Geometric Search

range search
intersections of geometric objects
near-neighbor search
point location

Range search (1D)

Useful extension to symbol-table ADT ST.h

void STinit();

void STinsert(ltem;

| tem STsearch();
int STenpty();

for records with numeric keys
* create
* insert

4= noarg

new function wp i Nt STrange(Key, Key)

* search
* fest if empty
=) + range search: how many records have key values
that fall within a given range?
Change semantics of search
* require initial call to range search
(count items in successful search)
* return items in successive search calls

Typical client code:
cnt = STrange(L, R);
for (i = 0; i <cnt; i++)
{
X = STsearch();
/* process x */

}
Application: database queries

ST interface in C

insert B
insert D
insert A
insert I
insert E
insert A
insert H
insert F
range E to H
search
search
search

B

ABD
ABDI
ABDEI
AABDEI
AABDEHI
AABDEFHTI
3

E
F
H

Geometric search: overview

Types of data
* points, lines, planes; polygons, circles, ...
SETS of N objects

Problems extend to higher dimensions

* good algorithms also extend to higher dimensions
Higher level intrinsic structures arise (ex: convex hull)
Basic problems

* range search

* intersections

* near heighbor search

Range search (1D) implementations

Ordered array
* slow insert
* binary search on both interval endpoints for range
* increment and test index for search
Hash table
* no reasonable algorithm (key order lost in hash)
BST

* search on both endpoints for range
(need threads for fast search)

insert range search
ordered array N IgN 1
hash table 1 N N
BST Ig N IgN 1

4

1D range search BST implementation Range search (2D)

. . Useful extension to symbol-table ADT
Recursively search all subtrees that could have keys in range . 4 . Sthe
] R for records with 2-dimensional keys void STinit();
* if key at root is within range e create void STinsert(lten;
* increment global counter . insert Hem ?222:;?5)
e search both subtrees e search int STrange(Key, Key)
* if key at root is left of range, no need to search left subtree o test if empty ST interface in €
S'.. h: ke}/ a‘lr rolo‘r !s right of range, no need to search right subtree =) * range search: how many records have key values Tf .
IgnTly simpler logic: that fall within a gi 5 same as for
oI ' given range:
* not left implies within or right, so search left
* not right implies within or left, so search right Geometric inferpretation
] 1D range search 2D range search
int count;) ¢ keys are points on the line e keys are points in the plane
! ”} ?ﬁtﬂ f‘:ﬁef('('hntkzy Eiyl_;‘j Kez' nRol e e how many points in a given interval? e how many points in a given rectangle?
int txR = (h->key <= R); ¢a not right of range '.c’ . : L
if (txL && (h->l 1= z)) BSTra;g(;Ig(h-;)n;g o ce eosdeeeefoce eoee R
if (txL & txR) count ++; . c. o K
if (txR && (h->r = z)) BSTrangeR(h->r); e b,
int BSTrange(Key L, Key R <ide interval: chock one link ..': ...c ‘.
— . . ® outside interval; check one lin [}
{ count = 0; BSTrangeR(head, L, R): } @ within interval; check both links < L .' ¢ . .
@ not touched ¢ .. . ° .
5 6 .
2D range search grid implementation 2D range search grid implementation costs
init ' ti/pEthf szrU{ct PN_odte* li In!<: C nexts) Classic example (see Sedgewick Chapter 3)
. . struc e oint p; link next; };
* divide space into 6-by-6 squares link gri d[maxX/ G [maxY/ § ; * array: constant-time access to list by indexing
* create linked list for each square fnt GRIDinit() . L .
. {int i, j; _ * list: O(N) space for sets of varying size (total size N)
insert for (i =0; i < mxX G i++)
* use coordinates to index proper list fogri({j[. ?J]j S M I Choose grid square size to tune performance
* add point to list 3 _) * too small: space, initialization cost too high
int GRIDinsert(Point p)
range { , . * too large: oo many points per grid square
* use range coordinates to index squares 'tlzl; t ; mal | oc(si zeof *t); « rule of thumb: SN by /N arid (~N
that could have keys in range t->next = grid{p.x/G[p.y/d; rule of Thumb: y /N grid (~N squares)
* examine all records in all such squares — dip-x'Glp.y/q =t Time costs:
* if key is in the range, increment counter ¢ initialize: O(N) to initialize lists
“int count; . o |, * insert: O(1) provided points evenly distributed
int GRI Drange(Point LB, Point RT) " . . .
{ ifnt |(j;LB . fG e . '3[. . * range: O(1) per point in range (same provision)
or 1 = . X , 1 <= . X , |+t -
for (j = LB.y/G j <= RT.y/G |++) . . .
for (t =grid[i][j]; t !'= NULL; t = t->next) . . e,
if (t->p.x >= LB.x & . Simple, fast solution for well-distributed points wesst
::zg:;‘, N g;i o ’ BUT can be slow (points might all be in same square) s
, t->p.y <= RT.y) count++; . 53 Need more flexible data structure
7 iy 8

