
All Questions Answered
Donald Knuth

318 NOTICES OF THE AMS VOLUME 49, NUMBER 3

On October 5, 2001, at the Technische Universität
München, Donald Knuth presented a lecture entitled
“All Questions Answered”. The lecture drew an au-
dience of around 350 people. This article contains
the text of the lecture, edited by Notices senior
writer and deputy editor Allyn Jackson.

Originally trained as a mathematician, Donald
Knuth is renowned for his research in computer sci-
ence, especially the analysis of algorithms. He is a
prolific author, with 160 entries in MathSciNet.
Among his many books is the three-volume series
The Art of Computer Programming [TAOCP], for
which he received the AMS Steele Prize for Exposi-
tion in 1986. The citation for the prize stated that
TAOCP “has made as great a contribution to the
teaching of mathematics for the present generation
of students as any book in mathematics proper in
recent decades.” The long awaited fourth volume is
in preparation and some parts are available through
Knuth’s website, http://www-cs-faculty.
stanford.edu/~knuth/.

Knuth is the creator of the TEX and METAFONT
languages for computer typesetting, which have
revolutionized the preparation and distribution of
technical documents in many fields, including math-
ematics. In 1978 he presented the AMS Gibbs Lecture
entitled “Mathematical Typography”. The lecture
was subsequently published in the Bulletin of the
AMS [MT].

Knuth earned his Ph.D. in mathematics in 1963
from the California Institute of Technology under
the direction of Marshall Hall. He has received the
Turing Award from the Association for Computing
Machinery (1974), the National Medal of Science

(1979), the Adelsköld Medal from the Royal Swedish
Academy of Sciences (1994), the Harvey Prize from
the Technion of Israel (1995), the John von Neumann
Medal from the Institute of Electrical and Electron-
ics Engineers (1995), and the Kyoto Prize from the
Inamori Foundation (1996). Since 1968 Knuth has
been on the faculty of Stanford University, where
he currently holds the title of Professor Emeritus of
The Art of Computer Programming.

—Allyn Jackson

Knuth: In every class that I taught at Stanford,
the last day was devoted to “all questions an-
swered”. The students didn’t have to come to class
if they didn’t want to, but if they did, they could
ask any question on any subject except religion or
politics or the final exam. I got the idea from
Richard Feynman, who did the same thing in his
classes at Caltech, and it was always interesting to
see what the students really wanted to know. Today
I’ll answer any question on any subject. Do we
allow religion or politics? I don’t know. But there
is no final exam to worry about. I’ll try to answer
without taking too much time so that we can get a
lot of questions in.

So, who wants to ask the first question?… Well,
if there are no questions…[Knuth makes as if to
leave.]

Question: There was a special report to the Amer-
ican president, the PITAC report [PITAC], contain-
ing some recommendations. I am wondering
whether you would be willing to comment on the pri-
orities outlined in these recommendations:
better software engineering, building a teraflop

http://www-cs-faculty.stanford.edu/~knuth/
http://www-cs-faculty.stanford.edu/~knuth/

MARCH 2002 NOTICES OF THE AMS 319

computer, improvements in the Internet including
higher security and higher bandwidth, and the
socio-economic impacts of managing information
available via computer networks.

Knuth: I think that’s a brilliant solution of the
problem of what to present to a president. But in
fact what I would like to see is thousands of com-
puter scientists let loose to do whatever they want.
That’s what really advances the field. From my ex-
perience writing The Art of Computer Programming,
if you asked me any year what was the most im-
portant thing that happened
in computer science that year,
I probably would have no an-
swer for the question, but over
five years’ time the whole field
changes. Computer science is
a tremendous collaboration
of people from all over the
world adding little bricks to a
massive wall. The individual
bricks are what make it work,
and not the milestones.

Next question?

Question: Mathematicians
say that God has the “Book of
Proofs”, where all the most
aesthetic proofs are written.
Can you recommend some
algorithms for the “Book of Al-
gorithms”?

Knuth: That’s a nice ques-
tion. It was Paul Erdős who
promulgated the idea that God has a book con-
taining the best mathematical proofs, and I guess
my friend Günter Ziegler in Berlin has recently
written about it [PFB].

