
Hash functions
Separate Chaining

Linear Probing
Double Hashing

Hashing Algorithms

2

Records with keys (priorities)
basic operations
• insert
• search
• create
• test if empty
• destroy
• copy

Problem solved (?)
• balanced, randomized trees use

O(lg N) comparisons
Is lg N required?
• no (and yes)

Are comparisons necessary?
• no

Symbol-Table ADT

not needed for one-time use
but critical in large systems

void STinit();
void STinsert(Item);
Item STsearch(Key);
 int STempty();

ST.h

ST interface in C

generic operations
common to many ADTs

3

ST implementations cost summary

insert search delete
find kth
largest

sort join

unordered array 1 N 1 N NlgN N

BST N N N N N N

randomized BST* lg N lg N lg N lgN N lgN

red-black BST lg N lg N lg N lg N lg N lg N

hashing* 1 1 1 N NlgN N

“Guaranteed” asymptotic costs for an ST with N items

Can we do better?

* assumes system can produce “random” numbers

4

Save items in a key-indexed table (index is a function of the key)

Hash function

• method for computing table index from key

Collision resolution strategy

• algorithm and data structure to handle
 two keys that hash to the same index

Classic time-space tradeoff

• no space limitation:
 trivial hash function with key as address

• no time limitation:
 trivial collision resolution: sequential search

• limitations on both time and space (the real world)
hashing

Hashing: basic plan

5

Goal: random map (each table position equally likely for each key)

Treat key as integer, use prime table size M

• hash function: h(K) = K mod M

Ex: 4-char keys, table size 101
binary 01100001011000100110001101100100

 hex 6 1 6 2 6 3 6 4
 ascii a b c d

Huge number of keys, small table: most collide!

abcd hashes to 11
 0x61626364 = 1633831724
 16338831724 % 101 = 11

dcba hashes to 57
 0x64636261 = 1684234849
 1633883172 % 101 = 57

abbc also hashes to 57
 0x61626263 = 1633837667
 1633837667 % 101 = 57

Hash function

25 items, 11 table positions
~2 items per table position

264~ .5 million different 4-char keys
101 values
~50,000 keys per value

5 items, 11 table positions
~ .5 items per table position

6

Goal: random map (each table position equally likely for each key)

Treat key as long integer, use prime table size M

• use same hash function: h(K) = K mod M

• compute value with Horner’s method

Ex: abcd hashes to 11
 0x61626364 = 256*(256*(256*97+98)+99)+100
 16338831724 % 101 = 11

numbers too big?

OK to take mod after each op
 256*97+98 = 24930 % 101 = 84
 256*84+99 = 21603 % 101 = 90
 256*90+100 = 23140 % 101 = 11

How much work to hash a string of length N?

N add, multiply, and mod ops

Hash function (long keys)

 int hash(char *v, int M)
 { int h, a = 117;
 for (h = 0; *v != '\0'; v++)
 h = (a*h + *v) % M;
 return h;
 }

hash.c

hash function for strings in C

scramble by using
 117 instead of 256

Uniform hashing: use a different
random multiplier for each digit.

0x61

... can continue indefinitely, for any length key

7

Two approaches

Separate chaining

• M much smaller than N

• ~N/M keys per table position

• put keys that collide in a list

• need to search lists

Open addressing (linear probing, double hashing)

• M much larger than N

• plenty of empty table slots

• when a new key collides, find an empty slot

• complex collision patterns

Collision Resolution

8

Hash to an array of linked lists

Hash

• map key to value between 0 and M-1

Array

• constant-time access to list with key

Linked lists

• constant-time insert

• search through list using
elementary algorithm

M too large: too many empty array entries

M too small: lists too long

Typical choice M ~ N/10: constant-time search/insert

Separate chaining

Trivial: average list length is N/M

0
1 L A A A

2 M X

3 N C
4
5 E P E E
6

7 G R

8 H S
9 I
10

Theorem (from classical probability theory):
Probability that any list length is > tN/M
is exponentially small in t

Worst: all keys hash to same list

Guarantee depends on hash
function being random map

9

Hash to a large array of items, use sequential search within clusters

Hash

• map key to value between 0 and M-1

Large array

• at least twice as many slots as items

Cluster

• contiguous block of items

• search through cluster using
elementary algorithm for arrays

M too large: too many empty array entries

M too small: clusters coalesce

Typical choice M ~ 2N: constant-time search/insert

Linear probing

Trivial: average list length is N/M ≡α
Worst: all keys hash to same list

Guarantees depend on hash
function being random map

Theorem (beyond classical probability theory):

insert:

search:

(1 +)2
1

(1−α)2
1

(1 +)2
1

 (1−α)
1

A
S A
S A E
S A E R
S A C E R
S H A C E R
S H A C E R I
S H A C E R I N

G S H A C E R I N
G X S H A C E R I N
G X M S H A C E R I N
G X M S H P A C E R I N

10

Avoid clustering by using second hash to compute skip for search

Hash

• map key to array index between 0 and M-1

Second hash

• map key to nonzero skip value
(best if relatively prime to M)

• quick hack OK
Ex: 1 + (k mod 97)

Avoids clustering

• skip values give different search
paths for keys that collide

Typical choice M ~ 2N: constant-time search/insert

Disadvantage: delete cumbersome to implement

Double hashing

Trivial: average list length is N/M ≡α
Worst: all keys hash to same list and same skip

Guarantees depend on hash
functions being random map

Theorem (deep):

insert:

search:

1−α
1

ln(1+α)α
1

G X S C E R I N
G X S P C E R I N

11

Double hashing ST implementation

insert

probe loop

linear probing:
take skip = 1

search

probe loop

code assumes Items are pointers, initialized to NULLstatic Item *st;

void STinsert(Item x)
 { Key v = ITEMkey(x);
 int i = hash(v, M);
 int skip = hashtwo(v, M);
 while (st[i] != NULL) i = (i+skip) % M;
 st[i] = x; N++;
 }
Item STsearch(Key v)
 {
 int i = hash(v, M);
 int skip = hashtwo(v, M);
 while (st[i] != NULL)
 if eq(v, ITEMkey(st[i])) return st[i];
 else i = (i+skip) % M;
 return NULL;
 }

12

Separate chaining vs. linear probing/double hashing

• space for links vs. empty table slots

• small table + linked allocation vs. big coherant array

Linear probing vs. double hashing

Hashing vs. red-black BSTs

• arithmetic to compute hash vs. comparison

• hashing performance guarantee is weaker (but with simpler code)

• easier to support other ST ADT operations with BSTs

Hashing tradeoffs

load factor (α)

50% 66% 75% 90%

linear
probing

search 1.5 2.0 3.0 5.5

insert 2.5 5.0 8.5 55.5

double
hashing

search 1.4 1.6 1.8 2.6

insert 1.5 2.0 3.0 5.5

13

ST implementations cost summary

insert search delete
find kth
largest

sort join

unordered array 1 N 1 N NlgN N

BST N N N N N N

randomized BST* lg N lg N lg N lgN N lgN

red-black BST lg N lg N lg N lg N lg N lg N

hashing* 1 1 1 N NlgN N

“Guaranteed” asymptotic costs for an ST with N items

Can we do better?

* assumes system can produce “random” numbers
* assumes our hash functions can produce random values for all keys

tough to be sure....

Not really: need lgN bits to distinguish N keys

