Lecture 3: Quicksort, Mergesort

ExamT I EAE A wErLi) AEEATAHER EAMELI
a b T e mE e uE L
s @ & aill
Ao L l;:lb
e e LeEBEOFHEINTE
= Lea P
LI
5B 00X IEFLE {
7 8o
. 2
AT | W@ I_.-EIIL
-I.lEIIIFIIuKIHFIH ':::-_l

Two Great Sorting Algorithms

Two great sorting algorithms.

. Full scientific understanding of their properties has enabled us to

. hammer them into practical system sorts.

. Occupies a prominent place in world's computational infrastructure.
- database search
- computational geometry
- finding repetition in DNA sequences
- Burrows-Wheeler transform

Mergesort.
. Java system sort.

Quicksort.
. Unix system sort.
. Cstandard library function is even named gsort().

Estimating the Running Time

Total running time is sum of cost * frequency for all of the basic ops.
. Cost depends on machine, compiler.
. Frequency depends on algorithm, input.

For sorting.

. A = # recursive calls.
. B = # exchanges.

. C = # comparisons.

. Cost on a typical machine = 35A + 11B + 4C. F\
.

-

Donald Knuth

Estimating the Running Time

An easier alternative.
(i) Analyze asymptotic growth as a function of input size N.
(ii) For medium N, run and measure time.
(iii) For large N, use (i) and (ii) to predict time.

Asymptotic growth rates.
. Estimate as a function of input size N.
-N, Nlog N, N2, N3, 2N, NI
. Ignore lower order terms and leading coefficients.
- Ex. 6N3 +17N2? + 56 is asymptotically proportional to N3

Insertion sort is quadratic. On arizona: 1 second for N = 10,000.
. How long for N =100,000? 100 seconds (100 times as long).
. N = 1million? 2.78 hours (another factor of 100).
. N=1billion? 317 years (another factor of 106).
. N =1+rillion?

Why Does It Matter? Orders of Magnitude

Seconds Egquivalent Meters Per Imperial
el e Example

Run time in 10 N2

47 N log,N
nanoseconds --> %2 ! 1 second 1010 1.2 in/ decade Continental drift
1000 | 13seconds | 10 msec 0.4 msec | 0.048 msec 10 | 10 seconds 108 I ear [y
LRGN 10,000 | 22 minutes 1 second 6 msec 0.48 msec 102 | 17 minutes 106 3.4in/ day e
solve a . 3 : :
MW 100,000 | 15 days 1.7 minutes | 78 msec 4.8 msec 104 17 minutes 104 12 f1 / hour | Gastro-intestinal tract
of size QUL 41 years 2.8 hours | 0.94 seconds 48 msec 10 2.8 hours 102 2t) i Ant
10 million| 41 millennia 1.7 weeks 11 seconds | 0.48 seconds 10° 11 days 1 SElm IV Ahour Plimantialk
6
second 10,000 1 million 21 million 107 1: weekhs 102 220 mi / hour Propeller airplane
minute 3,600 77,000 49 million 1.3 billion 08 3 1'“°“* s 104 370 mi / min Space shuttle
hour 14,000 600,000 2.4 trillion 76 trillion 109 31 years 10 620 mi / sec Earth in galactic orbit
- 29 million | 50 trillion | 1,800 trillion B 3! decades 10° | 62,000mi/sec| 1/3 speed of light
101 | 3.1 centuries
N multiplied by 10, forever 219 | thousand
time multiplied by Powers 2 —
102! age of of 2 2 million
universe 230 billion
Big Oh Notation Mergesort
0(), O(), and Q() notation. Mergesort (divide-and-conquer)

. Divide array into two halves.
. O(N?) means { N2, 17N2, N2+ 17NL5+ 3N, ...}
- ignore lower order terms and leading coefficients

. O(N2) means { N2, 17N2, N2 + 17N15+ 3N, N5, 100N, ...}
- ©(N?2) and faster
- use for upper bounds

Jon von Neumann (1945)

A[L|GJIO[R|I|T|H[M]|S]

. Q(N2) means { N2, 17N2, N2 + 17Ni5 + 3N, N2, 100N5, ...}
- O and stower A[LIGIO[R] [I[T]IH[M[S| dvide

- use for lower bounds

Mergesort

Mergesort (divide-and-conquer)
. Divide array into two halves.
. Recursively sort each half.

