Geometric Algorithms

overview
primitives
convex hull algorithms
context

Warning: intuition may not be helpful

Humans have spatial intuition in 2D and 3D: computers do not!

Example: Is a given polygon convex?

we see these programs see these

,_.
o
o
oo
~

Geometric algorithms

Important and far-reaching applications

* models of physical world
examples: maps, architecture, medical imaging

* computer graphics
examples: movies, games, virtual reality

¢ mathematical models
stay tuned

Ancient mathematical foundations, but
most geometric algorithms are less than 30 years old

Knowledge of fundamental algorithms is critical
* use them directly
* use the same design strategies for harder problems

* learn how to compare and evaluate algorithms

2

Elementary geometric primitives (2D)

1]15[14]|13]12|11|10 81716 4 2
1(2|18(4 (18] 4]19|4[19(4 |20 20 20
111013]|7(2]|8]8 4
65|15 111314 16

Point

* two numbers (x, y)
#t ypedef struct {double x; double y;} Point;

Line

* two numbers aand b [ax + by = 1] ¢ lines through origin are exceptional
Line segment

¢ four numbers (x1, y1) and (x2, y2)

* two points pO and p1
#typedef struct {Point x; Point y;} LineSegnent;

Polygon

* sequence of points
Point p[N;

No shortage of other geometric shapes
triangle, square, circle, quadrilateral, parallelogram, ...

3D and higher dimensions more complicated

4

Building layers of abstraction

Typical scenario in algorithm design: Use a more primitive operation!

Example: no

Ts a given polygon simple?

. . . yes
Do two given line segments intersect? 7[\

. no
Are two given points on the same side of a given line? —

Is the route connecting three given points a ccw turn?

Layers of abstraction example (continued)

TIs the route connecting p0, p1, and p2 a ccw turn? p2

ccew(p0, pl, p2) .

Are points g and r on the same side of line L? *q
'ccvx,(L.p0O, L.pl, gq) == ccw(L.p0O, L.pl. r)

Do line segments L and S intersect?

yes
‘I'same(L.p0, L.pl, S) && !same(S.p0, S.pl, L) 7Z\L
R

Ts a given polygon simple?

for(i =0; i <N i+4)
for(j =i+1;] <N,]++4)
if (intersect(p[i], p[j]) return O;
return 1;

‘ Stay tuned (next lecture)
7 for faster implementation

yes

CCW implementation

Input: points p0, p1, and p2
Output:
1 if pO-pl-p2isaccw turn

1

p2
pog
p

-1 if pO-pl-p2isacw turn po »

p2
0 if p0, pl, p2are collinear — .,
p . .
po’\’pz\c

pl
Approach: compare slopes

|n2 ccw Poi nt p0O, Point pl, Point p2) slopede/dst
int dx1, dx2, dyl, dy2;
dx1 = pl.x - p0.x; dyl = pl.y - pO.y;
dx2 = p2.x - p0.x; dy2 = p2.y - pO0.y;
if (dx1*dy2 > dyl1*dx2) return 1; PO
if (dx1*dy2 < dyl*dx2) return -1;
return 0; 4= slopes are equal

p2

1
slope dx1/dy1 ? ©

6

Line-segment intersection implementation bug

Still not quite right!

Bug in degenerate case with four collinear points

Does AB infersect CD? A 8 5
* on the line in the order ABCD: NO ./B'/

¢ on the line in the order ACDB: YES

Need more careful CCW implementaton
¢ more work when dx1*dy2 == dx2*dy1 (see book)

Lessons:
* geometric primitives are tricky to implement

* can't ignore degenerate cases

Convex hull of a point set

Convex hull: smallest polygon enclosing a given set of points

A polygon is convex iff every line whose endpoints are within the

polygon falls entirely within the polygon

Lemma: Hull must be convex

convex

Running time of convex hull algorithms can depend on

* N: number of points
* M: number of points on the hull

* point distribution

Sweep-line convex hull algorithm

not convex

Idea: presort on x for incremental algorithm

Equivalent to imagining sweep line moving
from left to right through points

plus: eliminates “inside” test

minus: have to pay cost of sort

Total cost: O(N log N)

Incremental convex hull algorithms

Idea: consider points one by one
* next point inside current hull—ignore
* next point outside current hull—update
Two subproblems to solve
* test if point inside or outside polygon
* update hull for outside points
Both subproblems
* brute force: O(M) to check all hull points
* can be improved to O(log M) with binary search
* relatively cumbersome to code
Randomize: take points in random order
Total running time: O(N log M)

o

L]
L]
e

Xy
&)