I remember that mathematicians were telling
me in the 1960s that they would recognize com-
puter science as a mature discipline when it had
1,000 deep algorithms. I think we’ve probably
reached 500. There are certainly lots of algorithms
that I think have to be considered absolutely beau-
tiful and immortal, in some sense. Two examples
are the Euclid algorithm and a corresponding one
that works in binary notation and that may have
been developed independently in China, almost as
early as Euclid’s algorithm was invented in Greece.
In my books I am mostly concerned with the algo-
rithms that are classical and that have been around
for a long time. But still, every year we find brand
new ideas that I think are going to remain forever.

Question: Do you have thoughts on quantum
computing?

Knuth: Yes, but I don’t know a great deal about
it. It’s quite a different paradigm from what I’m used
to. It has lots of things in common with the kind
of computing I know, but it’s also quite mysterious
in that you have to get all the answers at the end;

you don’t make a test and then have that determine
what you do next. A lot of you have seen the movie
Lola rennt (called Run Lola Run in the U.S.), in which
the plot is played out three different times, with the
outcome taking three different branches. Quantum
computing is something like that: The world goes
into many different branches, and we’re interested
in the one where the outcome is the nicest.

I’m good at nonquantum computing myself, so
it’s quite possible that if quantum computing takes
over, I won’t be able to do the new stuff. My life’s

work is with computers not
because I’m interested so
much in computation, but be-
cause I happen to be good at
this kind of computing. For-
tunately for me, I found that
the thing I could do well was
interesting to other people. I
didn’t develop an ability to
think about algorithms be-
cause I wanted to help people
solve problems. Somehow, by
the time I was a teenager, I
had a peculiar way of think-
ing that made me good at pro-
gramming. But I might not be
good at quantum program-
ming. It seems to be a differ-
ent world from my own.

I’ll take a question from
the back.

Question: I am working in
theorem proving, and one of the most important pa-
pers is your paper “Simple word problems in uni-
versal algebra” [KB] from 1970, written with
P. B. Bendix. I have two questions. The first is, do you
still follow this area and what do you think of it? And
the second is, who is and what became of P. B. Ben-
dix?

Knuth: This work was published in 1970, but I
actually did it in 1967 while I was at Caltech. It
was a simple idea, but fortunately it’s turned out
to be very widely applicable. The idea is to take a
set of mathematical axioms and find all the
implications of those axioms. If I have a certain
set of axioms and you have a possible theorem,
you ask, does this theorem follow from those
axioms or not? I called my paper “Simple word
problems in universal algebra”, and I said a
problem was “simple” if my method could
handle it. Now people have extended the method
quite a lot, so that a lot more problems are
“simple”. I think their work is beautiful.

The year 1967 was the most dramatic year of
my life by far. I had no time for research. I had
two children less than two years old; I had been
scheduled to be a lecturer for ACM (Association
for Computing Machinery) for three weeks; I had

N
O

N
 S

EQ
U

IT
U

R
 ©

 2
0
0
1
 W

il
ey

 M
il

le
r.

D

is
t.

 B
y

U
N

IV
ER

SA
L

PR
ES

S
SY

N
D

I-
C

A
T

E.
 R

ep
ri

n
te

d
 w

it
h

 p
er

m
is

si
o
n

. A
ll

 r
ig

h
ts

 r
es

er
ve

d
.

320 NOTICES OF THE AMS VOLUME 49, NUMBER 3

to give lectures in a
NATO summer school
in Copenhagen; I had to
speak in a conference at
Oxford; and so on. And
I was getting the page
proofs for The Art of
Computer Program-
ming, of which the first
volume was being
published in 1968. All
of this was in addition
to the classes I was
teaching, and an attack
of ulcers that put me in
the hospital, and being
an editor for twelve
journals. That year I
thought of two little
ideas. One has become

known as the Knuth-Bendix algorithm; the other
one is known as attribute grammars [AG]. That
was the most creative year of my life, and it was
also the most hectic.

You asked about Peter Bendix. He was a sopho-
more in a class I taught at Caltech, “Introduction
to Algebra”. Every student was supposed to do a
class project, and Peter did his term paper on the
implementation of the algorithm. He was a physics
major. This was the time of the Vietnam War, and
he became an objector. He went to Canada and
worked as a high school teacher for about five
years and later got a degree in physics. I found he
was living near Stanford a couple of years ago, so
I called him up and found out that he has had a
fairly happy life in recent years.

In the 1960s, if I wrote a joint paper with my ad-
visor Marshall Hall, it meant that he did the theory
and I did the programming. But if I wrote a paper
with anybody else, it meant that I did the theory and
the other person did the programming. So Pete
Bendix was a good programmer who implemented
the method.

