinsert(nextItem());</pre>
for $(k = M; k < N; k++)$
{
PQinsert(nextItem()); add next
t = PQdelmin(); discard smalles
}
for $(k = 0; k < M; k++)$ a[k] = PQdelmin(); M largest left on PQ

Ex: top 10,000 in a stream of 1 billion not possible without good algorithm (also can adapt select)

6

PQ implementations cost summary

Worst-case asymptotic costs for a PQ with N items

	insert	remove max
ordered array	Ν	1
ordered list	Ν	1
unordered array	1	Ν
unordered list	1	Ν

Can we implement both operations efficiently?

Heap: Array representation of a heap-ordered complete binary tree

 no smaller than children's keys

Binary tree null or

Array representation

- take nodes in level order
- no explicit links

Promotion (bubbling up) in a heap

9

Suppose that a node at the bottom is larger than its parent

Invariant: Heap condition violated only at that node

To eliminate the violation

- exchange with parent
- maintains invariant (why?)
- moves up the tree
- continue until node not larger than parent

Peter principle: node rises to level of incompetence Ш

1	2	3	4	5	6	7	8	9	10	11	12	13
х	Т	0	G	s	Μ	Ν	A	E	R	A	Ι	Ρ
х	Т	Ρ	G	5	0	Ν	A	E	R	A	Ι	Μ

Can use array indices to move through tree

- parent of node at k is at k/2
- children of node at k are at 2k and 2k+1

1	2	3	4	5	6	7	8	9	10	11	12
Х	Т	0	G	S	Μ	Ν	Α	Е	R	Α	Ι

Demotion (sifting down) in a heap

Suppose that a node at the top is smaller than a child

Invariant: Heap condition violated only at that node

To eliminate the violation

- maintains invariant (why?)
- moves down the tree
- continue until node not smaller than children

Power struggle: better subordinate promoted

- exchange with larger child

insert

add node at end, then promote remove largest

exchange root with node at end, then sift down

	$\circ \circ \circ$
static Item *pq; <	X T O G S
static int N; 🔶 kame as elementary	insert
void PQinit(int maxN); 🚝 array-based	$\overline{\mathbf{T}}$
int PQempty();	<u>c</u> s
PQinsert(Item v)	A E R
<pre>{ pq[N++] = v; swim(pq, N); }</pre>	X T P G S
Item PQdelmax()	remove largest
<pre>{ exch(pq[1], pq[N]); sink(pq, 1, N-1); return pq[N];</pre>	G R A E M
}	T S P G R
i J	

Digression: Heapsort

First pass: build heap

add item to heap at each iteration, then sift up (or can use faster bottom-up method; see book) Second pass: sort remove maximum at each iteration

exchange root with node at end, then sift down

#define pq	(A) a[L-	1+A]
------------	----------	------

```
void heapsort(Item a[], int L, int R)
{ int k, N = r-l+1;
```

for (k = 2; k <= N; k++)

swim(&pq(0), k);

while (N > 1)

{ exch(pq(1), pq(N));
 sink(&pq(0), 1, --N);

	P P
X T O G S M N A E	R A I P
	P N
X T P G S O N A E	R A I M
A E A I X	
TSPGRONAE	MAIX

in the heap

X A M P

A M

ELAEPX

A

ΕL

A E

E E L M P X

ΕE

Е

E X A M P

X E A M P

ХE

X M A E P L E

X P A E M L E

X P L E M A E

X P L E M

PML

м

L E E A M P X

Е

Е

Α

Α

build

heap

remove

maximum;

sift down

not in the heap

Е

LE

A E

L

LE

LE

A X

Ρ

M P X

м

P X

ΕE

L M P X

L

 \mathbf{x}

Worst-case asymptotic costs for a PQ with N items

	insert	remove max	
ordered array	Ν	1	
ordered list	Ν	1	
unordered array	1	N	
unordered list	1	N	
heap	lg N	lg N	

14

Significance of Heapsort

- Q: Is there a sort that uses
 - O(N log N) running time in the worst case and
 - no extra memory ?
- A: Yes. Heapsort.

Not mergesort?

- O(N) extra space
- (challenge for the bored: design an inplace merge)

Not quicksort?

- quadratic in worst case (but probabilistic guarantee is as good)
- O(log N) extra space (not an issue in practice)

Heapsort is OPTIMAL for both time and space, BUT

- inner loop longer than quicksort's
- makes poor use of cache memory

Event-based simulation

Challenge: Animate N moving particles

- each has given velocity vector
- bounce off edges, one another on collision

Example applications: molecular dynamics, traffic, ...