=
[

Divide-and-conquer convex hull algorithms

Divide point set into two halves
* solve subproblems recursively
* merge results

Idea 1: take points in random order

Both O(N log N) bu‘r relatively cumbersome’ To code

12

Package-wrapping convex hull algorithm

Idea:
* point with lowest y coordinate is on the hull

* sweep line ccw anchored at current point—first point hit is on hull

Graham scan convex hull algorithm

Idea:
* sort points by angle to get simple closed polygon

* scan polygon—discard points causing cw turn

implementation of t het a

Implementation of package-wrapping algorithm

Input: polygon (represented as an array of N points)
Output: M (array rearranged such that first M points are convex hull)

int wap(Point p[], int N)
{int i, min, M double th, v; Point t;
for (mn =0, i =1; i <N i++)
if (pli]l.y <p[nmin].y) nmin=ij;
P[Nl = p[nin]; th = 0.0;
for (M=0; M< N Mt+)

4= find point with min y coordinate

t =p[M; p[M = p[nin]; p[nn] =t;
mn=N v =th; th = 360.0;
“for (i = MKLl; i <= N; i++)
omitted (can use slope) = if (theta(p[M' p[i]) > V)
if (theta(p[M, p[i]) < th)
{ mn=1i; th =theta(p[M, p[nmn]);}
if (mn==N) return M
}
}

4= find min angle > v

2D analog of selection sort: O(NM) running time

14

Implementation of Graham scan algorithm

Input: polygon (represented as an array of N points) ¢=pointsinpii]...pIN
Output: M (array rearranged such that first M points are convex hull)

.int grahanmscan(Point p[], int N
{int i, mn, M Point t;
“for (mMmn =1, i =2; i <= N, i++)
if (plil.y <plmn].y) min=ij;
for (i =1; i <= N, i++)
if (pli].y == p[mn].y)
if (p[i].x >p[mn].x) mn-=i;
t = p[1]; p[1] = p[nin]; p[mn] =t;
qui cksort(p, 1, N); 4= implementation of | ess uses angle with p[1]
p[0] is sentinel wp P[O] = p[N ;

4= swap "lower left" point with first

“for (M=3, i =4; i <= N i++)
while (ccw(p[M, p[M1],p[i]) >= 0) M-; 4= back up to include i on hull
M+t = p[M; p[M = p[i]; p[i] =t; €= add i to putative hull
}
return M

}

Total cost: O(N log N) (for sort).
16

Quick-elimination convex hull algorithms Convex hull algorithms cost summary

"Guaranteed" asymptotic cost to find M-point hull in N-point set

Tdea: fast test to eliminate most inside points .. Q
. .) 2
quick: use quadrilateral Q Package wrap NM
.mm (), .max(.x *Y). min(x-y), max(x-y) C L R Graham scan N log N (sort time)
quicker: use inscribed rectangle R . off « |
not many points in QR « ° . Divide and conquer * N log N
Three-phase algorithm ° . . 9 J
' e s Quick elimination *
* pass through all points to compute R L o |
- N h 5 Incremental elimination N log M
* eliminate points inside R
Sweep line N log N (sort time
* find convex hull of remaining points P g N()
Option 1: use recursion ("quickhull”) * assumes “reasonable” known point distribution
P ' q N * leading coefficient higher than for sorting
* relatively cumbersome to implement How many points on hull?
° O(N) worst case not many points in R-hull . * Worst case: N
Option 2: use Graham scan * Average case: difficult problems in stochastic geometry
* few points remaining in many situations . * uniform in a convex polygon with O(1) edges: log N
* O(N + M Ig M) avg case (+ fast inner loop) e uniform in a disc: N/3
17 18
Higher dimensions Context: mathematics
Geometric models of mathematical problems extend impact of
Multifaceted (convex) polytope encloses points geometric algs far beyond direct application to physical models
NOT a simple object
) Example 1:
* vertices, edges, facets []))
) hal . L ord geometric problem | mathematical equivalent
return extreme points (hull vertices)—no natural order intersect two lines (2D) solve 2 equations in 2 unknowns
Example: N points d dimensions intersect three planes (3D) | solve 3 equations in 3 unknowns
e d=2: convex hull | " |
algorithm: gaussian elimination
e d=3: Euler's formula (v-e +f = 2) 9 9
* d>3: exponential number of facets at worst Example 2:
Some of the same approaches work (costs higher) . geometric problem ‘ math equivalent
* Package-wrap find convex polytope defined by solve simultaneous
. Divide—and—conquer intersecting half-planes inequalities
¢ Randomized is given point inside polytope? linear programming
* Interior elimination algorithm: simplex

Vast number of applications (stay tuned)
19 20

Context: algorithm design paradigms

Draw from knowledge about fundamental algorithms
Design and use levels of abstraction
* use fundamental algorithms and data structures
* know their performance characterisitics
Carefully implement primitives
Recognize intrinsically difficult problems

For many important problems
* classical approaches give good algorithms
* need research to find best algorithms

* no excuse for using dumb algorithms

all possibilities double recursion 2N

brute force nested for loops NG
divide-and-conquer recursion, frees N log N

elegant idea single for loop N

randomization random choices N
21