2D trees

Recursive search structure for 2D keys (points in the plane)
Standard BST, but alternate using x and y coordinates as key

Corresponds to planar subdivision useful for many geometric algorithms

even levels
points points [
leftof x right of x
odd levels T_"
points points ” b~
below x _ above x AN
. o f
search gives rectangle containing point
insert further subdivides plane
9
Range search (2D) implementations
Grid
* clustering worst case
kD tree
e BST search for range
(need threads for fast search)
insert range search
random points
unordered array 1 N N
kD tree Ig N R+IgN 1
grid 1 R 1
worst case points
kD tree N N N
grid 1 N N
random order
grid 1 N N
2D tree Ig N R+IgN 1

2D range search 2D tree implementation

Recursively search all subtrees that could have keys in range

* if key at root is in the range, increment counter
* at even level
* if root's key is left of or within range, search right subtree
* if root's key is right of or within range, search left subtree
* at odd level
* if root's key is above or within range, search lower subtree
* if root's key is below or within range, search higher subtree

int count;

int TDTrangeR(link h, Point LB, Point RT, int sw
{ int txL = (h->p.x >= LB.x); 4= not left
int txR = (h->p.x <= RT.X); 4= not right
int tyB = (h->p.y >= LB.y); €= not below
int tyT = (h->p.y <= RT.y); 4= not above

tl =sw? txL: tyB, t2 = sw? txR: tyT;
’

if (t1 & (h->1 !'= NULL))
TDTrangeR(h->I LB, RT, !sw);

if (txL & txR && tyB && tyT) count ++;

if (t2 & (h->r !'= NULL))
TDTrangeR(h->r LB, RT, !sw);

int BSTrange(Key LB, Key RT)
{ count = 0; BSTrangeR(head, LB, RT, 0); }

10 e

Clustering

Geometric data is seldom uniformly random

Example: USA map data
* 80000 points, 20000 grid squares
* half the grid squares are empty

¢ half the points have >10 others
in same grid square

* 10 percent have >99 others
in same grid square

Clustering is a well-known phenomenon even in random data

Problems worsen in higher dimensions

Good clustering performance is a primary reason to choose
kD trees over grid methods

kD trees

Recursive search structure for kD keys (points in k-dimensional space)
Standard BST, but cycle through dimensions for key coordinates

Corresponds to spatial subdivision useful for many geometric algorithms

level = i (mod k)

O

points whose i-th points whose i-th
coordinate is less than x's coordinate is greater than x's

search gives kD parallelopiped containing point
insert further subdivides space

Efficient, simple data structure for processing kD data

Note: 2D and kD trees were discovered by an undergraduate in an algorithms class!
13

Fast algorithm for h-v line intersection

Use horizontal sweep line moving from top to bottom
* vertical line segment in data is a point on the sweep line
* horizontal line segment in data is an interval on the sweep line
* h-v intersection when points within interval

Reduces 2D h-v line intersection to 1D range searching (!)