Question: It seems to me it’s easier to revise a
book than the huge software programs we see day
to day. How can we apply theory to improve soft-
ware?

Knuth: Certainly errors in software are more dif-
ficult to fix than errors in books. In fact, my main
conclusion after spending ten years of my life work-
ing on the TEX project is that software is hard. It’s
harder than anything else I’ve ever had to do. While
I was working on the TEX program, I was unable to
do full-time teaching. Although I love teaching, I
had to take a year off from it because there was just
too much to keep in my head at one time. Writing a
book is a little more difficult than writing a techni-
cal paper, but writing software is a lot more difficult
than writing a book.

In my books I offer rewards for the first person
who finds any particular error, and I must say that
I’ve written more checks to people in Germany
than in any other country in the world. I get letters
from all over, but my German readers are the best
nitpickers that I’ve ever had! In software I similarly
pay for errors in the TEX and METAFONT programs.
The reward was doubling every year: It started out
at $2.56, then it went to $5.12, and so on, until it
reached $327.68, at which time I stopped dou-
bling. There has been no error reported in TEX since
1994 or 1995, although there is a rumor that some-
body has recently found one. I’m going to have to
look at it again in a year or two. I do everything in
batch mode, by the way. I am going to look again
at possible errors in TEX in, say, the year 2003.

I think letting users know that you welcome re-
ports of errors is one important technique that
could be used in the software industry. I think
Microsoft should say, “You’ll get a check from Bill
Gates every time you find an error.”

Question: What importance do you give to the de-
sign of efficient algorithms, and what emphasis do
you suggest giving this area in the future?

Knuth: I think the design of efficient algorithms
is somehow the core of computer science. It’s at
the center of our field. Computers are incredibly
fast now compared to what they were before, so
for many problems there is no need to have an ef-
ficient algorithm. I can write programs that are in
some sense extremely inefficient, but if it’s only
going to take one second to get the answer, who
cares? Still, some things we have to do millions or
billions of times, and just knowing that the num-
ber of times is finite doesn’t tell us that we can han-
dle it. So the number of problems that are in need
of efficient algorithms is huge. For example, many
problems are NP complete, and NP complete is
just a small level of complexity. Therefore I see an
almost infinite horizon for the need for efficient
algorithms. And that makes me happy because
those are the kinds of problems I like the best.

MARCH 2002 NOTICES OF THE AMS 321

Question: You have a big interest in puzzles, in-
cluding the “Tower of Hanoi” puzzle on more than
3 pegs. I won’t ask a harder question—what is the
shortest solution?—because I am not sure everyone
knows this puzzle. But I will ask a more philosoph-
ical question: Is it possible to show this can never be
solved?

Knuth: Do people know the “Tower of Hanoi”
problem? You have 3 pegs, and you have disks of
different sizes. You’re supposed to transfer the disks
from one peg to another, and the disks have to be
sorted on each peg so that the biggest is always on
the bottom. You can move only one disk at a time.
Henry Dudeney invented the idea of generalizing
this puzzle to more than 3 pegs, and the task of find-
ing the shortest solution to the 4-peg problem has
been an open question for more than a hundred
years. The 3-peg problem is very simple; we teach it
to freshmen.

But take another, more famous problem, the
Goldbach conjecture in mathematics: Every even in-
teger is the sum of two odd primes. Now, I think
that’s a problem that’s never going to be solved. I
think it might not even have a proof. It might be
one of the unprovable theorems that Gödel showed
exist. In fact, we now know that in some sense al-
most all correct statements about mathematics are
unprovable. Goldbach’s conjecture is just, sort of,
true because it can’t be false. There are so many
ways to represent an even number as the sum of
two odd numbers, that as the numbers grow the
number of representations grows bigger and big-
ger. Take a 101010

-digit even number, and imagine
how many ways there are to write that as the sum
of two odd integers. For an n-bit odd number, the
chances are proportional to 1/n that it’s prime. How
are all of those pairs of odd numbers going to be
nonprime? It just can’t happen. But it doesn’t fol-
low that you’ll find a proof, because the definition
of primality is multiplicative, while Goldbach’s con-
jecture pertains to an additive property. So it might
very well be that the conjecture happens to be
true, but there is no rigorous way to prove it.

In the case of the 4-peg “Tower of Hanoi”, there
are many, many ways to achieve what we think is
the minimum number of moves, but we have no
good way to characterize all those solutions. So
that’s why I personally came to the conclusion that
I was never going to be able to solve it, and I
stopped working on it in 1972. But I spent a solid
week working on it pretty hard.

