Directed Graphs

Some of these lecture slides have been adapted from:
« Algorithms in C, Part 5, 39 Edition, Robert Sedgewick.

Directed Graphs

DIGRAPH: directed graph.
. Edge from v to w.
. One-way street.
. Hyperlink from Yahoo to Princeton.

Princeton University + COS226 - Algorithms and Data Structures -+ Spring 2003+ http://www.Princeton EDU/~cs226
Graphs
Graph Vertices Edges

communication | telephones, computers fiber optic cables

circuits gates, registers, processors | wires

mechanical joints rods, beams, springs
hydraulic reservoirs, pumping stations | pipelines
financial stocks, currency transactions

transportation

street intersections, airports | highways, airway routes

scheduling tasks precedence constraints
software systems | functions function calls
internet web pages hyperlinks
games board positions legal moves

social relationship

people, actors friendships, movie casts

A Few Graph Problems

REACHABILITY. Is there a directed path from s to 1?
CYCLE. Is there a directed cycle in the graph?

TOPOLOGICAL SORT. Can you draw the graph so that all of the edges
point from left o right?

STRONG CONNECTIVITY. Are all vertices mutually reachable?

PAGERANK. What is the importance of a web page (according to Google)?




Graph ADT inC

Typical client program.
. Call GRAPH ni t () or GRAPHr and() to create instance.
. Uses Graph handle as argument to ADT functions.
. Calls Graph ADT function to do graph processing.

client.c

#i ncl ude <stdio. h>
#i ncl ude "di graph. h"

int main(int argc, char *argv[]) {
int V= atoi(argv[1]);
int E= atoi(argv[2]);
Graph G = GRAPHrand(V, E);
GRAPHshow( G ;
GRAPHt c( G ;
return O;

Graph ADT inC

Standard method to separate clients from implementation.
. Opagque pointer to Gr aph ADT.
. Plus simple t ypedef for Edge.

digraph.h

typedef struct graph *G aph;
typedef struct { int v, w, } Edge;
Edge EDGEinit(int v, int w;

Gaph GRAPH nit(int V);

Graph GRAPHrand(int V, int E);

voi d GRAPHdestroy(Graph G ;

void GRAPHshow(G aph G ;

void GRAPH nsert E(Graph G Edge e);
voi d GRAPHrenoveE(G aph G Edge e);
void GRAPHtc(Gaph G;

i nt GRAPHi sacyclic(Gaph G ;

Graph Representation

Vertex names. (ABCDEFGHIJKLM)
. Cprogram uses integers between 0 and V- 1.
. Convert via associative indexing symbol table.

Orientation of edge matters.

Set of edges representation.
. A-BA-GA-CL-MJ-M J-L J-KE-DF-D H-IF-E A-F 6-E

Ad jacency Matrix Representation

Adjacency matrix representation.
. Two-dimensional V x V array.
. Edgev-wingraph: adj[v][w] = 1.

ABCDEFGHI JKLM

A 0A[0110011000000
1B/00O0D0D0D00000O00O0O
2Cl0o000000000000O

(&) (o) (o) 3D[00000D00000O00O0O
4E0001000000000
5F000®»100000000

(o) (e) 6G1100100000000
7HO00D0000010000

S 81/0000000000000O
@ ® 9J[0000000000111

10 KI0O0OO0D0OD0O0O00D000O0DO

11 L/0000000000001

GH—0 @ 0 12M0000000001010

Adjacency Matrix




Transitive Closure

Reflexive transitive closure. 6* has an edge from v to w if and only if
there is directed path from v to w in 6.

. Not symmetric.
. Supports O(1) reachability queries with O(V?) space.

|p13345
oli1o01o01

1li11ecao0

alorL1e8 8

G iloorraae
4|00 33 31

slooooaa

|n1a334s

L

il111011

c* aliiiediid
alir1r112

4gloooe1a

sloooo1a

Warshall's Algorithm

Warshall's algorithm.
. Initialize tc[v][w] = 1 if v-w exists, O otherwise.
. Find path from v to w?
. Take path from v to i and then from i to w if both exist.

@

for (i =0; i <G>V, i++)
for (v =0; v < G>V, v++)
for (w=0; w< G>V, wt)
if (G>tc[v][i] & G>tc[i][W)
G>tc[v][wW = 1;

Invariant. After ith iteration tc[v][w] = 1 if and only if there exists a
path from v to w whose intermediate nodes are O, 1, ..., i.

Warshall's Algorithm: Example

T =y}

k=
C R
O e

aLa3a4dn
/L1211
LflsEEEI2

=R R

Transitive Closure: Cost Summary

TRANSITIVE CLOSURE. Is there adirected path from v to w?

Method Preprocess Query

Warshall




Adjacency List Representation

Vertex indexed array of lists.

. Space proportional o humber of edges.
. One representations of each directed edge.

o [Fled—{c]d—{eTet—{c]5]

©
()
Zo AN IOTOY OB

Adjacency List

Depth First Search

TRANSITIVE CLOSURE. Is there adirected path from v to w?
Use DFS to calculate all nodes reachable fromv.

To visit a node v:
- mark it as visited E

- recursively visit all unmarked nodes w adjacent to v

Enables direct solution of simple graph problems.
. Transitive closure.
. Directed cycles.
. Topological sort.