Naive approach: t times per second

- update particle positions
- check for collisions, update velocities
- redraw all particles

Problems:

- N²t collision checks per second
- may miss collisions

17

Extending the Priority-Queue ADT

generic operations

for first-class ADTs

operations that

characterize PQs

other operations that

many clients need

Records with keys (priorities) Full set of operations

• create

- test if empty
- destroy
- сору
- insert
- remove largest
- remove
- find largest
- change key
- join

New operations complicate the interface

- need to refer to items in PQ for remove, change key
- need to refer to PQs for destroy, copy, and join
- while still maintaining separation between client and implementation

Object-oriented programming (OOP)

PQ for event-based simulation

Extended Priority-Queue ADT

Handle implementation in C: use pointers to unspecified structures

- a PQ is a pointer to a pq struct
- a PQlink is a pointer to a PQnode struct
- no way for client to know pq and PQnode implementations

Note: solution easier in OOP languages like Java and C++ because primitives are built in

PQ PQjoin(PQ a, PQ b)

Would it help to use linked structures? Hard to beat trivial algorithm (rebuild the whole heap)

21

Binomial Queue

Binomial queue with N nodes: forest of left-heap-ordered powerof-2 trees, one for each term in the binary decomposition of N

power-of-two tree (pott): binary tree with

- empty right subtree
- complete left subtree

left-heap-ordered pott (lhopott)

- key in each node
- no smaller than all keys in left subtree

binary decomposition:

- sum of distinct powers of 2
- direct from binary representation
 Ex: 13 = 1101₂ = 8 + 4 + 1

lhopott is binary-tree representation of heap-ordered general tree

b empty

complete

New operations introduce new algorithmic challenges

	insert	remove max	remove	find max	change key	join
ordered array	Ν	1	Ν	1	Ν	Ν
ordered list	Ν	1	1	1	Ν	Ν
unordered array	1	Ν	1	Ν	1	Ν
unordered list	1	Ν	1	Ν	1	1
heap	lg N	lg N	lg N	1	lg N	N
•						

Can we implement all the operations efficiently?

22

Binomial queue properties

height 2^{n} nodes 2^{n} -2 nodes 2^{n} -

23

PQlink pair(PQlink p, PQlink q)

if (less(p->key, q->key))

{ p->r = q->l; q->l = p; return q;

{ q->r = p->l; p->l = q; return p;

nodes per level 1

3

1

1

binomial

coefficients

{ PQlink t;

else

}

A constant-time operation

- take larger of two roots as root
- combine other root, two subtrees to make complete lho left subtree
- result is the if arguments are the

Joining two binomial queues (code)

Not much more difficult than binary addition!

						carry			
case	с	b	۵		a	с			
0	0	0	0		a	0			
1	0	0	1		۵	0			
2	0	1	0		b	0			
3	0	1	1		0	a+b			
4	1	0	0		с	0			
5	1	0	1		0	a+c			
6	1	1	0		0	b+c			
7	1	1	1		۵	b+c			
	t result								

Joining two binomial queues

Mimic addition of corresponding binary numbers

- adding 1 bits corresponds to joining equal-sized lhopotts
- 1+1 = 10 or 1+1 + 11 corresponds to carry
- result is a BQ whose size is sum of operand sizes

BQ-based PQ implementation

Join provides basis for all the implementations

insert:

• join singleton BQ

remove maximum:

- scan roots to find max, remove its tree
- join children of max with rest of BQ

change priority:

• demote, promote as with heaps

remove:

- replace removed node with max in its tree
- join children of max with rest of BQ

Worst-case asymptotic costs for a PQ with N items

	insert	remove max	remove	find max	change key	join
heap	lg N	lg N	lg N	1	lg N	N
binomial queue	lg N	lg N	lg N	lg N	lg N	lg N
						Ŭ

Algorithm-design success story

PQ ADT

• identifies a useful computational abstraction

Heap

• provides efficient implementations of basic operations

Binomial queue

• provides efficient implementations of all operations

30

Ingenenious fundamental data structures

Surprising fact: there is still room for improvement!

29

PQ implementations cost summary

Worst-case asymptotic costs for a PQ with N items

_	insert	remove max	remove	find max	change key	join			
binomial queue	lg N	lg N	lg N	lg N	lg N	lg N			
best in theory	1	lg N	lg N	1	1	1			
Algorithms have been invented that meet these bounds, BUT it is difficult to beat BQs in practice									
31									