Lecture 1: Introduction

Algorithms and Data Structures
Princeton University
Spring 2003

Bob Sedgewick
Kevin Wayne

Overview

What is COS 226?
. Intermediate-level survey course.
. Programming and problem solving.
. Algorithms: method for solving a problem.
. Data structures: method to store information.

Prerequisites.
. COS 126 or permission of instructor.

Why Study Algorithms

Using a computer?
. Want it to go faster? Process more data?
. Want it to do something that would otherwise be impossible?

Technology improves things by a constant factor.
. But might be costly.

. Good algorithmic desigh can do much better and might be cheap.

. Supercomputers cannot rescue a bad algorithm.

Algorithms as a field of study.
. Old enough that basics are known.
. New enough that new discoveries arise.
. Burgeoning application areas.
. Philosophical implications.

Imagine
Multimedia. CD player, DVD, MP3, JPG, DivX, HDTV.
Internet. Packet routing, Google, Akamai.
Communication. Cell phones, e-commerce.
Computer. Circuit layout, file system. "; [U_‘]I \ ll'}'
Computer graphics. Hollywood movies, video games.
Science. Human genome, protein folding, N-body simulation.

Transportation. Airline crew scheduling, UPS deliveries.

The Usual Suspects

Lectures: Bob Sedgewick and Kevin Wayne
. MW 11-12:20, Friend 004.

Precepts: Adriana Karagiozova (Adriana)
Kevin Wayne (Kevin)
Jon Wu (Jon)
. M 1:30, 3:30, TBA.
. Discuss programming assignments, review exercises, clarify lecture
material.

If you're signed up for 12:30 or 2:30 precept, stay after class today.
One will be dropped.

Coursework and Grading

Weekly programming assignments: 40%
. Due Thursdays 11:59pm, starting 2/13.

Weekly written exercises: 20%
. Due in Monday precept, starting 2/10.

Exams:

. Closed book with cheatsheet.
. Midterm. 15%

. Final. 25%

Staff discretion.
. Adjust borderline cases.

Course Materials

http://www.princeton.edu/~cs226
. Syllabus. Algorithims
. Programming assighments. i
. Exercises.
. Lecture notes.
. Old exams.

Algorithms in C, 3rd edition.
. Parts 1-4 (COS 126 text).
. Part 5 (graph algorithms). Algorithims
Wy
Algorithms in C, 2 edition.
. Strings and geometry handouts.

An Example Problem: Network Connectivity

Network connectivity.
. Nodes at grid points.
. Add connections between pairs of nodes.
. Is there a path from node A to node B?

Network Connectivity

in out evi dence

34
49

34
4 9
0 o
56
9

23
56
(2-3-4-9)

59 59 @ @) 0)

73 73
48 48

56 (5-6)
02 (2-3-4-8-0) 8
61 61

21

Union-Find Abstraction

What are critical operations we need to support?
. Nobjects.
- grid points
. FIND: test whether two objects are in same set.
- is there a connection between A and B?
. UNION: merge two sefts.
- add a connection

Design efficient data structure to store connectivity information and
algorithms for UNION and FIND.

. Number of objects and operations can be huge.

Another Application: Image Processing

Find connected components.

. Read ina 2D color image and find regions of connected pixels that
have the same color.

Original Labeled

Another Application: Image Processing

Find connected components.

. Read ina 2D color image and find regions of connected pixels that
have the same color.

One-pass algorithm.
. Initialize each pixel to be its own component.
. Examine pixels from left to right and top to bottom.

- if a neighboring cell is the same color, merge current cell into
same component

O PUNNNNENEN 6 6 8 9 11 ﬁ not yet examined
oo olR 6 6 8 s K o W

24 ONNON 1 WCRIGH 30 R 11 (111111

P o o FBEN 6 4

Other Applications

More union-find applications.
. Minimum spanning tree.
. Compiling EQUIVALENCE statements in FORTRAN.
. Least common ancestor.
. Equivalence of finite state automata.