A[L|GJIO[R|I|T|H[M]|S]

AILIG[O[R] [I[T[H[M[S

A|GIL[OJR| [H[I[M[S|T

divide

sort

Mergesort

Mergesort (divide-and-conquer)
. Divide array into two halves.
. Recursively sort each half.
. Merge two halves to make sorted whole. E

A[L|GJIO[R|I|T|H[M]|S]

AILIGIO[R] [I[T[H[M[S| advice

|A[G|L|O|R]| [H]I [M|S|T] sort

|A|G|H|I [L|M[O|[R[S|T| merge

Mergesort Analysis

How long does mergesort take?
. Bottleneck = merging (and copying).
- merging two files of size N/2 requires N comparisons
. T(N) = comparisons to mergesort N elements.
- to make analysis cleaner, assume N is a power of 2

0 if N=1
T(N)=0 2T(N/2) + N otherwise
%Orting bothhalves Merging

Claim. T(N) =N log, N.
. Note: same number of comparisons for ANY file.
- even already sorted
. We'll give several proofs to illustrate standard techniques.

Proof by Picture of Recursion Tree

0 if N=1
T(N)=0 2T(N/2) + N otherwise
Biorting both halves Merging

TN) AN
/\
T(N/2) T(N/2) 2(N/2)
T(Nm/4) T(N‘/‘U/\T(RJM) 00, 4(N/4)
24N/ 24

T@) T2 TR T@ T@ T@ TR T@ ¢ N/2(2)

N log,N

Proof by Telescoping

Claim. T(N) = N log, N (when N is a power of 2).

0 if N=1
T(N)=0 2T(N/2) + N otherwise
E?JFMV& merging

Proof. For N> 1: T(N) _ 2T(N/2) ‘1
N N
- T(N/2) ‘1
N/2
ST
N/4
= M +1+---+1
N/N N
= log, N

Mathematical Induction

Mathematical induction.
. Powerful and general proof technique in discrete mathematics.
. To prove a theorem true for all integers k = O:
- Base case: prove it to be true for N = 0.
- Induction hypothesis: assuming it is true for arbitrary N
- Induction step: show it is true for N + 1

Claim: 0+1+2+3+...+N = N(N+1) /2 forallN=0.
Proof: (by mathematical induction)

. Base case (N =0).

- 0= 0(0+1)/2.

. Induction hypothesis: assume O +1+2+ ... +N = N(N+1)/2

. Inductionstep: O+1+...+ N+N+1 (O+1+...+N)+ N+
N (N+1) /2 + N+1
(N+2)(N+1) / 2

Proof by Induction

Claim. T(N) = N log, N (assuming N is a power of 2).

0 if N=1
T(N)=0 2T(N/2) + N otherwise
E?JFMV& merging

Proof. (by induction on N)

. Base case: N=1.

. Inductive hypothesis: T(N)= N log, N.
. Goal: show that T(2N) = 2N log, (2N).

T(2N) 2T(N)+2N
= 2Nlog, N +2N
= 2N(log,(2N)-1)+2N

= 2Nlog,(2N)

Proof by Induction

What if N is not a power of 2?

. T(N) satisfies following recurrence.

ED if N=1

T(N) = OT(mN/20) + T(IN/20) + N otherwise
——
E solveleft half solveright half merging

Claim. T(N) <N Oog, NO
Proof. See supplemental slides.

Computational Complexity

Framework to study efficiency of algorithms. Example = sorting.

. MACHINE MODEL = count fundamental operations.
- count humber of comparisons

. UPPER BOUND = algorithm to solve the problem (worst-case).
- N log, N from mergesort

. LOWER BOUND = proof that no algorithm can do better.
- Nlog, N-Nlog, e

. OPTIMAL ALGORITHM: lower bound ~ upper bound.
- mergesort

Decision Tree

Comparison Based Sorting Lower Bound

Theorem. Any comparison based sorting algorithm must use
Q(N log,N) comparisons.