Basis for solving difficult graph problems.
. Strong connected components.
. Directed Euler path.

int GRAPHt c(G aph G {

}

int GRAPHreachable(int v, int w { return G>tc[v][wW ==1; }
void df s(Gaph G int s, int v) { is w reachable from v?
link t;
int w reachability froms made it to v

}

Depth First Search: Transitive Closure

digraph.c (transitive closure)

do reachability using
int s; @ each vertex as source

for (s =0; s <G>V, s++) dfs(G s, s);

G>tc[s][v] = 1;

for (t = G>adj[v]; t !'= NULL; t = t->next) {
W= t->w,
if (G>tc[s][wW == 0) dfs(G s, w;

} 1

assumes G- >t ¢[] [] was initialized to O

Transitive Closure: Cost Summary

TRANSITIVE CLOSURE. Is there adirected path from v to w?

Method Preprocess Query Space
Warshall V3 1 V2
DFS (preprocess) EV 1 V2
DFS (online) 1 E+V E

Open research problem. O(1) query, O(V2) preprocessing time.




Application: Scheduling

Given a set of tasks to be completed with precedence constraints, in
what order should we schedule the tasks?

. Task O: read programming assignment.
. Task 1: download files.
. Task 2: write code.

. Task 12: sleep.

Graph model.
. Create a vertex for each task.
. Create an edge v-w if task v must precede task w.

Directed Acyclic Graph

DAG: directed acyclic graph.

L3134 % &7 F FLO1E1D
Em|B 1 3 387 F 4 % BN EO1ELD

Depth First Search: Topological Sort

digraph.c

int cnt; /'l gl obal

int GRAPHts(G aph G {
int v;
cnt = G>V;
for (v =0; v <G>V, v++) G>visited[v] = FALSE
for (v =0; v < G>V, v++)
if (I1G>visited[v]) ts(G v);

} & run DFS from each vertex
void ts(Gaph G int v) {
link t;
G >visited[v] = TRUE;
for (t = G>adj[v]; t !'= NULL; t = t->next) {
int w=t->w
if (!G>visited[w) ts(G w;
G>ts[--cnt] = v; 4 assign numbers in reverse order
}

What happens if graph is not a DAG?

Application: PERT/CPM

Program Evaluation and Review Technique / Critical Path Method.
. Task v requires t[v] units of processing time. 0
. Can work on jobs in parallel subject to precedence constraints:
- must finish task v before beginning w
. What's the earliest we can complete each task?

Index Task Duration  Prerequisite

A Framing 0

B Framing 4 A

c Roofing 2 B

D Siding 6 B

E Windows 5 D

F Plumbing 3 D

G Electricity 4 GHE

H Paint 6 C,E

I Finish 0 F.H




Application: PERT/CPM

Program Evaluation and Review Technique / Critical Path Method.
. Task v requires t[v] units of processing time.

. Can work on jobs in parallel subject to precedence constraints:
- must finish task v before beginning w

. What's the earliest we can complete each task?

Longest path algorithm in DAG.
. Initialize finish[v] = O for all vertices v.
. Consider vertices v in topological order:

- for each edge v-w 3
finish[w] = max(finish[w], finish[v] + t[w]);

Warning: longest path problem is NP-hard in general graphs.

Application: Google's PageRank Algorithm

Goal. Determine which web pages on Internet are important.
Solution. Ignore keywords and content, focus on hyperlink structure.

Random surfer model.
. Start at random page.

. With probability 0.85, randomly selects a link on page to visit next.
With probability 0.15, randomly select a page.

. Never hit "Back" button.
. PageRank = proportion of time random surfer spends on each page.

Intuition.
. Each page evenly distributes its rank to all pages that it points to.
. Each page receives rank from all pages that point to it.
. Hard to cheat.

Application: Google's PageRank Algorithm

Solution 1: Simulate random surfer for a long time.

Solution 2: Compute ranks directly.

for (i = 0;
for (v
for (v

i < PHASES; i++) {
0; v < G>V; v++) oldrank[v] = rank[v];
0; v < G>V; v++) rank[v] = 0;

for (v =0;, v <G>V, v++) {
for (t = G>adj[v]; t !'= NULL; t = t->next) {
w = t->w
rank[w] += 1.0 * oldrank[v] / outdegree[v];
}
}
}

Solution 3: Compute eigenvalues of adjacency matrix!

PageRank Caveats

Dead end: page with no outgoing links.
. All importance will leak out of web.
. Easy to detect and ignore.

Spider trap: group of pages with no links leaving the group.
. Group will accumulate all importance of Web.
. Compute strongly connected components.
- use transitive closure - O(E V) time
- ingenious algorithms using DFS - O(E + V) time

3 1 3 3§ & 3 & 7 @ §F 101113
lf[lll?il:!!-':‘!'::'




Strongly Connected Components

Kosaraju's algorithm.
. Run DFS on reverse digraph and compute postorder.

. Run DFS on original digraph. In search loop that calls dfs(),
consider vertices in reverse postorder.

Theorem. Trees in second DFS are strong components. (1)

Strongly Connected Components

Kosaraju's algorithm.
. Run DFS on reverse digraph and compute postorder.

. Run DFS on original digraph. In search loop that calls dfs(),
consider vertices in reverse postorder.

second search loop
& that calls dfs()




