
CS 493: Algorithms for Massive Data Sets Local Models, Bloom Filter
Feb 21, 2002 Scribe: Qin Lv

1 Local Models

In global models, every inverted file entry is compressed with the same model. This work
wells when assuming uniform distribution of gaps, i.e. the gap sizes are randomly distributed.

However, the distribution of gaps depends on the listing. If we sort URLs into lexical
order, URLs from the the same site are likely to be close to each other. Then the distribution
of gaps tends to have this ”clustering” property. In order to utilize such property, people
use local models, where each inverted file entry uses its own model. Generally, local models
outperform global models but are more complex to implement.

Golomb code: works well if most gaps are ≤ b, but it’s not good for large gaps. γ-code
works better with large gaps.

Skewed-Bernoulli is a combination of the two.

VT = (b, 2b, 4b, . . . , 2ib, . . .)

1.1 Local Hyperbolic Model

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e.,

Pr(i) ∼
1

i
, fori = 1, 2, . . . , m

Let m be the truncate point of gap size, then

Pr(i) =
1

i
∑m

j=1
1
j

≈
1

i × logm
e

What should m be?

E[gap size] =
∑

i × Pr(i)

≈
∑

i ×
1

i × logm
e

m

logm
e

=
N

ft

where N is the number of documents, and ft is the frequency of terms.
We can then use observed frequencies to build the code. But one problem with this

scheme is that we have to do it at a term by term base.

1

To solve this problem, we can batch terms (with same frequencies) together. An even
better method is to use logarithmic batching, i.e., we group terms according to logarithmic
intervals [2i, 2i+1). In practice, this method uses only about 20 codes.

All the models we have looked at so far are zero-order model, which means that each
symbol is independent, and they do not use context information. We might be able to de-
sign better schemes if we can use information of previous gap distribution. Such compression
schemes are called context sensitive compression schemes.

For the parameterized global model such as Golomb code, we can choose the parameter
b to be the average of the previous K gap sizes. But there is a problem. Suppose we have
many small gaps followed by a large gap, b could become 1 for the small gaps, which is the
same as unary coding, then, when it comes to the large gap, it’s going to use a huge code
for that large gap. This problem can be alleviated by using Skewed-Bernoulli code.

1.2 Interpolative Code

With this scheme, we assume that we know the complete inverted file entry, and we recur-
sively calculate ranges and code them with minimal number of bits.

e.g. assume we have 20 documents in total, and a given inverted file entry has 7 documents

< 7; 3, 8, 9, 11, 12, 13, 17 >

then the gaps are
< 7; 3, 5, 1, 2, 1, 1, 4 >

note that if we know the 4th number is ”11” and the 6th number is ”13”, there is only
one possible value (”12”) for the 5th number.

We recursively halve the range and calculate the lowest possible value and highest possible
value for the number in the middle. So for the example above, we first look at the 4th number
”11”, then ”8”, which is the middle number in the left 3 documents, then ”3”, ”9”, then
”13” (the middle number in the right 3 documents), and finally ”12”, ”17”.

We use (x, lo, hi) to denote that x lies in the interval [lo, hi]. Then for the example above,
we can get the following sequence:

(11,4,17) since 11 is the 4th number among the 7 documents, and there are 20 documents
in total.

(8,2,9); (3,1,7); (9,9,10); (13,13,19); (12,12,12)

Interpolative code can achieve the best compression ratio, but it has longer decoding
time.

Why the (x, lo, hi) coding is the best coding? Intuitively, for a sorted sequence of numbers
within 1 and N , the median is likely to be N/2. And the probability Pr(x is the median) is
much higher if x is close to N/2. Then, using Huffman coding, we can get very short code.

2

2 Performance of Index Compression

Since local models use more information (such as the previous distribution of gap), they
perform better than global models. Global observed frequency model is only slightly better
than γ or δ codes. Both γ and δ codes have performance close to the local schemes, but are
outperformed by the local schemes.