Question: What are the five most important prob-
lems in computer science?

Knuth: I don’t like this “top ten” business. It’s
the bottom ten that I like. I think you’ve got to
go for the little things, the stones that make up
the wall.

Question: You
spent a lot of time on
computer typesetting.
What are your reflec-
tions on the impact of
this work?

Knuth: I am ex-
tremely happy that
my work was in the
public domain and
made it possible for
people on all plat-
forms to communi-
cate with each other
via the Internet. Espe-
cially now I’m thrilled
by some recent pro-
jects. Two weeks ago
I heard a great lecture
by Bernd Wegner from
the Technical Univer-
sity of Berlin about
the plans for online
journals by the Euro-
pean Mathematical So-
ciety. Such things
would simply have
been impossible with-
out the open source
software that came
out of my work. So I’m
extremely delighted
this is helping to ad-
vance science.

I’m happy to see
many books that look
pretty good. Before I
started my work,
books on mathemat-
ics were looking worse
and worse from year
to year. It took a lot
of skilled handwork
to do it in the old sys-
tem. The people who
could do that were
dying out, and high
priority did not go to
mathematical books.
I never expected that
TEX would take over the entire world of publishing.
I’m not a very competitive person, and I did not
want to take jobs away from anybody who was
doing another way of printing. But I found that no-
body wanted to do mathematical publishing well,
so math was something I could improve without
getting anybody upset about me being an upstart.

The downside is that I’m too sensitive to things
now. I can’t go to a restaurant and order food

322 NOTICES OF THE AMS VOLUME 49, NUMBER 3

because I keep looking at the fonts on the menu.
Five minutes later I realize that it’s also talking
about food. If I had never thought about computer
typesetting, I might have had a happier life in some
ways.

Question: Can you give us an outline for com-
puter science, some milestones for the next ten or
twenty years?

Knuth: You’re asking for milestones again.
There is a lot of interest in applications to biology
because so many things have opened up in that
domain, with chances to cure diseases. The fact
that human beings are based on a discrete code
means that people like you and me, who are good
at discrete problems, are able to do relevant work
for this area. The problems are very difficult and
challenging, and that’s why I foresee an important
future there.

But in all aspects of our field, I really don’t see
any slowing down. Every time I think I’ve discov-
ered something interesting, I look on the Internet
and find that somebody else has done it too. So we
have a field that at the moment still seems to be
like a boiling kettle, where you can’t keep the lid
on.

In the field of biology, I think we can confidently
predict that it’s going to have rich problems to
solve for at least 500 years. I can’t make that claim
for computer science.

Question: What is the connection between math-
ematics and computer programming viewed as an
art?

Knuth: Art is Kunst. The American movie
Artificial Intelligence is called Kunstlicher Intelligenz
in Germany—that is, artificial as well as artistic. I
think of programming with beauty in mind, as
being something elegant, something that you can
be proud of for the way it fits together. Mathematics
in the same way has elegance. Both fields, com-
puting and mathematics, are different from
other sciences because they are artificial; they
are not in nature. They’re totally under our own
control. We make up the axioms, and when we

solve a problem, we can prove that we’ve solved it.
No astronomer will ever know whether his theories
of astronomy are correct. You can’t go up to the sun
and measure it.

So these are my first thoughts on that connec-
tion. But there is a difference between mathemat-
ics and computer programming, and sometimes I
can feel when I’m putting on one hat or the other.
Some parts of me like mathematics, and some
parts of me like emacs hacking. I think they go
together okay, but I don’t see that they’re the same
paradigm.

Question: What is the relationship between God
and computers?

Knuth: In one of my books, 3:16 Bible Texts
Illuminated [BTI], I used random sampling to study
sixty different verses of the Bible and what people
from all different religious persuasions and dif-
ferent centuries have said about those verses. I did
the study at first on my own, and then I found it
was interesting enough that I ought to make a book
about it. I got sixty of the best artists in the world
to illustrate the book, many of them in Germany.
The artwork was exhibited twice in Germany, and
in other countries around the world. It was also
shown in the National Cathedral in Washington,
DC. In that book I used methodology that com-
puter scientists often use for understanding a
complicated subject, to see if that method would
give some insight into the Bible, which is a com-
plicated subject. In the book, I don’t give answers.
I just say I think it’s good that life should be an
ongoing search. The journey is more important
than the destination.