. Scheduling unit-time tasks with a partial order to two processors in
order to minimize last completion time.

. Scheduling unit-time tasks to P processors so that each job finishes
between its release time and deadline.

. Nonbipartite matching. (Micali-Vazarani)
. Edge-disjoint s-t paths in planar graphs. (Weihe)

References.
* A Linear Time Algorithm for a Special Case of Disjoint Set Union, Gabow and Tarjan.
- The Design and Analysis of Computer Algorithms, Aho, Hopcroft, and Ullman.

Objects

Elements are arbitrary objects in a hetwork.
. Pixels in a digital photo.
. Computers in a network.
. Transistors in a computer chip.
. Web pages on the Internet.
. When programming, convenient to name them O to N-1.
. When drawing, fun to use animals!

E T - B
¥ = w5
‘fJ"Ei'V§H iﬁ:

Quick-Find

id[tiger] = id[panda] = id[bunny] = id[elephant] = elephant
id[bear] = id[dragon] = id[lion] = lion
id[bat] = id[lobster] = lobster

Quick-Find

Union(tiger, bear)

Quick-Find

@ Eﬂt'E DoEn

rifin i-qrh.EJE:!?EJ

ﬁjﬁ:gﬁi.ﬁJﬁ::ﬁ+=
Ul.ri#ﬁhﬁ1ﬂ:33$
5-6 01999667009 @ Tﬁ%“?1=;3:£

. A
®eriwe b
? owT e b
? oW T
e e

30

Quick-Find Algorithm

Data structure.

. Maintain array i d[] with name for each component.

. If p and q are connected, then same id. for (=0 T <N T59)
. IanlGllZe|d[|] =i. Id[I] =i;

FIND. To check if p and q are connected,

check if they have the same id. 't (idip] == idlal)]

/] al ready connected

UNION. To merge components containingp (pid = id[p];

and q, change all entries withid[p] toid[qg]. [for (i = 0; i <N i++)
if (id[i] == pid)
Analysis. L idli] = idla];

. FIND takes constant humber of operations.

. UNION takes time proportional to N.

31

Problem Size and Computation Time

Rough standard for 2000.
. 10° operations per second.
. 10° words of main memory.
. Touch all words in approximately 1 second. (unchanged since 1950!)

Ex. Huge problem for quick find.
. 1010 edges connecting 10° nodes.
. Quick-find might take 1020 operations. (10 ops per query)
. 3,000 years of computer timel

Paradoxically, quadratic algorithms get worse with newer equipment.
. New computer may be 10x as fast.
. But, has 10x as much memory so problem may be 10x bigger.
. With quadratic algorithm, takes 10x as long!

32

Quick-Union

id[elephant] = skunk

Vi AN
™y 4 a/a‘\qs
::z.{*lr? . }%]

73
’f o

33

Quick-Union

root(Tiger) = Elephant
root(Lobster) = Skunk
id[Elephant] = Skunk

35

Quick-Union
34 01244567809 TITTITEL
49 01249567809 St il
8-0 01249567009 pi St |
23 01949567009 “d"‘i"x"i
56 01949667009 "'ﬁ'%:"’iﬂ
59 01949697009 .#;E
7-3 01949699009 "'.,,-.E‘ﬁ;,.it
4-8 0194969900 "ﬁ

36

Quick-Union

Data structure: disjoint forests.
. Maintain array i d[] with name for each component.
. If p and q are connected, p and q have same root, where
-root(p)=id[id[id[...id[p]...]1]]
- go until it doesn't change

. for (i =p; i !=idli]; i =id[i]) :
FIND. Checkif pandq for (j =aq j '=idljl; j =id[jl) ;
have same roof. it (i ==j) // connected

UNION. Set the id of p's root to q's root.

Analysis.
. FIND takes time proportional to depth of p and q in tree.
- could be proportional to N
. UNION takes constant time, given roots.