And the performances for the various local schemes are:

Bernoulli < Hyperbolic

< Skewed − Bernoulli

< batchedfrequencies

< Interpolativecode

3 Hashing Based Signature Schemes

As for the purpose of indexing, a document is just a set of terms, and the database is some
representation of such sets so that queries can be answered efficiently. While sometimes
we want exact answers to our queries, there are many situations when some probability of
mismatch can be allowed. We now discuss a scheme that is used for the later case1.

3.1 Bloom filters

A Bloom filter represents a set S of n elements by a bit vector V of size m, initially all set to
0. A Bloom filter uses k independent hash functions (h1, h2, . . . , hk) with range {1, 2, . . . , m}.
We assume these hash functions map each item in the universe to a random number uniform
over the range {1, 2, . . . , m}.

For each element e ∈ S, the bits hi(e) are set to 1 for 1 ≤ i ≤ k. To check if an element
x is in set S, we check whether all the bits hi(x)(1 ≤ i ≤ k) are set to 1. If not, element x
is definitely NOT in the set S. Otherwise, we assume that x is in S. However, it’s possible
that x is actually not in the set, but all its k corresponding bits are set (because some other
elements are hashed to those bits). So a Bloom filter may yield a false positive, where it
suggests that an element x is in S even though it is not. For many applications, this is
acceptable as long as the probability of a false positive is sufficiently small.

Bloom filters are widely used in many applications such as distributed caches.

Now given the scheme, what is the probability a false positive? Since there are n elements
and k hash functions, we need to set n × k bits. Assuming purely random hash functions,
each time we set a bit, the probability that a particular bit is not set is 1 − 1/m. So, after

1reference: ”Compress Bloom Filter”, by Michael Mitzenmacher.

3

all the elements of S are hashed into the Bloom filter, the probability that a particular bit
is still not set is

(1 −
1

m
)nk ≈ e−

nk

m

let p = e−
nk

m , then the probability of a false positive (this is when all the k corresponding
bits are set) is

(

1 −
(

1 −
1

m

)nk
)k

≈
(

1 − e−
nk

m

)k
= (1 − p)k

Let f = (1 − p)k. We now use the asymptotic approximations p and f to represent
respectively the probability of a bit not being set and the probability of a false positive.

Suppose the number n and m are fixed, how can we choose the number of hash functions
k such that the probability of false positive f is minimized?

p = e−
nk

m ⇒
1

p
= e

nk

m

⇒ ln
1

p
=

nk

m

⇒ k = −
m

n
lnp

f = (1 − p)k = (1 − p)−
m

n
lnp

= e−ln(1−p)lnp m

n

Since m and n are fixed, f is minimized when ln(1 − p)lnp is maximized.

d

dp
ln(1 − p)lnp =

ln(1 − p)

p
−

lnp

1 − p
= 0

⇒ p = 1/2

so the optimal (i.e. minimal) f is achieved when p = 1/2:

1/2 = p = e−
nk

m ⇒ ln2 =
nk

m

⇒ k = ln2(
m

n
)

⇒ f = (1 − p)k = (
1

2
)ln2(m

n
) ∼ (0.6185)

m

n

4

3.2 Compressed Bloom filter

Many applications using Bloom filter may need to pass the Bloom filter as a message, and
the transmission size Z(Z ≤ m) can become a limiting factor. If every bit has the same
probability, the Bloom Filter cannot be compressed (Z = m). Suppose, however, if we can
choose k such that p, the probability of a bit not being set is not 1/2, we may be able to
compress the Bloom filter before sending it out, thus reducing the transmission size Z.

The lower bound of Z is m × H(p, 1 − p), where

H(p, 1 − p) = −plog2p − (1 − p)log2(1 − p)

is the entropy of the distribution {p, 1 − p}.

Suppose n and the transmission size Z are fixed, what is the best k that minimizes f?

[to be continued in next class...]

5

