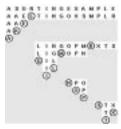
Lecture 3: Quicksort, Mergesort



Estimating the Running Time

Total running time is sum of cost \star frequency for all of the basic ops.

- Cost depends on machine, compiler.
- Frequency depends on algorithm, input.

For sorting.

- A = # recursive calls.
- B = # exchanges.
- C = # comparisons.
- Cost on a typical machine = 35A + 11B + 4C.

Donald Knuth

Two Great Sorting Algorithms

Two great sorting algorithms.

- Full scientific understanding of their properties has enabled us to
- hammer them into practical system sorts.
- Occupies a prominent place in world's computational infrastructure.
 - database search
 - computational geometry
 - finding repetition in DNA sequences
 - Burrows-Wheeler transform

Mergesort.

Java system sort.

Quicksort.

- Unix system sort.
- C standard library function is even named qsort().

Estimating the Running Time

An easier alternative.

- (i) Analyze asymptotic growth as a function of input size N.
- (ii) For medium N, run and measure time.
- (iii) For large N, use (i) and (ii) to predict time.

Asymptotic growth rates.

- \blacksquare Estimate as a function of input size N.
 - N, N log N, N², N³, 2^N, N!
- $\ {\bf .} \ \ {\bf Ignore \ lower \ order \ terms \ and \ leading \ coefficients}.$
 - Ex. $6N^3 + 17N^2 + 56$ is asymptotically proportional to N^3

Insertion sort is quadratic. On arizona: 1 second for N = 10,000.

• How long for N = 100,000? 100 seconds (100 times as long).

N = 1 million?
 N = 1 billion?
 2.78 hours (another factor of 100).
 N = 1 billion?
 317 years (another factor of 106).

N = 1 trillion?

Why Does It Matter?

	rime in conds>	1.3 N ³	10 N ²	47 N log ₂ N	48 N
	1000	1.3 seconds	10 msec	0.4 msec	0.048 msec
Time to	10,000	22 minutes	1 second	6 msec	0.48 msec
solve a problem	100,000	15 days	1.7 minutes	78 msec	4.8 msec
of size	million	41 years	2.8 hours	0.94 seconds	48 msec
	10 million	41 millennia	1.7 weeks	11 seconds	0.48 seconds
	second	920	10,000	1 million	21 million
May ciza	0000.10	720			
Max size problem	minute	3,600	77,000	49 million	1.3 billion
problem solved			•	49 million 2.4 trillion	
problem	minute	3,600	77,000		1.3 billion

Orders of Magnitude

Seconds	Equivalent	
1	1 second	
10	10 seconds	
10 ²	1.7 minutes	
10 ³	17 minutes	
10 ⁴	2.8 hours	
10 ⁵	1.1 days	
10 ⁶	1.6 weeks	
10 ⁷	3.8 months	
10 ⁸	3.1 years	
10 ⁹	3.1 decades	
10 ¹⁰	3.1 centuries	
	forever	
10 ²¹	age of universe	

Meters Per Second	Imperial Units	Example	
10-10	1.2 in / decade	Continental drift	
10-8	1 ft / year	Hair growing	
10-6	3.4 in / day	Glacier	
10-4	1.2 ft / hour	Gastro-intestinal tract	
10-2	2 ft / minute	Ant	
1	2.2 mi / hour	Human walk	
10 ²	220 mi / hour	Propeller airplane	
10 ⁴	370 mi / min	Space shuttle	
10 ⁶	620 mi / sec	Earth in galactic orbit	
108	62,000 mi / sec	1/3 speed of light	

	2 ¹⁰	thousand
Powers of 2	2 ²⁰	million
01 2	2 ³⁰	billion

Big Oh Notation

$\Theta()$, O(), and $\Omega()$ notation.

