Hashing Algorithms

Hash functions Separate Chaining Linear Probing Double Hashing

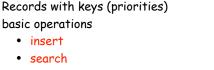
ST implementations cost summary

"Guaranteed" asymptotic costs for an ST with N items

	insert	search
unordered array	1	Ν
BST	Ν	Ν
randomized BST*	lg N	lg N
red-black BST	lg N	lg N

* assumes system can produce "random" numbers

Can we do better?



- create
- test if empty
- destroy
- сору
- generic operations common to many ADTs
- not needed for one-time use but critical in large systems

Problem solved (?)

- balanced, randomized trees use O(lg N) comparisons
- Is lg N required?
 - no (and yes)
- Are comparisons necessary?
 - no

ST.h

void STinit(); void STinsert(Item); Item STsearch(Key); int STempty(); ST interface in C

Hashing: basic plan

2

Save items in a key-indexed table (index is a function of the key)

Hash function

• method for computing table index from key

Collision resolution strategy

 algorithm and data structure to handle two keys that hash to the same index

Classic time-space tradeoff

- no space limitation: trivial hash function with key as address
- no time limitation: trivial collision resolution: sequential search
- limitations on both time and space (the real world) hashing

3

Goal: random map (each table position equally likely for each key)

Treat key as integer, use prime table size M

hash function: h(K) = K mod M

Ex: 4-char keys, table size 101

binary	01100	001	01100	010	01100	0011	01100	0100
hex	6	1	6	2	6	3	6	4
ascii		а		b		С		d

26⁴~ .5 million different 4-char keys 101 values ~50,000 keys per value

Huge number of keys, small table: most collide!

abcd hashes to 11

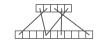
0x61626364 = 1633831724 16338831724 % 101 = 11

- dcba hashes to 57 0x64636261 = 1684234849
- 1633883172 % 101 = 57 abbc also hashes to 57

0x61626263 = 1633837667 1633837667 % 101 = 57 5 25 items, 11 table positions

~2 items per table position

5 items, 11 table positions ~ .5 items per table position



Collision Resolution

Two approaches

Separate chaining

- M much smaller than N
- ~N/M keys per table position
- put keys that collide in a list
- need to search lists

Open addressing (linear probing, double hashing)

- M much larger than N
- plenty of empty table slots
- when a new key collides, find an empty slot
- complex collision patterns

Goal: random map (each table position equally likely for each key)

0x61

Treat key as long integer, use prime table size M

- use same hash function: $h(K) = K \mod M$
- compute value with Horner's method

Ex: abcd hashes to 11

0x61626364 = 256*(256*(256*97+98)+99)+100 16338831724 % 101 = 11

numbers too big?

OK to take mod after each op

256*97+98 = 24930 % 101 = 84 256*84+99 = 21603 % 101 = 90 256*90+100 = 23140 % 101 = 11 ... can continue indefinitely, for any length key

How much work to hash a string of length N? N add, multiply, and mod ops

```
scramble by using
hash.c 117 instead of 256
int hash(char *v int M)
```

{ int h, a = 117; for (h = 0; *v != '\0'; v++) h = (a*h + *v) % M; return h;

hash function for strings in C

```
Uniform hashing: use a different random multiplier for each digit.
```

Separate chaining

Hash to an array of linked lists

Hash

map key to value between 0 and M-1

Array

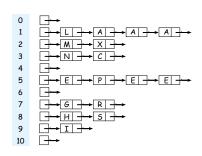
• constant-time access to list with key

Linked lists

- constant-time insert
- search through list using elementary algorithm

M too large: too many empty array entries M too small: lists too long

Typical choice M ~ N/10: constant-time search/insert



Trivial: average list length is N/M Worst: all keys hash to same list

Theorem (from classical probability theory): Probability that any list length is > tN/M is exponentially small in t

Guarantee depends on hash function being random map G

GX

Hash to a large array of items, use sequential search within clusters

Hash

map key to value between 0 and M-1

Large array

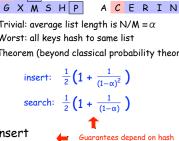
• at least twice as many slots as items

Cluster

- contiguous block of items
- search through cluster using elementary algorithm for arrays

M too large: too many empty array entries M too small: clusters coalesce

Typical choice M ~ 2N: constant-time search/insert



Double hashing ST implementation

9

sta	atic Item *st; 🛛 👉 code assumes Items are pointers, initialized to NULL
	<pre>d STinsert(Item x) insert Key v = ITEMkey(x); int i = hash(v, M); int skip = hashtwo(v, M); take skip = 1</pre>
}	<pre>while (st[i] != NULL) i = (i+skip) % M; probeloop st[i] = x; N++;</pre>
Ite {	em STsearch(Key v) search
	int $i = hash(v, M);$
	<pre>int skip = hashtwo(v, M); while (st[i] != NULL) probe loop</pre>
	if eq(v, ITEMkey(st[i])) return st[i]; else i = (i+skip) % M;
}	return NULL;
,	Ш

A S Α S Α Е ER s s ACER SH ACE sн Е С R SН R IN SН sн GXMSH С Е RIN

Trivial: average list length is N/M $\equiv \alpha$ Worst: all keys hash to same list Theorem (beyond classical probability theory):

function being random map

Avoid clustering by using second hash to compute skip for search

Hash

map key to array index between 0 and M-1

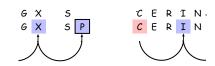
Second hash

- map key to nonzero skip value (best if relatively prime to M)
- guick hack OK
 - $E_{x}: 1 + (k \mod 97)$

Avoids clustering

• skip values give different search paths for keys that collide

Typical choice M ~ 2N: constant-time search/insert Disadvantage: delete cumbersome to implement 10



Trivial: average list length is N/M $\equiv \alpha$ Worst: all keys hash to same list and same skip Theorem (deep):

Guarantees depend on hash functions being random map

Hashing tradeoffs

Separate chaining vs. linear probing/double hashing

- space for links vs. empty table slots
- small table + linked allocation vs. big coherant array

Linear probing vs. double hashing load factor (α)

		50%	66%	75%	90%
linear probing	search	1.5	2.0	3.0	5.5
	insert	2.5	5.0	8.5	55,5
double hashing	search	1.4	1.6	1.8	2.6
	insert	1.5	2.0	3.0	5.5

Hashing vs. red-black BSTs

- arithmetic to compute hash vs. comparison
- hashing performance guarantee is weaker (but with simpler code)
- easier to support other ST ADT operations with BSTs

"Guaranteed" asymptotic costs for an ST with N items

	insert	search	delete	find kth largest	sort	join		
unordered array	1	Ν	1	Ν	NlgN	Ν		
BST	Ν	Ν	Ν	Ν	Ν	Ν		
randomized BST*	lg N	lg N	lg N	lgN	Ν	lgN		
red-black BST	lg N	lg N	lg N	lg N	lg N	lg N		
* hashing	1		1	Ν	NlgN	Ν		
No and the second data in the second data in the second								

Not really: need IgN bits to distinguish N keys

- * assumes system can produce "random" numbers
- * assumes our hash functions can produce random values for all keys

Can we do better?

13

tough to be sure