Question: Do you know whether “P equals NP”
has been proved? I heard a rumor that it has.

Knuth: Which rumor did you hear?
Question: One from Russia.
Knuth: From Russia? That’s new to me. Well, I

don’t think anybody has proved that P equals NP
yet. But I know that Andy Yao has retired and
hopes to solve the problem in the next five to
ten years. He is inspired by Andrew Wiles, who

MARCH 2002 NOTICES OF THE AMS 323

devoted several years to proving Fermat’s Last
Theorem. They’re both Princeton people. Andy
can do it if anybody can.

Three or four years ago, there was a paper in a
Chinese journal of computer science and technol-
ogy by a professor who claimed he could solve an
NP-hard problem in polynomial time. The problem
was about cliques, and he had a very clever way to
represent cliques. The method was supposedly
polynomial time, but it actually took something like
n12 steps, so you couldn’t even check it when n
equals 5. So it was very hard to see the bug in his
proof. I went to Stanford and sat down with our
graduate students, and we needed a couple of
hours before we found the flaw. I wrote the author
a letter pointing out the error, and he wrote back
a couple of months later, saying, “No, no, there is
no error.” I decided not to pursue it any further. I
had done my part. But I don’t believe it’s been
solved. That’s the most mind-boggling problem
facing theoretical computer science, and maybe
all of science at the moment.

Question: What do you think of research in
cryptographic algorithms? And what do you
think of efforts by politicians today to put limits on
cryptography research?

Knuth: Certainly the whole area of cryptographic
algorithms has been one of the most active and ex-
citing areas in computer science for the past ten
years, and many of the results are spectacular and
beautiful. I can’t claim that I’m good at that par-
ticular subject, though, because I can’t think of
sneaky attacks myself. But the key problem is,
what about the abuse of secure methods of com-
munication? I don’t want criminals to use these
methods to become better criminals.

I’m a religious person, and I think that God
knows all my secrets, so I always feel that whatever
I’m thinking is public knowledge in some way. I
come from this kind of background. I don’t feel
I have to encrypt everything I do. On the other
hand, I would certainly feel quite differently if
somebody started to use such openness against me,

by stealing my bank accounts or whatever. So I am
supportive of a high level of secrecy. But whether
it should be impossible for the authorities to
decode things even in criminal investigations, in
extreme cases—there I tend to come down on the
side of wanting to have some way to break some
keys sometimes.

Question: Will we have intelligent machines some-
time in the future? Should we have them?

Knuth: There have always been inflated esti-
mates as to how soon we are going to have a
machine that’s intelligent. I still see no signs of
getting around the central problem of under-
standing what is cognition, what it means to think.
Neurologists are making better measurements
than they ever have before, but we are still so far
from finding an answer that I can’t yet rank
neuroscience as one of the most active fields of
current work. Biology has been getting answers,
with DNA and stem cells and so on. But with cog-
nition we are still looking for the secret.

Some very thought-provoking books came out
a year or two ago, one by Hans Moravec [Mo], and
one by Ray Kurzweil [Ku]. Both of them are saying
that in twenty or thirty years we are going to have
machines smarter than humans. Some people were
worried about that. My attitude is, if that’s true,
more power to them. If they are smarter than us,
so what? Then we can learn from them. But I see
no signs that there are any breakthroughs around
the corner.

Two weeks ago in Greece I was at the inaugura-
tion of a new book by Christos Papadimitriou, who
is chairman of computer science at Berkeley. He
published a novel in the Greek language called The
Smile of Turing [Pa]. I don’t want to give away the
story, but when it gets published in German or
English, you’ll find that it has a very nice discus-
sion of artificial intelligence and the Turing test for
intelligence.

The most promising model of how the brain
works that I’ve seen says that the brain is a dynamic
genetic algorithm that operates all the time. As I

324 NOTICES OF THE AMS VOLUME 49, NUMBER 3

am talking to you now, your brains have a lot of
competing theories about what I’m going to say. It’s

the survival of the fittest, a continual
battle among the competing theories.
Some come to the surface and actually
enter your consciousness, but the
others are all there. Some kind of mat-
ing of concepts might be going on in our
heads all the time. This model seems to
have the right properties to account for
how we can do what we do with the
relatively slow response time that our
neurons have. But I am by no means an
expert on this.

Question: What is your thinking about
software patents? There is a big discus-
sion going on in Europe right now about
whether software should be patentable.