- $_{\bullet}~\Theta(N^2)$ means { $N^2,\,17N^2,\,N^2+\,17N^{1.5}+\,3N,\,\,\dots$ }
 - ignore lower order terms and leading coefficients
- ${f O}(N^2)$ means { N^2 , $17N^2$, N^2 + $17N^{1.5}$ + 3N, $N^{1.5}$, 100N, . . . }
 - $\Theta(N^2)$ and faster
 - use for upper bounds
- $_{\bullet}$ $\Omega(N^2)$ means { $N^2,\,17N^2,\,N^2+\,17N^{1.5}+\,3N,\,\,N^3,\,100N^5,\,\dots$ }
 - $\Theta(N^2)$ and slower
 - use for lower bounds

Mergesort

Mergesort (divide-and-conquer)

• Divide array into two halves.

Jon von Neumann (1945)

A L G O R I T H M S

A L G O R

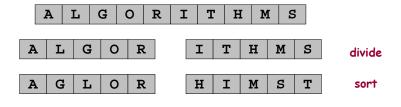
I T H M S

divide

Mergesort

Mergesort (divide-and-conquer)

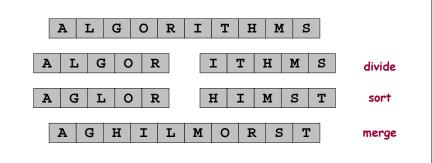
- Divide array into two halves.
- Recursively sort each half.



Mergesort

Mergesort (divide-and-conquer)

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.



Mergesort Analysis

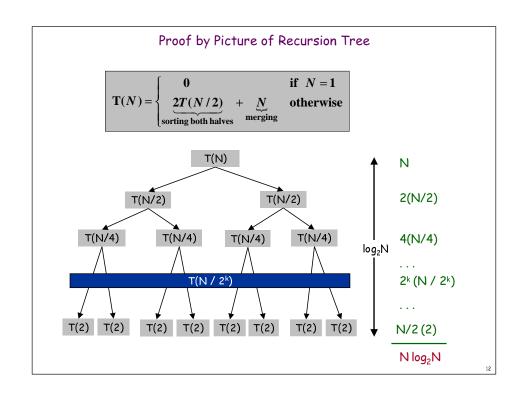
How long does mergesort take?

- Bottleneck = merging (and copying).
 - merging two files of size N/2 requires N comparisons
- ullet T(N) = comparisons to mergesort N elements.
 - to make analysis cleaner, assume N is a power of 2

$$T(N) = \begin{cases} 0 & \text{if } N = 1\\ 2T(N/2) + \underbrace{N}_{\text{merging}} & \text{otherwise} \end{cases}$$

Claim. $T(N) = N \log_2 N$.

- Note: same number of comparisons for ANY file.
 - even already sorted
- We'll give several proofs to illustrate standard techniques.



Proof by Telescoping

Claim. $T(N) = N \log_2 N$ (when N is a power of 2).

$$T(N) = \begin{cases} 0 & \text{if } N = 1\\ \underbrace{2T(N/2)}_{\text{sorting both halves}} + \underbrace{N}_{\text{merging}} & \text{otherwise} \end{cases}$$

Proof. For N > 1:
$$\frac{T(N)}{N} = \frac{2T(N/2)}{N} + 1$$

$$= \frac{T(N/2)}{N/2} + 1$$

$$= \frac{T(N/4)}{N/4} + 1 + 1$$
...
$$= \frac{T(N/N)}{N/N} + \underbrace{1 + \dots + 1}_{\log_2 N}$$

$$= \log_2 N$$

Mathematical induction.

Powerful and general proof technique in discrete mathematics.