Geometric intersection

Problem: Find all intersecting pairs among a set of N geometric objects
Applications:

* CAD (stay tuned)

* games, movies, virtual reality
Simplest version:

« 2D

* all objects are horizontal or vertical line segments
I

—E “||

Solution approach extends to 3D and general objects

14

Sweep-line h-v intersection implementation

r 1
r 1 . = 4
C 1
N r . 1 -
1 ‘ o L‘ -J Py
N r 1
T ol L o]
L T 1
= =
r 1

Use priority queue ADT ony to simulate sweep line movement
Use range search ADT on x to simulate sweep line contents
Three types of events

* fop of vertical: insert x coordinate onto the sweep line

* boftom of vertical: remove x coordinate from the sweep line

¢ horizontal: range search on endpoints

insert

insert

. r |
—_— range - 3 T =
range T 1
insert
insert as c . - = -
pu— range M T ME M
remove
remove .. - [3 2
range] T =
range | g |
r |
range T 1
remove . -
insert - -
range [} .- .-
remove

remove
16

Sweep-line h-v intersection implementation

Use priority queue ADT ony to simulate sweep line movement

Use range search ADT on x to simulate sweep line contents

"PQ@nit(); STinit();
for (i =0; i <N i++)
PQ nsert(lines[i]);

V\hi{| e (!PQenpty()) Running time:

t = PQdel max(); O(N) insert and delmax ops for PQ
if (horizontal (t)) O(N) insert, delete, and range ops for ST
{
cnt = STrange(t.p0.x, t.pl.x); .
for (i =0; i <cnt: i+5) Total: O(N log N) 4=
intersection(t, STsearch()); (with suitable ADT implementations)
}
else if (top(t)) STinsert(t);
else if (bottonm(t)) STdelete(t);
}

Same basic idea extends to handle arbitrary geometric shapes (I!)

17

Near neighbor search

Another useful extension to symbol-table ADT
for records with metric keys
* create
* insert
* fest if empty
=) near neighbor search: which record has a key
that is nearest to a given key?

Need concept of distance (not just less)

kD trees provide fast, elegant solution

* recursively search subtrees that could have ———— L,
near neighbor (may search both)

*+ O(log N) ? P+

19 +

Digression: algorithms and Moore's Law

Problem: Find intersections in N h-v rectangles
Solution: Slight modification fo sweep-line h-v line intersection algorithm
Application: microprocessor design

early 1970s: micropr'oce.ssor design became I ﬂ I. II
a geometric problem . I
* Very Large Scale Integration L L .I .I
* Computer-Aided Design | - HiHE N
* design-rule checking HE EE

Moore's Law: processing power doubles every 18 months

* 197x: need to check N rectangles

* 197(x+1.5): need to check 2N rectangles on a 2x-faster computer
Quadratic algorithm: (compare each rectangle against all others)

e 197x: takes M days

* 197(x+1.5): takes (4M)/2 = 2M days (1)
Need O(N log N) CAD algorithms to sustain Moore's Law

18

Voronoi diagram

Ultimate near-neighbor search structure
Voronoi region: set of all points closest to a given point

Voronoi diagram: planar subdivision delineating Voronoi regions
(note: Voronoi edges are perpendicular bisector segments)

Delauney triangulation: dual of Voronoi diagram (includes convex hulll)
edge p-q in Delauney iff p-q bisector segment in Voronoi

Challenge: compute the Voronoi

20

Adding a point to Voronoi diagram

Basis for incremental algorithms

Region containing point gives points to check to compute
new Voronoi region boundaries

Main challenge in computing Voronoi: representing it

Use multilist associating each point with its Voronoi neighbors

21

Sweep-line Voronoi algorithm

Presort points on x-coordinate

Eliminates point location (as for convex hull)

23

Randomized incremental Voronoi algorithm

Add points (in random order)
* find r-egion Confuining poinf 4= use near-neighbor algorithm or (with work) Voronoi itself

* update neighbor regions, create region for new point

Running time: O(N log N)

22

Discretized Voronoi diagram

Use grid approach to answer near-neighbor queries in constant time

Approach 1: provide approximate answer (fo within grid square size)
Approach 2: keep list of points to check in grid squares

Computation not difficult (move outward from points)

N~

24

Summary

Basis of many geometric algorithms: search in a planar subdivision

grid 2D tree Yoron01 m’rer.sec'rmg
diagram lines
basis IN h-v lines N points N points IN lines
. 2D array N-node
representation of N lists N-node BST multilist N-node BST
cells ~N squares N rectangles N polygons ~N triangles
search cost 1 log N log N log N
extend to kD? | too many cells easy cells. too use (k-1)b
complicated hyperplane

Aj:.

