
Hash functions
Separate Chaining

Linear Probing
Double Hashing

Hashing Algorithms
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Records with keys (priorities)
basic operations
• insert
• search
• create
• test if empty
• destroy
• copy

Problem solved (?)
• balanced, randomized trees use

O(lg N) comparisons
Is lg N required?
• no (and yes)

Are comparisons necessary?
• no

Symbol-Table ADT

not needed for one-time use
but critical in large systems

void STinit();
void STinsert(Item);
Item STsearch(Key);
 int STempty();

ST.h

ST interface in C

generic operations
common to many ADTs
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ST implementations cost summary

insert search delete
find kth
largest

sort join

unordered array 1 N 1 N NlgN N

BST N N N N N N

randomized BST* lg N lg N lg N lgN N lgN

red-black BST lg N lg N lg N lg N lg N lg N

hashing* 1 1 1 N NlgN N

“Guaranteed” asymptotic costs for an ST with N items

Can we do better? 

* assumes system can produce “random” numbers 
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Save items in a key-indexed table (index is a function of the key)

Hash function

• method for computing table index from key

Collision resolution strategy

• algorithm and data structure to handle
    two keys that hash to the same index

Classic time-space tradeoff

• no space limitation: 
    trivial hash function with key as address

• no time limitation: 
    trivial collision resolution: sequential search

• limitations on both time and space (the real world)
hashing

Hashing: basic plan
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Goal: random map (each table position equally likely for each key)

Treat key as integer, use prime table size M

• hash function: h(K) = K mod M 

Ex: 4-char keys, table size 101
binary 01100001011000100110001101100100

       hex    6   1   6   2   6   3   6   4
     ascii        a       b       c       d

Huge number of keys, small table: most collide!

abcd hashes to 11
   0x61626364 = 1633831724 
   16338831724 % 101 = 11

dcba hashes to 57
   0x64636261 = 1684234849
   1633883172 % 101 = 57

abbc also hashes to 57
   0x61626263 = 1633837667 
   1633837667 % 101 = 57

Hash function

25 items, 11 table positions
~2 items per table position

264~ .5 million different 4-char keys
101 values
~50,000 keys per value

5 items, 11 table positions
~ .5 items per table position
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Goal: random map (each table position equally likely for each key)

Treat key as long integer, use prime table size M

• use same hash function: h(K) = K mod M 

• compute value with Horner’s method

Ex: abcd hashes to 11
    0x61626364 = 256*(256*(256*97+98)+99)+100 
    16338831724 % 101 = 11

numbers too big? 

OK to take mod after each op
    256*97+98  = 24930 % 101 = 84
    256*84+99  = 21603 % 101 = 90
    256*90+100 = 23140 % 101 = 11

How much work to hash a string of length N?

N add, multiply, and mod ops 

Hash function (long keys)

  int hash(char *v, int M)
    { int h, a = 117;
      for (h = 0; *v != '\0'; v++)
        h = (a*h + *v) % M;
      return h;
    }

hash.c

hash function for strings in C

scramble by using
 117 instead of 256

Uniform hashing: use a  different
random multiplier for each digit.

0x61

... can continue indefinitely, for any length key
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Two approaches

Separate chaining

• M much smaller than N

• ~N/M keys per table position

• put keys that collide in a list

• need to search lists

Open addressing (linear probing, double hashing)

• M much larger than N

• plenty of empty table slots

• when a new key collides, find an empty slot

• complex collision patterns

Collision Resolution
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Hash to an array of linked lists

Hash

• map key to value between 0 and M-1 

Array

• constant-time access to list with key

Linked lists

• constant-time insert

• search through list using
elementary algorithm

M too large: too many empty array entries

M too small: lists too long

Typical choice M ~ N/10: constant-time search/insert

Separate chaining

Trivial: average list length is N/M

0
1 L A A A

2 M X

3 N C
4
5 E P E E
6

7 G R

8 H S
9 I
10

Theorem (from classical probability theory):
Probability that any list length is > tN/M
is exponentially small in t

Worst: all keys hash to same list

Guarantee depends on hash
function being random map
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Hash to a large array of items, use sequential search within clusters

Hash

• map key to value between 0 and M-1 

Large array

• at least twice as many slots as items

Cluster

• contiguous block of items

• search through cluster using
elementary  algorithm for arrays

M too large: too many empty array entries

M too small: clusters coalesce

Typical choice M ~ 2N: constant-time search/insert

Linear probing

Trivial: average list length is N/M ≡α
Worst: all keys hash to same list

Guarantees depend on hash
function being random map

Theorem (beyond classical probability theory):

insert:

search:

(1 + )2
1

(1−α)2
1

(1 + )2
1

 (1−α)
1

A
S A
S A E
S A E R
S A C E R
S H A C E R
S H A C E R I
S H A C E R I N

G S H A C E R I N
G X S H A C E R I N
G X M S H A C E R I N
G X M S H P A C E R I N
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Avoid clustering by using second hash to compute skip for search

Hash

• map key to array index between 0 and M-1 

Second hash

• map key to  nonzero skip value
(best if relatively prime to M)

• quick hack OK
Ex: 1 + (k mod 97)

Avoids clustering

• skip values give different search
paths for keys that collide

Typical choice M ~ 2N: constant-time search/insert

Disadvantage: delete cumbersome to implement

Double hashing

Trivial: average list length is N/M ≡α
Worst: all keys hash to same list and same skip

Guarantees depend on hash
functions being random map

Theorem (deep):

insert:

search:

1−α
1

ln(1+α)α
1

G X S C E R I N
G X S P C E R I N
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Double hashing ST implementation

insert

probe loop

linear probing:
take skip = 1

search

probe loop

code assumes Items are pointers, initialized to NULLstatic Item *st;

void STinsert(Item x)
  { Key v = ITEMkey(x);
    int i = hash(v, M);
    int skip = hashtwo(v, M);
    while (st[i] != NULL) i = (i+skip) % M;
    st[i] = x; N++;
  }
Item STsearch(Key v)
  { 
    int i = hash(v, M);
    int skip = hashtwo(v, M);
    while (st[i] != NULL) 
      if eq(v, ITEMkey(st[i])) return st[i]; 
      else i = (i+skip) % M;
    return NULL;
  }
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Separate chaining vs. linear probing/double hashing

• space for links vs. empty table slots

• small table + linked allocation vs. big coherant array

Linear probing vs. double hashing

Hashing vs. red-black BSTs

• arithmetic to compute hash vs. comparison

• hashing performance guarantee is weaker (but with simpler code)

• easier to support other ST ADT operations with BSTs

Hashing tradeoffs

load factor (α)

50% 66% 75% 90%

linear
probing

search 1.5 2.0 3.0 5.5

insert 2.5 5.0 8.5 55.5

double
hashing

search 1.4 1.6 1.8 2.6

insert 1.5 2.0 3.0 5.5
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ST implementations cost summary

insert search delete
find kth
largest

sort join

unordered array 1 N 1 N NlgN N

BST N N N N N N

randomized BST* lg N lg N lg N lgN N lgN

red-black BST lg N lg N lg N lg N lg N lg N

hashing* 1 1 1 N NlgN N

“Guaranteed” asymptotic costs for an ST with N items

Can we do better? 

* assumes system can produce “random” numbers 
*  assumes our hash functions can produce random values for all keys

tough to be sure....

Not really: need lgN bits to distinguish N keys