Mathematical Induction

- To prove a theorem true for all integers $k \ge 0$:
 - Base case: prove it to be true for N = 0.
 - Induction hypothesis: assuming it is true for arbitrary N
 - Induction step: show it is true for N + 1

Claim: 0 + 1 + 2 + 3 + ... + N = N(N+1) / 2 for all $N \ge 0$. Proof: (by mathematical induction)

- Base case (N = 0).
 - 0 = 0(0+1) / 2.
- Induction hypothesis: assume 0 + 1 + 2 + ... + N = N(N+1) / 2
- Induction step: 0+1+...+N+N+1 = (0+1+...+N)+N+1= N(N+1)/2 + N+1= (N+2)(N+1)/2

Proof by Induction

Claim. $T(N) = N \log_2 N$ (assuming N is a power of 2).

$$T(N) = \begin{cases} 0 & \text{if } N = 1\\ 2T(N/2) + \underbrace{N}_{\text{merging}} & \text{otherwise} \end{cases}$$

Proof. (by induction on N)

- Base case: N = 1.
- Inductive hypothesis: $T(N) = N \log_2 N$.
- Goal: show that $T(2N) = 2N \log_2 (2N)$.

$$T(2N) = 2T(N) + 2N$$

$$= 2N \log_2 N + 2N$$

$$= 2N (\log_2(2N) - 1) + 2N$$

$$= 2N \log_2(2N)$$

Proof by Induction

What if N is not a power of 2?

• T(N) satisfies following recurrence.

$$T(N) = \begin{cases} 0 & \text{if } N = 1 \\ \underline{T(\lceil N/2 \rceil)} + \underline{T(\lfloor N/2 \rfloor)} + \underbrace{N}_{\text{merging}} & \text{otherwise} \end{cases}$$

Claim. $T(N) \leq N \lceil \log_2 N \rceil$.

Proof. See supplemental slides.

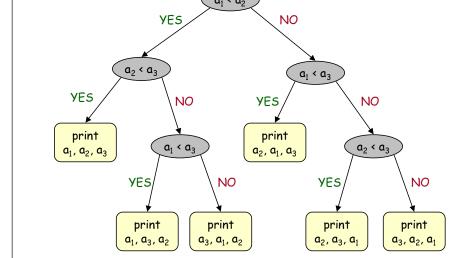
...

Computational Complexity

Framework to study efficiency of algorithms. Example = sorting.

- MACHINE MODEL = count fundamental operations.
 - count number of comparisons
- UPPER BOUND = algorithm to solve the problem (worst-case).
 - N log 2N from mergesort
- LOWER BOUND = proof that no algorithm can do better.
 - N log, N N log, e
- OPTIMAL ALGORITHM: lower bound ~ upper bound.
 - mergesort

17



Decision Tree

Comparison Based Sorting Lower Bound

Theorem. Any comparison based sorting algorithm must use $\Omega(N \log_2 N)$ comparisons.

Proof. Worst case dictated by tree height h.

- lacksquare N! different orderings.
- $\hfill {\tt Laplace}$ One (or more) leaves corresponding to each ordering.
- Binary tree with N! leaves must have height

$$h \ge \log_2(N!)$$

 $\ge \log_2(N/e)^N$ Stirling's formula
 $= N \log_2 N - N \log_2 e$

Food for thought. What if we don't use comparisons?

Stay tuned for radix sort.

Sorting Analysis Summary

Running time estimates:

- Home pc executes 108 comparisons/second.
- Supercomputer executes 10¹² comparisons/second.

Insertion Sort (N^2)

computer	thousand	million	billion	
home	instant	2.8 hours	317 years	
super	instant	1 second	1.6 weeks	

Mergesort (N log N)

thousand	million	billion
instant	1 sec	18 min
instant	instant	instant

Lesson 1: good algorithms are better than supercomputers.

How does quicksort fit into the picture?

Quicksort

Quicksort.