Proof. Worst case dictated by tree height h.
. Nl different orderings.
. One (or more) leaves corresponding to each ordering.
. Binary tree with N! leaves must have height

h

v

log ,(N1)
log ,(N /e)™ <:Z:Sﬁrling's formula
N log, N -Nlog,e

vV

Food for thought. What if we don't use comparisons?
Stay tuned for radix sort.

Sorting Analysis Summary

Running time estimates:
. Home pc executes 108 comparisons/second.
. Supercomputer executes 1012 comparisons/second.

Insertion Sort (N2) Mergesort (N log N)

computer thousand million billion thousand million billion
home instant 2.8 hours | 317 years instant 1sec 18 min
super instant 1second | 1.6 weeks instant instant instant

Lesson 1: good algorithms are better than supercomputers.

How does quicksort fit into the picture?

Quicksort

Quicksort.
. Partition array so that:
- some partitioning element a[n is in its final position

- no larger element to the left of m C. A.R. Hoare
- no smaller element to the right of m
partitioning
ﬂEl element

U

QIulr[clk[s[o[Rr[T[I[s[c][o[oH

(I [CIK[IT [CHMQ[U[S[O[R[T[S[O]O]
. _/ — _

Y

<L ﬁ :T

partitioned array

21

Quicksort

Quicksort.
. Partition array so that:

- some partitioning element a[n is in its final position
- no larger element to the left of m
- no smaller element to the right of m

. Sort each "half" recursively. partitioning
element

U

QIulr[cl[k[s[o[Rr[T[I[s[c][o[oH

ccl I KL OOOQRSSTWU

R Sort each "half." j

Quicksort: Worst Case

Number of comparisons in worst case is quadratic.
. N+ (N-1)+(N-2)+...+1 = N(N-1)/2

Worst-case inputs.
. Already sorted!
. Reverse sorted.
. Allequal. (Stay tuned.)

Fix.
. Pick partitioning element at random.
. Guarantees good performance.

Quicksort: Average Case

Precondition: file is randomly shuffled beforehand.
. Or, partition on RANDOM element.

Expected number of comparisons.
. Roughly 2 N InN=1.39 N log,N.
- see next slide for proof
. 39% more than mergesort but faster in practice.
- lower cost of other high-frequency instructions
. Worst case still proportional to N2,
- more likely that machine struck by lightning

Quicksort: Average Case

Theorem. The average humber of comparisons C to quicksort a
random file of N elements is about 2N InN.

The precise recurrence satisfies C, = C; = 0 and for N2 2:

Cn

. N
N +1+Wk2:l(ck + Cnx)

N
N+1+2 5 Gy

Multiply both sides by N and subtract the same formula for N-1:
Simplify to:

NC,y = (N+1)Cy_, +2N

Quicksort: Average Case

Divide both sides by N(N+1) to yield a telescoping sum:

Cyn _ Cnay, 2
N +1 N N +1
= CN_Z + £+ 2
N -1 N N +1
Cy. 2 2

Quicksort: Improvements

Median of sample.

. Best choice of partitioning element = median.

. Estimate true median by taking median of sample.
. Number of comparisons close to N log,N.

. FEWER large files.

. Slightly more exchanges, overhead.

Insertion sort small files.
. Even quicksort has too much overhead for tiny files.
. Can delay insertion sort until end.

Dealing with equal keys. Stay tuned for 3-way partitioning.

Optimize parameters.
. Median of 3 elements.
. Cutoff to insertion sort for < 10 elements.

Sorting Analysis Summary

Running time estimates:
. Home pc executes 108 comparisons/second.
. Supercomputer executes 10'2 comparisons/second.

Insertion Sort (N2) Mergesort (N log N)

computer thousand million billion thousand million billion
home instant 2.8 hours | 317 years instant 1sec 18 min
super instant 1second | 1.6 weeks instant instant instant

Quicksort (N log N)
instant 0.3 sec 6 min
instant instant instant

Lesson 1: good algorithms are better than supercomputers.
Lesson 2: great algorithms are better than good ones.