Knuth: I’m against patents on things
that any student should be expected to
discover. There have been an awful lot
of software patents in the U.S. for ideas
that are completely trivial, and that
bothers me a lot. There is an organiza-
tion that has worked for many years to
make patents on all the remaining triv-
ial ideas and then make these available
to everyone. The way patenting had
been going was threatening to make
the software industry stand still.

Algorithms are inherently mathe-
matical things that should be as un-
patentable as the value of π . But for
something nontrivial, something like
the interior point method for linear pro-
gramming, there’s more justification
for somebody getting a right to license
the method for a short time, instead of
keeping it a trade secret. That’s the
whole idea of patents; the word patent

means “to make public”.
I was trained in the culture of mathematics, so

I’m not used to charging people a penny every time
they use a theorem I proved. But I charge somebody
for the time I spend telling them which theorem
to apply. It’s okay to charge for services and
customization and improvement, but don’t make
the algorithms themselves proprietary.

There’s an interesting issue, though. Could you
possibly have a patent on a positive integer? It is
not inconceivable that if we took a million of the
greatest supercomputers today and set them going,
they could compute a certain 300-digit constant
that would solve any NP-hard problem by taking
the GCD of this constant with an input number, or
by some other funny combination. This integer
would require massive amounts of computation
time to find, and if you knew that integer, then you
could do all kinds of useful things. Now, is that

integer really discovered by man? Or is it something
that is God given? When we start thinking of com-
plexity issues, we have to change our viewpoint as
to what is in nature and what is invented.

Question: You have been writing checks to peo-
ple who point out errors in your books. I have never
heard of anyone cashing these checks. Do you know
how much money you would be out of, if everyone
suddenly cashed the checks?

Knuth: There’s one man who lives near Frank-
furt who would probably have more than $1,000
if he cashed all the checks I’ve sent him. There’s a
man in Los Gatos, California, whom I’ve never met,
who cashes a check for $2.56 about once a month,
and that’s been going on for some years now.
Altogether I’ve written more than 2,000 checks
over the years, and the average amount exceeds
$8.00 per check. Even if everybody cashed their
checks, it would still be more than worth it to me
to know that my books are getting better.

References
[TAOCP] The Art of Computer Programming, by Donald E.

Knuth. Volume 1: Fundamental Algorithms (third
edition, Addison-Wesley, 1997). Volume 2: Semi-
numerical Algorithms (third edition, Addison-Wesley,
1997). Volume 3: Sorting and Searching (second
edition, Addison-Wesley, 1998). Volume 4: Combina-
torial Algorithms (in preparation).

[MT] Mathematical typography, by Donald E. Knuth. Bull.
Amer. Math. Soc. (N.S.) 1 (1979), no. 2, 337–372.
Reprinted in Digital Typography (Stanford, Califor-
nia: CSLI Publications, 1998), pp. 19–65.

[PITAC] President’s information technology advisory com-
mittee. See http://www.itrd.gov/ac/.

[PFB] Proofs from The Book, by Martin Aigner and Gün-
ter Ziegler. Second edition, Springer Verlag, 2001.

[KB] Simple word problems in universal algebras, by
Peter B. Bendix and Donald Knuth. Computational
Problems in Abstract Algebra, J. Leech, ed. (Oxford:
Pergamon, 1970), pp. 263–297. Reprinted in Au-
tomation of Reasoning, Jörg H. Siekmann and Graham
Wrightson, eds. (Springer, 1983), pp. 342–376.

[BTI] 3:16 Bible Texts Illuminated, by Donald E. Knuth.
A-R Editions, Madison, Wisconsin, 1990.

[AG] Semantics of context-free languages, by Donald E.
Knuth. Mathematical Systems Theory 2 (1968),
127–145. See also The genesis of attribute gram-
mars, in Lecture Notes in Computer Science 461
(1990), 1–12.

[Pa] TO XAMOGELO TOY TOYRINGK (The Smile of Tur-
ing), by Christos Papadimitriou. Livani Publishers,
Athens, Greece, 2001.

[Ku] The Age of Spiritual Machines: When Computers Ex-
ceed Human Intelligence, by Ray Kurzweil. Penguin
USA, 2000.

[Mo] Robot: Mere Machine to Transcendent Mind, by
Hans P. Moravec. Oxford University Press, 2000.

Photographs used in this article are courtesy of
Andreas Jung, Technische Universität München.

http://www.itrd.gov/ac/