U

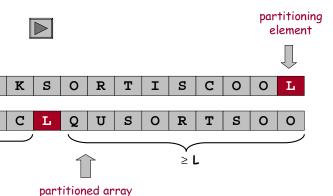
Ι

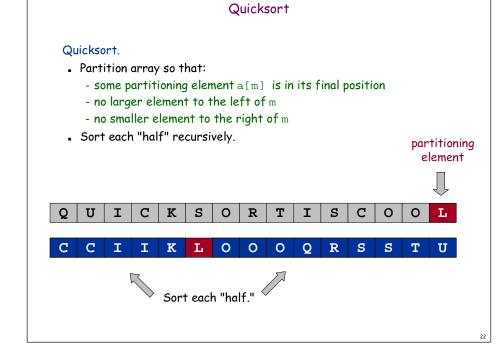
K

≤ L

- Partition array so that:
 - some partitioning element a[m] is in its final position
 - no larger element to the left of m
 - no smaller element to the right of $\ensuremath{\mathtt{m}}$

C. A. R. Hoare





Quicksort: Worst Case

Number of comparisons in worst case is quadratic.

N + (N-1) + (N-2) + ... + 1 = N(N-1)/2

Worst-case inputs.

- Already sorted!
- Reverse sorted.
- All equal. (Stay tuned.)

Fix.

- Pick partitioning element at random.
- Guarantees good performance.

Quicksort: Average Case

Precondition: file is randomly shuffled beforehand.

Or, partition on RANDOM element.

Expected number of comparisons.

- Roughly 2 N ln N \approx 1.39 N log₂N.
 - see next slide for proof
- 39% more than mergesort but faster in practice.
 - lower cost of other high-frequency instructions
- Worst case still proportional to N^2 .
 - more likely that machine struck by lightning

Quicksort: Average Case

Theorem. The average number of comparisons C_N to quicksort a random file of N elements is about $2N \ln N$.

The precise recurrence satisfies $C_0 = C_1 = 0$ and for $N \ge 2$:

$$C_{N} = N + 1 + \frac{1}{N} \sum_{k=1}^{N} (C_{k} + C_{N-k})$$
$$= N + 1 + \frac{2}{N} \sum_{k=1}^{N} C_{k-1}$$

Multiply both sides by N and subtract the same formula for N-1:

$$NC_{N} - (N-1)C_{N-1} = N(N+1) - (N-1)N + 2C_{N-1}$$

Simplify to:

$$NC_{N} = (N+1)C_{N-1} + 2N$$

25

Quicksort: Improvements

Median of sample.

- Best choice of partitioning element = median.
- Estimate true median by taking median of sample.
- Number of comparisons close to N log₂N.
- FEWER large files.
- Slightly more exchanges, overhead.

Insertion sort small files.

- Even quicksort has too much overhead for tiny files.
- Can delay insertion sort until end.

Dealing with equal keys. Stay tuned for 3-way partitioning.

Optimize parameters.

- Median of 3 elements.
- Cutoff to insertion sort for < 10 elements.

Quicksort: Average Case

Divide both sides by N(N+1) to yield a telescoping sum:

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

$$= \frac{C_{N-2}}{N-1} + \frac{2}{N} + \frac{2}{N+1}$$

$$= \frac{C_{N-3}}{N-2} + \frac{2}{N-1} + \frac{2}{N} + \frac{2}{N+1}$$

$$= \vdots$$

$$= \frac{C_2}{3} + \sum_{k=3}^{N} \frac{2}{k+1}$$

Approximate the exact answer by an integral:

$$\frac{C_{N+1}}{N} \approx \sum_{k=1}^{N} \frac{2}{k} \approx \int_{k-1}^{N} \frac{2}{k} = 2 \ln N \approx 1.39 \log_2 N$$

Sorting Analysis Summary

Running time estimates:

- lacksquare Home pc executes 10^8 comparisons/second.
- Supercomputer executes 1012 comparisons/second.

Insertion Sort (N2)

	No. of the contract of the con		
computer	thousand	million	billion
home	instant	2.8 hours	317 years
super	instant	1 second	1.6 weeks

Mergesort (N log N)

thousand	million	billion
instant	1 sec	18 min
instant	instant	instant

Quicksort (N log N)

thousand	million	billion
instant	0.3 sec	6 min
instant	instant	instant

Lesson 1: good algorithms are better than supercomputers.

Lesson 2: great algorithms are better than good ones.