37

Weighted Quick-Union

Quick-find defect.
. UNION too expensive.
. Trees are flat, but too hard to keep them flat.

Quick-union defect.
. FIND could be too expensive.
. Trees could geft tall.

Weighted quick-union.
. Modify quick-union to avoid tall trees.
. Keep track of size of each component.
. Balance by linking small tree below large one.

38

Weighted Quick-Union

%

N
o

e

-f%’ N V)
9 Union(Lobster, Tiger) .w Ei.
I L

39

Weighted Quick-Union

34 01233567809 scagesaes
4-9 0123356783 LI TEL
8-0 8123356783 §oe B 00d
2-3 8133356783 £, 200
56 8133355783 R Y

g.:ulr i}
5-9 8133335783 @ “"?‘

7-3 8133335383 E-’,,ﬁf%}rf.

irfﬁ:_’%“:(-ﬁ
6-1 8333335333 e
1
=

40

Weighted Quick-Union

Data structure: disjoint forests.

. Also maintain array wt [i] that counts the number of nodes in the
tree rooted at i.

it (ueli] <weljl) {)

FIND. Same as quick union. idli] =i
We[j] +=w[i];
UNION. Same as quick union, but: }el se |
. Merge smaller tree into the larger tree. id[j] =i;
. Update thewt[] array. W[i] += w[j];
\ J

Analysis.
. FIND takes time proportional to depth of p and q in free.
- depth is at most Ig N
. UNION takes constant time, given roots.

a1

Weighted Quick-Union

Is performance improved?
. Theory: Ig N per union or find operation.
. Practice: constant time.

Ex. Huge practical problem.
. 1010 edges connecting 10° nodes.
. Reduces time from 3,000 years to 1 minute.
. Supercomputer wouldn't help much.
. Good algorithm makes solution possible.

Stop at guaranteed acceptable performance?
. Not hard to improve algorithm further.

42

Path Compression

Path Compression

LSS
ﬂ./V

Path Compression

v
e\
N4 ;
$a/E

Path Compression

Path Compression

AN
?\5‘- Dyrarem §

L

¥ 0
ANy
w

TN
G .

Weighted Quick-Union with Path Compression

3-4 0123356789 ?'!'f'!'”.'lrilr!ll:'!i:'!':'!

?Sulw.':l;l'l-a.hlil.lﬁil.‘-ll

8-0 8123356783 b el
23 8133356783 E"l"M:
56 8133355783 i:""h‘:f
5-9 8133335783 dﬁ?‘
7-3 8133335383 gt-n-'ﬁl"g?tv

6-1 83 33333333

a8

Weighted Quick-Union with Path Compression

Path compression.
. Modify weighted quick-union to compress tree.

. Make second pass from p and q up to root, and set the id of every
examined node to the new root.

for (i =
idli]
for (j =
idfj]

iov=idli]; i
root;
jor=idljl;
root ;

idii])

id[il)

e 1o

. No reason not to!
. Inpractice, keeps tree almost completely flat.

49

Weighted Quick-Union with Path Compression

Theorem. A sequence of M union and find operations
on N elements takes O(N + M Ig* N) time.

. Proof is difficult. 2 1
. But the algorithm is still simple! 4 2
.) 16 3

Remark. Ig* N is a constant in this universe.
65536 4
265536 | 5

Linear algorithm?
. Cost within constant factor of reading in the data.
. Theory: WQUPC is not quite linear.
. Practice: WQUPC is linear.

50

Lessons

Union-find summary.

. Online algorithm can solve problem
while collecting data for "free."

"Trivial" algorithms can be useful.
. Start with simple algorithm.
- don't use for large problems
- can't use for huge problems
. Fast performance on test data OK.

Algorithm Time

Quick-find MN
Quick-union MN
Weighted N+ M log N
Path compression | N + M log N
Weighted + path | 5 (M +N)

. Strive for worst-case performance guarantees.

- might be nontrivial to analyze

. Identify fundamental abstractions.
- union-find
- disjoint forests

51

